La Máquina de Bartleby: explorar la desobediencia creativa en los ordenadores

Main Article Content

Bruno Caldas Vianna

La idea de máquinas desobedientes se desarrolla desde la perspectiva de los desarrollos históricos y actuales en inteligencia artificial (IA). La desobediencia se utiliza a menudo en arte y tecnología como tema y herramienta. Más allá de eso, la desobediencia se presenta como una de las habilidades indispensables para la inteligencia natural. El artículo no profundiza en el uso de las IAs como herramienta de ayuda para la creación. En su lugar, especula si las IA permitirán la aparición de un creador artificial independiente y autónomo. Se presentan diferentes enfoques de IAs, desde el simbolismo hasta el emergismo. Se describen las ventajas de los modelos de aprendizaje automático, así como sus limitaciones, como la incapacidad de generar avances fuera de sus datos de entrenamiento, su determinismo y la incapacidad de usar analogías para resolver problemas inesperados. Otras habilidades humanas (o biológicas) que faltan, presentes en el arte, son la emoción, la producción sin objetivos y la agencia, lo que es un problema incluso cuando se estudia la voluntad humana. Los límites del formalismo computacional son como los límites del razonamiento matemático: siempre requieren algunas reglas externas, o axiomas probados, como la prueba de Gödel. La teoría de la conciencia de Hofsdtader propone una forma de conciliar el hecho de que la creatividad humana también se basa en reglas biológicas cerradas y fijas. Por último, se argumenta que una máquina no puede ser creativa a menos que también pueda desobedecer. Sin embargo, los ordenadores deben seguir un conjunto de instrucciones o dejan de funcionar, es decir, la definición de una máquina de Turing. Por lo tanto, debemos enfrentarnos a la paradoja de querer sistemas obedientes, con las limitaciones de las máquinas simbólicas, al tiempo que exigimos resultados más autónomos y creativos. Es primordial explorar los comportamientos erróneos algorítmicos que podrían eludir esta paradoja para el desarrollo adicional de IAs para las artes y la sociedad en general.

Palabras clave
inteligencia artificial, arte, IA simbólica, conexionismo, redes neuronales convolucionales, conciencia, Máquina de Turing, voluntad, desobediencia de la máquina

Article Details

Cómo citar
Caldas Vianna, Bruno. «La Máquina de Bartleby: explorar la desobediencia creativa en los ordenadores». Artnodes, n.º 32, pp. 1-10, doi:10.7238/artnodes.v0i32.409664.
Biografía del autor/a

Bruno Caldas Vianna, Universidad de Arte y Diseño de Helsinki

Vive en Barcelona y está haciendo un doctorado en la Universidad de las Artes en Helsinki en Artes Visuales y Aprendizaje Automático. Estudió Ingeniería Informática pero se graduó en Estudios Cinematográficos. Tiene un máster del Programa de Telecomunicaciones Interactivas de la NYU. Crea narrativas visuales utilizando soportes clásicos e innovadores, ha dirigido cortometrajes y largometrajes, así como películas editadas en vivo, realidad aumentada, aplicaciones móviles e instalaciones. Entre 2011 y 2016 dirigió Nuvem, un laboratorio de arte rural y espacio de residencia, ubicado entre Rio de Janeiro y San Pablo, y trabajó como profesor en Oi Kabum!, una escuela de arte y tecnología de Rio hasta 2018.

Citas

Alcorn, Michael A., Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku and Anh Nguyen. “Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects”. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA (2019): 4840-4849. DOI: https://doi.org/10.1109/CVPR.2019.00498

Alom, Md Zahangir, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C. Van Esesn, Abdul A. S. Awwal, and Vijayan K. Asari. “The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches”. arXiv (2018, March). DOI: https://doi.org/10.48550/arXiv.1803.01164

Asimov, Isaac. I, Robot. Vol. 1. Spectra, 2004.

Baard, Mark. “AI Founder Blasts Modern Research”. WIRED (2003, May). https://www.wired.com/2003/05/ai-founder-blasts-modern-research/

Benedek, Mathias and Emanuel Jauk. “10 Creativity and Cognitive Control”. The Cambridge Handbook of Creativity, (2019): 200. DOI: https://doi.org/10.1017/9781316979839.012

Braitenberg, Valentino. Vehicles: Experiments in Synthetic Psychology. Cambridge, Massachusetts: The MIT Press, 2004.

Buchanan, Bruce G. “A (Very) Brief History of Artificial Intelligence”. Ai Magazine, vol. 26, no. 4 (2005, December). DOI: https://doi.org/10.1609/AIMAG.V26I4.1848

Caldas Vianna, Bruno. “Generative Art: Between the Nodes of Neuron Networks”. Artnodes, no. 26 (2020, July): 1-9. DOI: https://doi.org/10.7238/a.v0i26.3350

Campbell, Murray. “Knowledge Discovery in Deep Blue”. Communications of the ACM, vol. 42, no. 11 (1999): 65-67. DOI: https://doi.org/10.1145/319382.319396

Canet Sola, Mar and Varvara Guljajeva. “Dream Painter: Exploring Creative Possibilities of AI-Aided Speech-to-Image Synthesis in the Interactive Art Context”. Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 5, no. 4 (2022): 1-11. DOI: https://doi.org/10.1145/3533386

Chollet, François. “On the Measure of Intelligence”. arXiv, (2019, November). DOI: https://doi.org/10.48550/arXiv.1911.01547

Clark, David. “Deep Thoughts on Deep Blue”. IEEE Computer Architecture Letters, vol. 87, no. 9 (1997): 31-31.

Cohen, Paul. “Harold Cohen and AARON”. Ai Magazine, vol. 37, no. 4 (2016): 63-66. DOI: https://doi.org/10.1609/aimag.v37i4.2695

CYC. “Cyc Technology Overview”, (2021). https://cyc.com/wp-content/uploads/2021/04/Cyc-Technology-Overview.pdf

Domingos, Pedro. Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Penguin Books, Limited, 2017.

Dreher, Thomas. History of Computer Art. 2nd ed. Morrisville, North Carolina: Lulu Press, inc., 2020.

Fellbaum, Christiane. “WordNet.” In: Theory and Applications of Ontology: Computer Applications, edited by Roberto Poli, Michael Healy, and Achilles Kameas, 231-43. Dordrecht: Springer Netherlands, 2010. DOI: https://doi.org/10.1007/978-90-481-8847-5_10

Fukushima, Kunihiko. “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”. Biological Cybernetics, no. 36 (1980): 193-202. DOI: https://doi.org/10.1007/BF00344251

Gershgorn, Dave. “The Data That Transformed AI Research—and Possibly the World”. Quartz, July 26, 2017. https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. “Deep Learning”. Adaptive Computation and Machine Learning. Cambridge, Massachusetts: The MIT Press, 2016.

Haggard, Patrick. “Human Volition: Towards a Neuroscience of Will”. Nature Reviews Neuroscience, no. 9 (2008): 934-46. DOI: https://doi.org/10.1038/nrn2497

Harari, Yuval Noaḥ. Homo Deus: A Brief History of Tomorrow. London: Harvill Secker, 2016.

Haugeland, John. Artificial Intelligence: The Very Idea. Cambridge, Massachusetts: The MIT Press, 1986.

Hay, John C., Ben E. Lynch and David R. Smith. Mark I Perceptron Operators’ Manual. Buffalo, NY: Cornell Aeronautical Lab Inc, 1960.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In: Proceedings of the IEEE International Conference on Computer Vision, 7-13 December 2015, Santiago, Chile. 1026-1034. DOI: https://doi.org/10.1109/ICCV.2015.123

Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. 20th-anniversary ed. London: Penguin, 2000.

Hui, Yuk. Art and Cosmotechnics. Minneapolis, MN: University of Minnesota Press, 2021. DOI: https://doi.org/10.5749/j.ctv1qgnq42

Klingemann, Mario, Simon Hudson and Zivvy Epstein. “Botto, Decentralized Autonomous Artist”. In: NeurIPS Machine Learning for Creativity and Design Workshop, 2021.

Kogan, Gene. “Artist in the Cloud: Towards an Autonomous Artist”. In: NeurIPS Machine Learning for Creativity and Design Workshop, 2019.

Krizhevsky, Alex, Ilya Sutskever and Geoffrey E. Hinton. “ImageNet Classification with Deep Convolutional Neural Networks”. Communications of the ACM, vol. 60, no. 6 (2017): 84-90. DOI: https://doi.org/10.1145/3065386

Lecun, Y., L. Bottou, Y. Bengio and P. Haffner. “Gradient-Based Learning Applied to Document Recognition”. Proceedings of the IEEE, vol. 86, no. 11 (1998): 2278-2324. DOI: https://doi.org/10.1109/5.726791

LeCun, Yann. “Deep Learning and the Future of AI”. Presented at the CERN Colloquium, Geneva, Switzerland, March 24, 2016. https://web.archive.org/web/20160423021403/https://indico.cern.ch/event/510372/

LeCun, Yann, Bernhard E. Boser, John S. Denker, Davis Henderson, Richard E. Howard, William Hubbard and Lawrence D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition”. Neural Computation vol. 1, no. 4 (1989): 541-51. DOI: https://doi.org/10.1162/neco.1989.1.4.541

Lehman, Joel and Kenneth O. Stanley. “Abandoning Objectives: Evolution Through the Search for Novelty Alone”. Evolutionary Computation, vol. 19, no. 2 (2011): 189-223. DOI: https://doi.org/10.1162/EVCO_a_00025

Lenat, Doug, Mayank Prakash and Mary Shepherd. “CYC: Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks”. AI Magazine, vol. 6, no. 4 (1986): 65-85.

Libet, Benjamin, Curtis A. Gleason, Elwood W. Wright and Dennis K. Pearl. “Time of Conscious Intention to Act in Relation to Onset of Cerebral Activity (Readiness-Potential).” In: Neurophysiology of Consciousness, edited by Benjamin Libet, 249-68. Boston, Massachusetts: Birkhäuser, 1993. DOI: https://doi.org/10.1007/978-1-4612-0355-1_15

Massey, Irving. “A New Turing Test: Metaphor vs. Nonsense”. AI & Soc, no. 36 (2021): 677-684. DOI: https://doi.org/10.1007/s00146-021-01242-9

McCulloch, Warren S. and Walter Pitts. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics, no. 5 (1943): 115-133. DOI: https://doi.org/10.1007/BF02478259

Minsky, Marvin and Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. Cambridge, Massachusetts: The MIT Press, 1972.

Mitchell, Melanie. Artificial Intelligence: A Guide for Thinking Humans. London: Penguin UK, 2019

Neumann, J. von. “First Draft of a Report on the EDVAC”. IEEE Annals of the History of Computing, vol. 15, no. 4 (1993): 27-75. DOI: https://doi.org/10.1109/85.238389

Newell, Allen, J. C. Shaw and Herbert A. Simon. “Chess-Playing Programs and the Problem of Complexity” IBM Journal of Research and Development, vol. 2, no. 4 (1958): 320-335. DOI: https://doi.org/10.1147/rd.24.0320

Nilsson, Nils J. Artificial Intelligence: A New Synthesis. San Francisco, California: Morgan Kaufmann Publishers, 1998.

Noel, Mathew Mithra, Arunkumar L, Advait Trivedi and Praneet Dutta. “Growing Cosine Unit: A Novel Oscillatory Activation Function That Can Speedup Training and Reduce Parameters in Convolutional Neural Networks”. arXiv (2021, September). DOI: https://doi.org/10.48550/arXiv.2108.12943

Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier and Jeff Dean. “Carbon Emissions and Large Neural Network Training”. arXiv (2021, April). DOI: https://doi.org/10.48550/arXiv.2104.10350

Raatikainen, Panu. “Gödel’s Incompleteness Theorems.” In: The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Spring 2021 Edition. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2021/entries/goedel-incompleteness/

Rosenblatt, Frank. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”. Psychological Review, vol. 65, no. 6 (1958): 386-408. DOI: https://doi.org/10.1037/h0042519

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, et al. “ImageNet Large Scale Visual Recognition Challenge (2015)”. International Journal of Computer Vision (IJCV), no. 115, (2015): 211-252. DOI: https://doi.org/10.1007/s11263-015-0816-y

Secretan, Jimmy, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah T. Folsom-Kovarik and Kenneth O. Stanley. “Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space”. Evolutionary Computation, vol. 19, no. 3 (2011): 373-403. DOI: https://doi.org/10.1162/EVCO_a_00030

Smolensky, Paul. “Connectionist AI, Symbolic AI, and the Brain”. Artificial Intelligence Review, vol. 1, no. 2 (1987): 95-109. DOI: https://doi.org/10.1007/BF00130011

Stanley, Kenneth O. and Joel Lehman. Why Greatness Cannot Be Planned: The Myth of the Objective. Cham, Switzerland: Springer International Publishing, 2015. DOI: https://doi.org/10.1007/978-3-319-15524-1

Steinberg, Monica. “Coercive Disobedience: Art and Simulated Transgression”. Art Journal, vol. 80, no. 3 (2021): 78-99. DOI: https://doi.org/10.1080/00043249.2021.1920288

Totschnig, Wolfhart. “Fully Autonomous AI”. Science and Engineering Ethics, no. 26 (2020): 2473-85. DOI: https://doi.org/10.1007/s11948-020-00243-z

Turing, Alan M. “On Computable Numbers, with an Application to the Entscheidungsproblem”. Proceedings of the London Mathematical Society, vol. s2-42, no. 1 (1937): 230-265. DOI: https://doi.org/10.1112/plms/s2-42.1.230

Wallas, Graham. The Art of Thought. London: J. Cape, 1926.

Whitehead, Alfred North and Bertrand Russell. Principia Mathematica. San Bernardio, California: Rough Draft Printing, 2011.

Wiener, Norbert. Cybernetics: Or Control and Communication in the Animal and the Machine. 1965 edition. Massachusetts: The MIT Press, 1948.

Zach, Richard. “Hilbert’s Program”. In: The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Fall 2019. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2019/entries/hilbert-program/

Zeilinger, Martin. Tactical Entanglements: AI Art, Creative Agency, and the Limits of Intellectual Property. Lüneburg: meson press, 2021.

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.