Applying SPSS decision trees
Article Sidebar
Google Scholar citations
Main Article Content
Vanesa Berlanga-Silvente
Universitat de Barcelona (UB)
María-José Rubio-Hurtado
Universitat de Barcelona (UB)
Ruth Vilà-Baños
Universitat de Barcelona (UB)
A decision tree is a graphical and analytical to represent all events (events) that may arise from a decision made in a moment. They help us to make the decision more "successful" from a probabilistic point of view, to a range of possible choices. These trees allow to examine the results and visually determine how the model flows. Visual results help find specific subgroups and relationships that may not be faced with more traditional statistics.
Decision trees are a statistical technique for segmentation, stratification, prediction, data reduction and variable screening, identification of interactions, category merging and discretizing continuous variables.
The function decision trees (Tree) in SPSS creates classification trees and decision to identify groups, discover relationships between groups and predict future events. There are different types of tree CHAID, Exhaustive CHAID, CRT and QUEST, whichever best fits our data.
Decision trees are a statistical technique for segmentation, stratification, prediction, data reduction and variable screening, identification of interactions, category merging and discretizing continuous variables.
The function decision trees (Tree) in SPSS creates classification trees and decision to identify groups, discover relationships between groups and predict future events. There are different types of tree CHAID, Exhaustive CHAID, CRT and QUEST, whichever best fits our data.
Keywords
Decision Tree, CHAID, Classification, Data mining
Article Details
How to Cite
Berlanga-Silvente, Vanesa et al. “Applying SPSS decision trees”. REIRE. Revista d’Innovació i Recerca en Educació, vol.VOL 6, no. 1, pp. 65-79, https://raco.cat/index.php/REIRE/article/view/262010.
Rights
Copyright
Authors keep authorship rights and confer to REIRE the rights of article’s first publication.
All the contents included into REIRE Revista d’innovació i Recerca en Educació are under Creative Commons 4.0 International license attribution, which allows the article’s reproduction, distribution and public communication, whenever authorship and the journal’s title is quoted.
Most read articles by the same author(s)
- María-José Rubio-Hurtado, Vanesa Berlanga-Silvente, How to apply the bivariate parametric tests t of Student and ANOVA in SPSS. A practical case , REIRE. Revista d'Innovació i Recerca en Educació: 2012: Vol.: 5 Núm.: 2
- María-José Rubio-Hurtado, Patricia García-Durán, Montserrat Millet, Evaluación continua a través de Moodle para involucrar al alumnado en su proceso de aprendizaje , REIRE. Revista d'Innovació i Recerca en Educació: 2010: Vol.: 3 Núm.: 1
- Vanesa Berlanga-Silvente, María-José Rubio-Hurtado, Classification of nonparametric tests. How to apply them in the SPSS , REIRE. Revista d'Innovació i Recerca en Educació: 2012: Vol.: 5 Núm.: 2
- Maria-José Rubio-Hurtado, Ruth Vilà Baños, The analysis of two-step clusters with SPSS , REIRE. Revista d'Innovació i Recerca en Educació: 2017: Vol.: 10 Núm.: 1