IA creativa: De la mímica expresiva a la investigación crítica

Main Article Content

Angus Forbes

El incipiente campo de lo que se conoce como "IA creativa" consiste en una serie de actividades en las intersecciones de las nuevas artes mediáticas, la interacción persona-computadora y la inteligencia artificial. Este artículo proporciona una descripción general de proyectos recientes que enfatizan el uso de algoritmos de aprendizaje automático como un medio para identificar, replicar y modificar características en los medios existentes, para facilitar nuevas asignaciones multimodales entre las entradas del usuario y las salidas de los medios, para ampliar los límites en las experiencias del arte generativo e investigar críticamente el papel de las tecnologías de detección de características e identificación de patrones en la vida contemporánea. A pesar de la proliferación de proyectos de este tipo, los avances recientes en el aprendizaje automático aplicado aún no han sido incorporados o cuestionados por proyectos creativos de IA, y este artículo también destaca las oportunidades para los artistas computacionales que trabajan en esta área. El artículo concluye imaginando cómo la práctica creativa de IA podría incluir e delinear los límites de lo que se puede y no se puede aprender extrayendo características de artefactos y experiencias, explorando sobre cómo las nuevas maneras de interpretación pueden codificarse en redes neuronales y definiendo cómo la interacción de múltiples máquinas con algoritmos de aprendizaje se pueden utilizar para generar una nueva visión de los sistemas sociotécnicos entrelazados presentes en nuestras vidas.

Palabras clave
IA creativa, aprendizaje automático, arte generativo, arte de nuevos medios

Article Details

Cómo citar
Forbes, Angus. «IA creativa: De la mímica expresiva a la investigación crítica». Artnodes, 2020, n.º 26, pp. 1-10, doi:10.7238/a.v0i26.3370.
Biografía del autor/a

Angus Forbes, University of California, Santa Cruz

Angus Forbes es profesor asociado en el Departamento de ciencias de la computación en la Universidad de California, Santa Cruz, donde dirige el Creative Coding Lab. En su trabajo investiga técnicas novedosas para visualizar e interactuar con información científica compleja, y su obra interactiva se ha exhibido en museos, galerías y festivales de todo el mundo. Dirigió la sección Art Papers en SIGGRAPH 2018 y se encargará de la Galería de arte en SIGGRAPH 2021. Más información sobre sus proyectos actuales en https://creativecoding.soe.ucsc.edu/.

Citas
Ackerman, Margareta, James Morgan, and Christopher Cassion. “Co-Creative Conceptual Art.” Proceedings of the Ninth International Conference on Computational Creativity (ICCC), pages 1-8. 2018.

Agüera y Arcas, Blaise. 2017. "Art in the age of machine intelligence." Arts 6, no. 4: 18. https://doi.org/10.3390/arts6040018

Akten, Memo, Rebecca Fiebrink, and Mick Grierson. “Learning to See: You Are What You See.” Proceedings of ACM SIGGRAPH Short Art Papers, pages 1-6. 2019. https://doi.org/10.1145/3306211.3320143

Alsaiari, Abeer, Ridhi Rustagi, Manu Mathew Thomas, and Angus G. Forbes. "Image Denoising Using A Generative Adversarial Network." Proceedings of the IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pages 126-132. 2019. https://doi.org/10.1109/INFOCT.2019.8710893

Anadol, Refik. “Machine Hallucination”. 2019. Available online at: http://refikanadol.com/works/machine-hallucination/.

Baltrušaitis, Tadas, Chaitanya Ahuja, and Louis-Philippe Morency. "Multimodal machine learning: A survey and taxonomy." IEEE Transactions on Pattern Analysis and Machine Intelligence 41, no. 2 (2018): 423-443. https://doi.org/10.1109/TPAMI.2018.2798607

Bau, David, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. "Semantic photo manipulation with a generative image prior." ACM Transactions on Graphics 38, no. 4 (2019): 1-11. https://doi.org/10.1145/3306346.3323023

Bishop, Christopher M. Neural Networks for Pattern Recognition. Oxford University Press, 1995. https://doi.org/10.1201/9781420050646.ptb6

Bojanowski, Piotr, Armand Joulin, David Lopez-Paz, and Arthur Szlam. "Optimizing the latent space of generative networks." arXiv preprint arXiv:1707.05776, 2019.

Burchett, Joseph N., Oskar Elek, Nicolas Tejos, J. Xavier Prochaska, Todd M. Tripp, Rongmon Bordoloi, and Angus G. Forbes. "Revealing the Dark Threads of the Cosmic Web." The Astrophysical Journal Letters 891, no. 2 (2020): L35. https://doi.org/10.3847/2041-8213/ab700c

Carter, Shan, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. "Activation atlas." Distill 4, no. 3 (2019): e15. https://doi.org/10.23915/distill.00015

Chan, Caroline, Shiry Ginosar, Tinghui Zhou, and Alexei A. Efros. "Everybody dance now." Proceedings of the IEEE International Conference on Computer Vision, pages 5933-5942. 2019. https://doi.org/10.1109/ICCV.2019.00603

Chung, Sougwen. “Artefact 1.” Sougwen Chung Portfolio Website. 2019. https://sougwen.com/project/artefact1.

Cohen, Harold. "The further exploits of AARON, painter." Stanford Humanities Review 4, no. 2 (1995): 141-158.

Cope, David. Experiments in musical intelligence. Middleton WI: A-R Editions, 1996.

Davis, Abe, Michael Rubinstein, Neal Wadhwa, Gautham J. Mysore, Frédo Durand, and William T. Freeman. "The visual microphone: Passive recovery of sound from video." ACM Transactions on Graphics 33, no. 4 (2014):79. https://doi.org/10.1145/2601097.2601119

Diakopoulos, Nicholas. "Algorithmic accountability: Journalistic investigation of computational power structures." Digital Journalism 3, no. 3 (2015): 398-415. https://doi.org/10.1080/21670811.2014.976411

Dubey, Mahika, Alan Peral Ortiz, Rakshit Agrawal, and Angus G. Forbes. "Predicting Biker Density at Bikeshare Station Intersections in San Francisco." 2019 IEEE Global Humanitarian Technology Conference (GHTC), pages 1-7. 2019a. https://doi.org/10.1109/GHTC46095.2019.9033019

Dubey, Mahika, Jasmine Otto, and Angus G. Forbes. “Data Brushes: Interactive style transfer for data art.” Proceedings of IEEE VIS Arts Program. 2019b. https://doi.org/10.1109/VISAP.2019.8900858

Elek, Oskar, Manu M. Thomas, and Angus Forbes. "Learning Patterns in Sample Distributions for Monte Carlo Variance Reduction." arXiv preprint arXiv:1906.00124, 2019.

Eubanks, Virginia. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: St. Martin's Press, 2018.

Fauconnier, Gilles, and Mark Turner. “Conceptual blending, form and meaning.” Recherches en Communication 19 (2003): 57-86. https://doi.org/10.14428/rec.v19i19.48413

Fiebrink, Rebecca, and Baptiste Caramiaux. “The machine learning algorithm as creative musical tool.” In The Oxford Handbook of Algorithmic Music, edited by Roger T. Dean and Alex McLean, chapter 12. Oxford University Press, 2016.

Forbes, Angus G. "Articulating media arts activities in art-science contexts." Leonardo 48, no. 4 (2015): 330-337. https://doi.org/10.1145/2810177.2810179

Forbes, Angus G. and Kiyomitsu Odai. “Iterative synaesthetic composing with multimedia signals.” Proceedings of the International Computer Music Conference (ICMC), pages 573-578. 2012.

Fried, Ohad, Ayush Tewari, Michael Zollhöfer, Adam Finkelstein, Eli Shechtman, Dan B. Goldman, Kyle Genova, Zeyu Jin, Christian Theobalt, and Maneesh Agrawala. "Text-based editing of talking-head video." ACM Transactions on Graphics 38 no. 4 (2019): 1-14. https://doi.org/10.1145/3306346.3323028

Frost, Sarah, Bryan Tor, Rakshit Agrawal, and Angus G. Forbes. "CompostNet: An Image Classifier for Meal Waste." 2019 IEEE Global Humanitarian Technology Conference (GHTC), pages 1-4. 2019a. https://doi.org/10.1109/GHTC46095.2019.9033130

Frost, Sara, Manu Mathew Thomas, and Angus G. Forbes. “Art I don’t like: An anti-recommender system for visual art.” Proceedings of Museums and the Web. 2019b.

Gan, Chuang, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. "StyleNet: Generating attractive visual captions with styles." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3137-3146. 2017. https://doi.org/10.1109/CVPR.2017.108

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style transfer using convolutional neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2414-2423. 2016. https://doi.org/10.1109/CVPR.2016.265

Gebru, Timnit. "Race and Gender." arXiv preprint arXiv:1908.06165, 2019.

Gingrich, Oliver, Sean Soraghan, Alain Renaud, Evgenia Emets, and Dario Villanueva-Ablanedo. "KIMA: The Wheel—Voice Turned into Vision: A participatory, immersive visual soundscape installation." Leonardo (Online - Accepted for publication) (2018): 1-13. https://doi.org/10.1162/leon_a_01698

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "Generative adversarial nets." Advances in Neural Information Processing Systems, pages 2672-2680. 2014.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Hallinan, Blake, and Ted Striphas. "Recommended for you: The Netflix Prize and the production of algorithmic culture." New Media & Society 18, no. 1 (2016): 117-137. https://doi.org/10.1177/1461444814538646

Hassad, Rossi A. "A foundation for inductive reasoning in harnessing the potential of big data." Statistics Education Research Journal 19, no. 1 (2020): 238-258.

Holden, Daniel, Taku Komura, and Jun Saito. "Phase-functioned neural networks for character control." ACM Transactions on Graphics 36, no. 4 (2017): 1-13. https://doi.org/10.1145/3072959.3073663

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. "Image-to-image translation with conditional adversarial networks." Proceedings of the IEEE conference on Conference on Computer Vision and Pattern Recognition, pages 1125-1134. 2017. https://doi.org/10.1109/CVPR.2017.632

Jo, Eun Seo, and Timnit Gebru. "Lessons from archives: strategies for collecting sociocultural data in machine learning." Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 306-316. 2020.

Kaiser, Brittany. Targeted: The Cambridge Analytica Whistleblower's Inside Story of How Big Data, Trump, and Facebook Broke Democracy and How It Can Happen Again. HarperCollins, 2019.

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128-3137. 2015. https://doi.org/10.1109/CVPR.2015.7298932

Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4401-4410. 2019. https://doi.org/10.1109/CVPR.2019.00453

Klingemann, Mario. “Neural Glitch.” Quasimondo. October 28, 2018. http://underdestruction.com/2018/10/28/neural-glitch/.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324. https://doi.org/10.1109/5.726791

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521, no. 7553 (2015): 436-444. https://doi.org/10.1038/nature14539

Liu, Guilin, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. "Image inpainting for irregular holes using partial convolutions." Proceedings of the European Conference on Computer Vision (ECCV), pages 85-100. 2018. https://doi.org/10.1007/978-3-030-01252-6_6

McCann, Bryan, James Bradbury, Caiming Xiong, and Richard Socher. "Learned in translation: Contextualized word vectors." Advances in Neural Information Processing Systems, pages 6294-6305. 2017.

McCormack, Jon, Oliver Bown, Alan Dorin, Jonathan McCabe, Gordon Monro, and Mitchell Whitelaw. "Ten questions concerning generative computer art." Leonardo 47, no. 2 (2014): 135-141. https://doi.org/10.1162/LEON_a_00533

McCormack, Jon, Patrick Hutchings, Toby Gifford, Matthew Yee-King, Maria Teresa Llano, and Mark d'Inverno. "Design Considerations for Real-Time Collaboration with Creative Artificial Intelligence." Organised Sound 25, no. 1 (2020): 41-52. https://doi.org/10.1017/S1355771819000451

Menezes, Caroline. “Interview with Casey Reas”. Studio International. May 21, 2019. https://www.studiointernational.com/index.php/casey-reas-interview-computer-art-coding.

Meshi, Avital and Angus G. Forbes. “Stepping inside the Classification Cube: An intimate interaction with an AI system.” Leonardo 53, no. 4 (2020): 387-393.

Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." arXiv preprint arXiv:2003.08934, 2020.

Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784, 2014.

Mordvintsev, Alexander, Christopher Olah, and Mike Tyka. “Inceptionism: Going Deeper into Neural Networks”. Google AI Blog. June 17, 2015. https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.

Naderi, Kourosh, Joose Rajamäki, and Perttu Hämäläinen. "Discovering and synthesizing humanoid climbing movements." ACM Transactions on Graphics 36, no. 4 (2017): 1-11. https://doi.org/10.1145/3072959.3073707

Niklaus, Simon, Long Mai, Jimei Yang, and Feng Liu. “3D Ken Burns effect from a single image." ACM Transactions on Graphics 38, no. 6 (2019): 1-15. https://doi.org/10.1145/3355089.3356528

Olah, Chris, Alexander Mordvintsev, and Ludwig Schubert. "Feature visualization." Distill 2, no. 11 (2017): e7. https://doi.org/10.23915/distill.00007

Park, Taesung, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. "Semantic image synthesis with spatially-adaptive normalization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2337-2346. 2019. https://doi.org/10.1109/CVPR.2019.00244

Peyre, Julia, Ivan Laptev, Cordelia Schmid, and Josef Sivic. "Detecting Unseen Visual Relations Using Analogies." Proceedings of the IEEE International Conference on Computer Vision, pages 1981-1990. 2019. https://doi.org/10.1109/ICCV.2019.00207

Qiao, Tingting, Jing Zhang, Duanqing Xu, and Dacheng Tao. "MirrorGAN: Learning text-to-image generation by redescription." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1505-1514. 2019. https://doi.org/10.1109/CVPR.2019.00160

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434, 2015.

Rodley, Chris. “Deep Dinosaur”. June 19, 2017. https://chrisrodley.com/2017/06/19/dinosaur-flowers/.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." Nature 323, no. 6088 (1986): 533-536. https://doi.org/10.1038/323533a0

Shanken, Edward A. "Art in the information age: Technology and conceptual art." Leonardo 35, no. 4 (2002a): 433-438. https://doi.org/10.1162/002409402760181259

Shanken, Edward A. “Cybernetics and art: Cultural convergence in the 1960s.” In From Energy to Information: Representation in Science and Technology, Art, and Literature, editors Bruce Clarke and Linda D. Henderson, pages 155-177. Stanford University Press, 2002b.

Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deep learning face representation from predicting 10,000 classes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1891-1898. 2014. https://doi.org/10.1109/CVPR.2014.244

Suwajanakorn, Supasorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman. "Synthesizing Obama: Learning lip sync from audio." ACM Transactions on Graphics 36, no. 4 (2017): 1-13. https://doi.org/10.1145/3072959.3073640

Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1701-1708. 2014. https://doi.org/10.1109/CVPR.2014.220

Thies, Justus, Mohamed Elgharib, Ayush Tewari, Christian Theobalt, and Matthias Nießner. "Neural Voice Puppetry: Audio-driven Facial Reenactment." arXiv preprint arXiv:1912.05566, 2019.

Thies, Justus, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. "Face2face: Real-time face capture and reenactment of RGB videos." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2387-2395. 2016. https://doi.org/10.1109/CVPR.2016.262

Thomas, Manu Mathew, and Angus G. Forbes. "Deep Illumination: Approximating Dynamic Global Illumination with Generative Adversarial Network." arXiv preprint arXiv:1710.09834, 2017.

Washington, Simon, Matthew G. Karlaftis, Fred Mannering, and Panagiotis Anastasopoulos. Statistical and Econometric Methods for Transportation Data Analysis. CRC press, 2020. https://doi.org/10.1201/9780429244018

White, Tom. “Synthetic Abstractions.” Aug 23, 2018.
https://medium.com/@tom_25234/synthetic-abstractions-8f0e8f69f390.

Xue, Tianfan, Jiajun Wu, Katherine L. Bouman, and William T. Freeman. "Visual dynamics: stochastic future generation via layered cross convolutional networks." IEEE Transactions on Pattern Analysis and Machine Intelligence 41, no. 9 (2018): 2236-2250. https://doi.org/10.1109/TPAMI.2018.2854726

Yan, Chenggang, Liang Li, Chunjie Zhang, Bingtao Liu, Yongdong Zhang, and Qionghai Dai. "Cross-modality bridging and knowledge transferring for image understanding." IEEE Transactions on Multimedia 21, no. 10 (2019): 2675-2685. https://doi.org/10.1109/TMM.2019.2903448

Yanardag, Pinar and Emily Salvador. “The Little Black Dress Reimagined by an A.I.” 2019. https://lbd-ai.com/.

Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N. Metaxas. "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision, pages 5907-5915. 2017. https://doi.org/10.1109/ICCV.2017.629

Zhang, He, Sebastian Starke, Taku Komura, and Jun Saito. "Mode-adaptive neural networks for quadruped motion control." ACM Transactions on Graphics 37, no. 4 (2018): 1-11. https://doi.org/10.1145/3197517.3201366

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.