La traducción automática en manos de todos – Adopción y cambios entre los usuarios generales de TA

Main Article Content

David Orrego-Carmona

En los 20 años de la Revista Tradumàtica, hemos visto cómo la traducción automática ha pasado a formar parte de la vida cotidiana de sus usuarios habituales. Partiendo de 17 respuestas, este artículo reflexiona sobre el uso de la TA entre los no profesionales de la traducción. Tras opinar sobre el uso de la TA como diccionario, para leer noticias, para acceder a la información o para producir textos en situaciones que los usuarios perciben como de bajo o alto riesgo, el artículo ahonda en la concienciación de los usuarios con respecto a la precisión de la TA y la necesidad de comprometerse con el resultado para mejorar la calidad de las traducciones. Además, los resultados también indican que el uso de la TA no solo afecta a la producción en la lengua meta, sino que también influye en la redacción de los originales que se pretende traducir. A partir de las respuestas, el artículo analiza el impacto de la TA en el marco de la accesibilidad y la democratización, revisando cómo la TA y la IA tienen el potencial de apoyar el cambio social pero también de profundizar la desigualdad, reproducir sesgos y reducir la operatividad de los agentes humanos. Por último, el artículo hace un llamamiento a una aplicación crítica y consciente de la TA para apoyar la interacción persona-ordenador como herramienta para el desarrollo de la sociedad.

Palabras clave
traducción automática, usuarios de TA, literacidad en Ta, IA, interacción persona-ordenador, desigualdad, accesibilidad

Article Details

Cómo citar
Orrego-Carmona, David. «La traducción automática en manos de todos – Adopción y cambios entre los usuarios generales de TA». Tradumàtica: traducció i tecnologies de la informació i la comunicació, 2022, n.º 20, pp. 322-39, doi:10.5565/rev/tradumatica.324.
Citas

Anazawa, R.; Ishikawa, H.; Takahiro, K. (2013). Use of Online Machine Translation for Nursing Literature: A Questionnaire-Based Survey. The Open Nursing Journal, v. 7, pp. 22–28. <https://doi.org/10.2174/1874434601307010022>. [Accessed: 20221210].

Balashov, Y. (2020). The Translator’s Extended Mind. Minds and Machines, v. 30, n. 3, pp. 349–383. <https://doi.org/10.1007/s11023-020-09536-5>. [Accessed: 20221210].

Bapna, A.; Caswell, I.; Kreutzer, J.; Firat, O.; van Esch, D.; Siddhant, A.; et al. (2022). Building Machine Translation Systems for the Next Thousand Languages. Cornell University. <http://arxiv.org/abs/2205.03983>. [Accessed: 20221210].

Bender, E. M. (2022). On NYT Magazine on AI: Resist the Urge to be Impressed. Medium. <https://medium.com/@emilymenonbender/on-nyt-magazine-on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd>. [Accessed: 20221210].

Bender, E. M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big??. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623. ACM Digital Library. <https://doi.org/10.1145/3442188.3445922>. [Accessed: 20221210].

Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, v. 2, n. 2 (February). <https://doi.org/10.1016/j.patter.2021.100205>. [Accessed: 20221210].

Bowker, L.; Buitrago Ciro, J. (2019). Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community. 1st ed. Bingley: Emerald Publishing.

Cadwell, P.; O’Brien, S.; DeLuca, E. (2019). More than tweets: A critical reflection on developing and testing crisis machine translation technology. Translation Spaces, v. 8, n. 2, pp. 300–333. <https://doi.org/10.1075/ts.19018.cad>. [Accessed: 20221210].

Carré, A.; Rossi, C.; Sánchez-Gijón, P.; Torres-Hostench, O. (2022). Machine translation for language learners. In: D. Kenny (ed.). Machine translation for everyone: Empowering users in the age of artificial intelligence. Berlin: Language Service, pp. 187–207. Zenodo. <https://zenodo.org/record/6760024>. [Accessed: 20221210].

Castilho, S.; Moorkens, J.; Gaspari, F.; Calixto, I.; Tinsley, J.; Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, n. 108 (June), pp. 109–120. <https://doi.org/10.1515/pralin-2017-0013>. [Accessed: 20221210].

Ciribuco, A. (2020). Translating the village: Translation as part of the everyday lives of asylum seekers in Italy. Translation Spaces, v. 9, n. 2, pp. 179–201. <https://doi.org/10.1075/ts.20002.cir>. [Accessed: 20221210].

ELIS Research (2022). European Language Industry Survey 2022—Trends, expectations and concerns of the European language industry. <https://ec.europa.eu/info/sites/default/files/about_the_european_commission/service_standards_and_principles/documents/elis2022-report.pdf>. [Accessed: 20221210].

EMT (2022). European Master’s in Translation-EMT Competence Framework. <https://ec.europa.eu/info/resources-partners/european-masters-translation-emt/european-masters-translation-emt-explained_en#documents>. [Accessed: 20221210].

Freigang, K. H. (2001). Automation of Translation: Past, Presence, and Future. Tradumàtica: tecnologies de la traducció, n. 0, pp. 1-9. <https://ddd.uab.cat/pub/tradumatica/15787559n0/15787559n0a2.pdf>. [Accessed: 20221210].

Hassan, H.; Aue, A.; Chen, C.; Chowdhary, V.; Clark, J.; Federmann, C.; et al. (2018). Achieving Human Parity on Automatic Chinese to English News Translation. Cornell University. <http://arxiv.org/abs/1803.05567>. [Accessed: 20221210].

Läubli, S.; Castilho, S.; Neubig, G.; Sennrich, R.; Shen, Q.; Toral, A. (2020). A Set of Recommendations for Assessing Human–Machine Parity in Language Translation. Jair, Journal of Artificial Intelligence Research, n. 67, pp. 653-672. <https://doi.org/10.1613/jair.1.11371>. [Accessed: 20221210].

Läubli, S.; Sennrich, R.; Volk, M. (2018). Has Machine Translation Achieved Human Parity? A Case for Document-level Evaluation. Cornell University. <https://doi.org/10.48550/ARXIV.1808.07048>. [Accessed: 20221210].

Lee, S.-M. (2020). The impact of using machine translation on EFL students’ writing. Computer Assisted Language Learning, v. 33, n. 3, pp. 157–175. <https://doi.org/10.1080/09588221.2018.1553186>. [Accessed: 20221210].

Liu, F.; Lu, H.; Neubig, G. (2018). Handling Homographs in Neural Machine Translation. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics. pp. 1336–1345. <https://doi.org/10.18653/v1/N18-1121>. [Accessed: 20221210].

Logg, J. M.; Minson, J. A.; Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, v. 151, pp. 90–103. <https://doi.org/10.1016/j.obhdp.2018.12.005>. [Accessed: 20221210].

Miyata, R. (2021). Controlled Document Authoring in a Machine Translation Age. Oxford [etc.]: Routledge. (Routledge Studies in Translation Technology). <https://www.routledge.com/Controlled-Document-Authoring-in-a-Machine-Translation-Age/Miyata/p/book/9780367500207>. [Accessed: 20221210].

Nimdzi. (2022). 2022 Nimdzi 100 State of the Language Industry report. Mercer Island: Nimdzi. <https://www.nimdzi.com/nimdzi-100-top-lsp/>. [Accessed: 20221210].

Nitzke, J.; Hansen-Schirra, S.; Canfora, C. (2019). Risk management and post-editing competence. JoSTrans, The Journal of Specialised Translation, n. 31 (January), pp. 239–259. <https://www.jostrans.org/issue31/art_nitzke.pdf>. [Accessed: 20221210].

Nurminen, M.; Koponen, M. (2018). Governments, NGOs, MT and Accessibility. <https://lr-coordination.eu/sites/default/files/Finland/2018/14.00NuminenKoponenGovernments_NGOs_MT-and_Accessibility.pdf>. [Accessed: 20221210].

Nurminen, M.; Papula, N. (2018). Gist MT Users: A Snapshot of the Use and Users of One Online MT Tool. In: Pérez-Ortiz, J. A.; et al. (eds.). Proceedings of the 21st annual conference of the European Association for machine translation, 28-30 May 2018, Universitat d'Alacant, Spain. EAMT, pp. 199–208. <http://eamt2018.dlsi.ua.es/proceedings-eamt2018.pdf>. [Accessed: 20221210].

O’Brien, S.; Ehrensberger-Dow, M. (2020). MT Literacy: A cognitive view. Translation, Cognition & Behavior, v. 3, n. 2, pp. 145–164. <https://doi.org/10.1075/tcb.00038.obr>. [Accessed: 20221210].

O’Neill, E. M. (2019). Training students to use online translators and dictionaries: The impact on second language writing scores. International Journal of Research Studies in Language Learning, v. 8, n. 2, pp. 47-65. <https://doi.org/10.5861/ijrsll.2019.4002>. [Accessed: 20221210].

Parra Escartín, C.; Goulet, M.-J. (2020). When the Post-Editor is not a Translator Can machine translation be post-edited by academics to prepare their publications in English? In: Koponen, M.; Mossop, B.; Robert, I. S.; Scocchera, G. (eds.). Translation Revision and Post-Editing: Industry Practices and Cognitive Processes. 1st ed. Oxford [etc.]: Routledge, pp. 89-106.

Pitman, J. (2021). Google Translate: One billion installs, one billion stories. Google. <https://blog.google/products/translate/one-billion-installs/>. [Accessed: 20221210].

Poibeau, T. (2022). On ”Human Parity” and ”Super Human Performance” in Machine Translation Evaluation. In: ELRA. Language Resource and Evaluation Conference. <https://hal.archives-ouvertes.fr/hal-03738720>. [Accessed: 20221210].

Ramírez-Castañeda, V. (2020). Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: The case of Colombian researchers in biological sciences. PLOS ONE, v. 15, n. 9. e0238372. <https://doi.org/10.1371/journal.pone.0238372>. [Accessed: 20221210].

Sánchez-Gijón, P.; Kenny, D. (2022). Selecting and preparing texts for machine translation: Pre-editing and writing for a global audience. In: Kenny, D. (ed.). Machine translation for everyone: Empowering users in the age of artificial intelligence. Berlin: Language Service Press. (Translation and Multilingual Natural Language Processing; 18). <https://zenodo.org/record/6759980>. [Accessed: 20221210].

Stanovsky, G.; Smith, N. A.; Zettlemoyer, L.; (2019). Evaluating Gender Bias in Machine Translation. Cornell University. <http://arxiv.org/abs/1906.00591>. [Accessed: 20221210].

Steigerwald, E.; Ramírez-Castañeda, V.; Brandt, D. Y. C.; Báldi, A.; Shapiro, J. T.; Bowker, L.; Tarvin, R. D. (2022). Overcoming Language Barriers in Academia: Machine Translation Tools and a Vision for a Multilingual Future. BioScience, v. 72, n. 10, pp. 988–998. <https://doi.org/10.1093/biosci/biac062>. [Accessed: 20221210].

Toral, A. (2020). Reassessing Claims of Human Parity and Super-Human Performance in Machine Translation at WMT 2019. Cornell University. <http://arxiv.org/abs/2005.05738>. [Accessed: 20221210].

Toral, A.; Castilho, S.; Hu, K.; Way, A. (2018). Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation. Cornell University. <http://arxiv.org/abs/1808.10432>. [Accessed: 20221210].

Vanmassenhove, E.; Hardmeier, C.; Way, A. (2018). Getting Gender Right in Neural Machine Translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp. 3003–3008. <https://doi.org/10.18653/v1/D18-1334>. [Accessed: 20221210].

Vieira, L. N.; O’Hagan, M.; O’Sullivan, C. (2021). Understanding the societal impacts of machine translation: A critical review of the literature on medical and legal use cases. Information, Communication & Society, v. 24, n. 11, pp. 1515–1532. <https://doi.org/10.1080/1369118X.2020.1776370>. [Accessed: 20221210].

Vieira, L. N.; O’Sullivan, C.; Zhang, X.; O’Hagan, M. (2022). Machine translation in society: Insights from UK users. Language Resources and Evaluation. <https://doi.org/10.1007/s10579-022-09589-1>. [Accessed: 20221210].

Vollmer, S. M. (2020). The Digital Literacy Practices of Newly Arrived Syrian Refugees: A Spatio-Visual Linguistic Ethnography. PhD Thesis. University of Leeds. <https://etheses.whiterose.ac.uk/27877/>. [Accessed: 20221210].