Towards an ethics in intelligent algorithms for female entrepreneurship: a systematic review of the propagation of social biases to digital media

Main Article Content

Zaira Vicente Adame
María Saiz Santos
Marisol Esteban Galarza

How do cognitive biases and social influence shape our decisions and perceptions, and how do they propagate through societal norms and digital ecosystems? How do these factors affect the perception and recognition of women in entrepreneurship and leadership? The novelty of this research lies in its valuable guidance for evaluating the literature and advancing the knowledge base on the conceptual and social structures, as well as the propagation mechanisms of biases, to later understand how these dynamics specifically manifest themselves in female entrepreneurship and business leadership. This study aims to conduct a systematic review of the literature to establish a research framework and identify future research directions regarding the existence and dissemination of biases in female leadership and entrepreneurship, both in society and in different internet media. Through the selection and analysis of 462 articles published between 2006 and 2024 in the Scopus and Web of Science databases, using a systematic review approach, the study focuses on research related to cognitive biases. Articles were selected based on their relevance to the existence, influence, impact, and persistence of these biases, particularly in decision-making and their transmission to society and digital ecosystems. A strategic classification framework was then built using machine learning tools and TCM approach to highlight the influence of biases in various societal contexts, including how they propagate into intelligent algorithms.


The presented framework not only provides an initial understanding of entrenched biases in society and their spread to digital media but also identifies gaps in existing research, highlighting opportunities and directions for future research. In addition, the study presents key insights for the development of algorithmic ethics, aimed at mitigating biases and promoting more equitable decisions in automated systems, considering that contemporary society bases its decisions on information provided by these intelligent algorithms available on the internet.

Paraules clau
ethics of algorithms, social biases, algorithmic biases, social transmission of biases, digital propagation of biases

Article Details

Com citar
Vicente Adame, Zaira et al. «Towards an ethics in intelligent algorithms for female entrepreneurship: a systematic review of the propagation of social biases to digital media». Ramon Llull Journal of Applied Ethics, 2025, núm. 16, doi:10.60940/rljae16Id433108.
Referències

Armstrong, J. (2001). Combining forecasts. In Principles of Forecasting—A Handbook for Researchers and Practitioners ed. JS Armstrong. Boston: Kluwer Acad. Publ.

Arrabales, R. (2016). Deep Learning: qué es y por qué va a ser una tecnología clave en el futuro de la inteligencia artificial. Obtenido de Xataca.

Baron, J. (2008). Thinking and deciding (4th ed.). Cambridge University Press.

Berger, P., & Luckmann, T. (1966). The Construction of Reality: A Treatise in the Sociology of Knowledge. New York: Random House.

Bohns, V. K., & Flynn, F. J. (2013). Understimating our influence over others at work. Research in Organizational Behavior, 33, 97-112. https//doi.org/10.1016/j.riob.2013.10.002

Council of Europe. (March de 2018). Algorithms and Human Rights: Study on the human rights dimensions of automated data processing techniques and possible regulatory implications.

Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination. Proceedings on Frivacy Enhancing Technologies.

Day, M. (2016). How LinkedIn's search engine may reflect a gender bias. Obtenido de SeatleTimes: https://www.seattletimes.com/business/microsoft/how-linkedins-search-engine-may-reflect-a-bias/

Deutsch, M., & Gerard, H. (1955). A study of normative and informational social influences upon individual judgment. J. Abnorm Soc. Psychol. 51(3), 629–36.

Gagliardi, L. (2023). The role of cognitive biases in conspiracy beliefs: A literature review. Journal of Economic Surveys, https://doi.org/10.1111/joes.12604

Hahn, U., & Harris, A. J. (2014). What does it mean to be biased: Motivated reasoning and rationality. The Psychology of Learning and Motivation, 61, 41–102.

Harris, C. (2020). Mitigating Cognitive Biases in Machine Learning Algorithms for Decision Making. The Web Conference 2020.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge University Press.

Kraus, S., Roig-Tierno, N., & Bouncken, R. (2019). Digital innovation and venturing: an introduction into the digitalization of entrepreneurship. Rev Manag Sci 13, 519–528.

Kremer, R. (2023). Corporate capital allocation: A behavioral perspective and guidance for future research. Journal of Strategy and Management, 16(3), 429-445. https://doi.org/10.1108/JSMA-01-2020-0014

Larrick, R. P. (2016). The social context of decisions. Annual Review of Organizational Psychology and Organizational Behavior, 3, 441-467. https://doi.org/10.1146/annurev-orgpsych-041015-062445

Legare, C. H., Opfer, J. E., Busch, J. T. A., & Shtulman, A. (2018). A field guide for teaching evolution in the social sciences. Evolution and Human Behavior, 39(3), 257-268. https://doi.org/10.1016/j.evolhumbehav.2018.01.002

Liedtka, J. (2015). Perspective: Linking design thinking with innovation outcomes through cognitive bias reduction. Journal of Product Innovation Management, 32(6), 925-938. https://doi.org/10.1111/jpim.12163

Marshall, J. A., Trimmer, P. C., Houston, A. I., & McNamara, J. M. (2013). On evolutionary explanations of cognitive biases. Trends in Ecology & Evolution, 28(8), 469–473.

Mateos, S., & Gómez, C. (2019). Libro Blanco de las mujeres en el ámbito tecnológico. Madrid: Ministerio de Economía y Empresa.

McKnight, D. H., Cummings, L. L., & Chervany, N. L. (1998). Initial trust formation in New organizational relationships. Academy of Management Review, 23(3), 473–490.

Mishra, R., Singh, R., & K., K. B. (2021). Consumer decision-making in Omnichannel retailing: Literature review and future research agenda. International Journal of Consumer Studies, 45(2), 147–174.

Olanrewaju, A.-S., Hossain, M., Whiteside, N., & Mercieca, P. (2020). Social media and entrepreneurship research: A literature review. Int. J. Inf. Manag. 2020, 50, 90–110.

Patent, V. (2022). Dysfunctional trusting and distrusting: Integrating trust and bias perspectives. Journal of Trust Research, 12(1), 66-93. https://doi.org/10.1080/21515581.2022.2113887

Paul, J., & Rosado-Serrano, A. (2019). Gradual internationalization vs born-global / International new venture models: A review and research agenda. International Marketing Review 36(6), 830–858.

Paul, P., Alhassan, I., Binsaif, N., & Singh, P. (2023). Digital entrepreneurship research: A systematic review. Journal of Business Research.

Puri, R. (February de 2018). Mitigating Bias in AI models. IBM, February.

Sheldrake, P. (2016). Constructing spirituality: The "politics" of definitions and historical interpretations. Religion and Theology, 23(1-2), 15-34. https://doi.org/10.1163/15743012-02301008

Shymko, V., & Babadzhanova, A. (2020). Study of the COVID-19 related quarantine concept as an emerging category of a linguistic consciousness. Psycholinguistics, 28(1), 267-287. https://doi.org/10.31470/2309-1797-2020-28-1-267-287

Soprano, M., Roitero, K., La Barbera, D., Ceolin, D., Spina, D., Demartini, G., & Mizzaro, S. (2024). Cognitive biases in fact-checking and their countermeasures: A review. Information Processing and Management, 61(3) https://doi.org/10.1016/j.ipm.2024.103672

Stanovich, K. (2011). Rationality and the reflective mind. Oxford University Press.

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23(5), 645–665.

Thomas, R. (2017). Diversity Crisis in AI, 2017 edition. Obtenido de Medium.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science 185(4157), 1124–1131.

Vicente, A. Z., Saiz, S. M., & Esteban, G. M. (2024). Hacia una ética en los algoritmos inteligentes: Visibilizando el emprendimiento femenino. XXXI CONGRESO EBEN-ESPAÑA 2024. El humanismo empresarial en la era digital: Una visión ética de la inteligencia artificial (págs. 391-393). OmniaScience. https://doi.org/10.3926/eben24.

Vicente, A. Z., Saiz, S. M., & Esteban, G. M. (2024). Towards an ethics in intelligent algorithms: Bringing female entrepreneurship to light [Presentation de Paper]. XXXI CONGRESO EBEN-ESPAÑA 2024. El humanismo empresarial en la era digital: una visión ética de la Inteligencia Artificial. Cáceres, España. https://eben.unex.es/premios-academicos/.

Zhao, J., Zhou, Y., Li, Z., Wang, W., & Chang, K.-W. (2018). Learning Gender-Neutral Word Embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, (págs. 4847–4853). Brussels, Belgium: Association for Computational Linguistics.

Zook, M., Barocas, S., boyd, d., Crawford, K., Keller, E., Gangadharan, S., . . . Pasquale, F. (2017). Ten simple rules for responsible big data research. PLoS Comput Biol 13(3), e1005399.

Zwitter, A. (2014). Big data ethics. Big data & society, 1(2).