Introducing the concept of relational processes in Human-AI creativity

Main Article Content

Àlex Valverde-Valencia

The integration of Generative Artificial Intelligence into creative processes raises scenarios that escape the classical notion of interaction between Humans and Computers. The emergence of co-creation, creative collaboration and distributed agency suggest that Human-AI creation is relational rather than interactive. This paper reviews this transition within different perspectives on humans and technologies for creativity and presents a theoretical contribution for the understanding of these processes, embracing the complexity of this new creative paradigm and interrelating cognitive, affective and behavioral dimensions. The paper conceptualizes relational processes in creativity as mutual influence processes in which Human and AI actors collaborate iteratively, sharing their agency and reciprocally modeling their behavior, knowledge structures, and affective responses. The concept is then applied to the audiovisual industry to explore the emerging dynamics in those processes while enabling a critical look at the implications of this new forms of creation regarding classical and new workflows and debates on labor and ethics. In the end, some conclusions are presented along with three initial research directions for relational processes in Human-AI creativity, highlighting the importance of raising critical awareness of these relationships in education.

Article Details

How to Cite
Valverde-Valencia, Àlex. “Introducing the concept of relational processes in Human-AI creativity”. Hipertext.net, 2025, no. 31, pp. 55-66, doi:10.31009/hipertext.net.2025.i31.06.
Author Biography

Àlex Valverde-Valencia, Universitat Pompeu Fabra

Àlex Valverde-Valencia is a PhD researcher on Human-AI audiovisual creative processes and AI Literacy at Pompeu Fabra University Communication Department. Associate professor on Semiotics and Audiovisual Creation with Generative AI at UPF and BAU and trainer on Superior Teaching and Learning innovation. General Coordinator of the +RAIN Film Festival, the first AI Film festival in Europe.

References

Amankwah-Amoah, J., Abdalla, S., Mogaji, E., Elbanna, A. & Dwivedi, Y. K. (2024). The impending disruption of creative industries by generative AI: Opportunities, challenges, and research agenda. International Journal of Information Management, 79, 102759. https://doi.org/10.1016/j.ijinfomgt.2024.102759

Anantrasirichai, N. & Bull, D. (2022). Artificial intelligence in the creative industries: A review. Artificial Intelligence Review, 55(1), 589–656. https://doi.org/10.1007/s10462-021-10039-7

Antony, V. N. & Huang, C. M. (2025). ID.8: Co-creating visual stories with generative AI. ACM Transactions on Interactive Intelligent Systems, 14(3), 1–29. https://doi.org/10.48550/arXiv.2309.14228

Arévalo-Martínez, R. I., Flores, R. D. P. & Prado-Hurtado, R. I. (2025). Ethical considerations in the use of artificial intelligence in the audiovisual field. In The AI Revolution: How Technological Developments Affect the Audiovisual Sector (pp. 27–42). Springer Nature Switzerland. https://doi.org/10.4185/RLCS-2016-1121

Arrojo, M. J. (2024, September). Impact of artificial intelligence in the audiovisual industry: A taxonomy of uses and applications. In International Conference on Communication and Applied Technologies (pp. 183–194). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-0426-5_16

Balzan, F., Munarini, M. & Angeli, L. (2024, July). Who pilots the copilots? Mapping a generative AI’s actor-network to assess its educational impacts. In International Conference on Artificial Intelligence in Education (pp. 448–456). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64299-9_42

Bansal, G., Nushi, B., Kamar, E., Lasecki, W. S., Weld, D. S. & Horvitz, E. (2019, October). Beyond accuracy: The role of mental models in human-AI team performance. Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 7, 2–11. https://doi.org/10.1609/hcomp.v7i1.5285

Bareis, J. & Katzenbach, C. (2022). Talking AI into being: The narratives and imaginaries of national AI strategies and their performative politics. Science, Technology, & Human Values, 47(5), 855–881. https://doi.org/10.1177/01622439211030007

Blok, V. (2022). The role of human creativity in human-technology relations. Philosophy & Technology, 35(3), 59. https://doi.org/10.1007/s13347-022-00559-7

Caballero, J. (2023). Hacia una nueva dimensión del montaje cinematográfico: explorando las posibilidades de la inteligencia artificial. Hipertext.net, (26), 53–58. https://doi.org/10.31009/hipertext.net.2023.i26.08

Caballero, J. & Sora-Domenjó, C. (2024). Automation and creativity in AI-driven film editing: The view from the professional documentary sector. Communication & Society, 37(3), 201–218. https://doi.org/10.15581/003.37.3.201-218

Caporusso, N. (2023). Generative artificial intelligence and the emergence of creative displacement anxiety. Research in Psychology and Behavior, 3(1). https://doi.org/10.53520/rdpb2023.10795

Caramiaux, B., Crawford, K., Liao, Q. V., Ramos, G. & Williams, J. (2025). Generative AI and creative work: Narratives, values, and impacts. arXiv, preprint arXiv:2502.03940. https://doi.org/10.48550/arXiv.2502.03940

Cave, S., Craig, C., Dihal, K., Dillon, S., Montgomery, J., Singler, B. & Taylor, L. (2018). Portrayals and perceptions of AI and why they matter. The Royal Society. https://doi.org/10.17863/CAM.34502

Celis Bueno, C., Chow, P. S. & Popowicz, A. (2025). Not “what”, but “where is creativity?”: Towards a relational-materialist approach to generative AI. AI & Society, 40(2), 339–351. https://doi.org/10.1007/s00146-024-01921-3

Cheng, Y., Xu, Z., Lin, D., Cheng, H., Wong, Y., Sun, Y. & Kankanhalli, M. (2024). Bridging the intent gap: Knowledge-enhanced visual generation. arXiv, preprint arXiv:2405.12538. https://doi.org/10.48550/arXiv.2405.12538

Chown, E. & Nascimento, F. (2022). Meaningful technologies: How digital metaphors change the way we think and live. Lever Press. https://doi.org/10.3998/mpub.12668201

Chung, J. J. Y., Kim, W., Yoo, K. M., Lee, H., Adar, E. & Chang, M. (2022, April). TaleBrush: Visual sketching of story generation with pretrained language models. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, (pp. 1–4). https://doi.org/10.1145/3491102.3501819

Culpepper, M. (2018). I make, therefore I am: Agency, action, affordance, and the path to creative identity [Doctoral dissertation, University of Westminster]. https://doi.org/10.34737/q4z49

Davis, N. (2013). Human-computer co-creativity: Blending human and computational creativity. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 9(6), 9–12. https://doi.org/10.1609/aiide.v9i6.12603

Davis, N., Hsiao, C. P., Yashraj Singh, K., Li, L. & Magerko, B. (2016, March). Empirically studying participatory sense-making in abstract drawing with a co-creative cognitive agent. In Proceedings of the 21st International Conference on Intelligent User Interfaces, (pp. 196–207). https://doi.org/10.1145/2856767.2856795

Deshpande, M. & Magerko, B. (2024, May). Embracing embodied social cognition in AI: Moving away from computational theory of mind. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, article 119, 1–7. https://doi.org/10.1145/3613905.3650998

Epstein, Z., Hertzmann, A., Akten, M., Farid, H., Fjeld, J. & Smith, A. (2023). Art and the science of generative AI. Science, 380(6650), 1110–1111. https://doi.org/10.1126/science.adh4451

Gavran, I., Honcharuk, S., Mykhalov, V., Stepanenko, K. & Tsimokh, N. (2025). The impact of artificial intelligence on the production and editing of audiovisual content. Preservation, Digital Technology & Culture, 54(3), https://doi.org/10.1515/pdtc-2025-0022

Geroimenko, V. (2025). Generative AI: From human–computer interaction to human–computer creativity. In V. Geroimenko (Ed.). Human-Computer Creativity, (pp. 3 -29). Springer. https://doi.org/10.1007/978-3-031-86551-0_1

Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.). Perceiving, Acting and Knowing (pp. 67–82). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781315467931

Glăveanu, V. P. (2014). Distributed creativity: Thinking outside the box of the creative individual. Springer International Publishing. https://doi.org/10.1007/978-3-319-05434-6

Guzdial, M., Liao, N., Chen, J., Chen, S. Y., Shah, S., Shah, V. & Riedl, M. O. (2019, May). Friend, collaborator, student, manager: How design of an AI-driven game level editor affects creators. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, article 624, 1–13. https://doi.org/10.1145/3290605.3300854

Fuentes, G. & Omarova, A. (2024). Empowering the commons: Blockchain for IP protection in generative AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4803536

Hong, J. W. (2018, June). Bias in perception of art produced by artificial intelligence. In International Conference on Human-Computer Interaction, (pp. 290–303). Springer. https://doi.org/10.1007/978-3-319-91244-8_24

Ihde, D. (1990). Technology and the lifeworld: From garden to earth. Indiana University Press.

Jiang, H. H., Brown, L., Cheng, J., Khan, M., Gupta, A., Workman, D. & Gebru, T. (2023, August). AI art and its impact on artists. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, (pp. 363–374). https://doi.org/10.1145/3600211.3604681

Jiang, T., Sun, Z., Fu, S. & Lv, Y. (2024). Human-AI interaction research agenda: A user-centered perspective. Data and Information Management, 8(4), 100078. https://doi.org/10.1016/j.dim.2024.100078

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.

Kammersgaard, J. (1988). Four different perspectives on human–computer interaction. International Journal of Man-Machine Studies, 28(4), 343–362. https://doi.org/10.1016/S0020-7373(88)80017-8

Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford University Press.

Lim, J., Leinonen, T., Lipponen, L., Lee, H., DeVita, J. & Murray, D. (2023). Artificial intelligence as relational artifacts in creative learning. Digital Creativity, 34(3), 192–210. https://doi.org/10.1080/14626268.2023.2236595

Lubart, T. I. (2001). Models of the creative process: Past, present and future. Creativity Research Journal, 13(3–4), 295–308. https://doi.org/10.1207/S15326934CRJ1334_07

Lubart, T. (2005). How can computers be partners in the creative process: Classification and commentary on the special issue. International Journal of Human-Computer Studies, 63(4–5), 365–369. https://doi.org/10.1016/j.ijhcs.2005.04.002

MacKenzie, I. S. (2024). Human-computer interaction: An empirical research perspective. Elsevier. https://doi.org/10.1016/C2022-0-02755-0

Maeda, T. & Quan-Haase, A. (2024, June). When human-AI interactions become parasocial: Agency and anthropomorphism in affective design. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, (pp. 1068–1077). https://doi.org/10.1145/3630106.3658956

Marrone, R., Cropley, D. & Medeiros, K. (2024). How does narrow AI impact human creativity? Creativity Research Journal, 1–11. https://doi.org/10.1080/10400419.2024.2378264

Martinez, L., Caramiaux, B. & Fdili Alaoui, S. (2025, April). Generative AI in documentary photography: Exploring opportunities and challenges for visual storytelling. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, article 329, 1–13. https://doi.org/10.1145/3706598.3714200

McGuire, J., De Cremer, D. & Van de Cruys, T. (2024). Establishing the importance of co-creation and self-efficacy in creative collaboration with artificial intelligence. Scientific Reports, 14(1), 18525. https://doi.org/10.1038/s41598-024-69423-2

McLuhan, M. (1994). Understanding media: The extensions of man. MIT Press.

Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. University of Chicago Press.

Mohedas, S. D. & Alcarria, F. J. (2025a). La integración de inteligencia artificial generativa en el flujo de trabajo de postproducción audiovisual: El caso de La Mesías (Movistar Plus+, 2023). Prisma Social: Revista de Investigación Social, (48), 96–121. https://hdl.handle.net/10016/46199

Mohedas, S. D. & Alcarria, F. J. (2025b). Generative artificial intelligence in media production: The emerging role of artificial intelligence artist in Spain. Comunicação e Sociedade, 47, e025011. https://doi.org/10.17231/comsoc.47(2025).6212

Moruzzi, C. (2022). Creative agents: Rethinking agency and creativity in human and artificial systems. Journal of Aesthetics and Phenomenology, 9(2), 245–268. https://doi.org/10.1080/20539320.2022.2150470

Moruzzi, C. & Margarido, S. (2024, May). A user-centered framework for human-AI co-creativity. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, article 25, 1–9. https://doi.org/10.1145/3613905.3650929

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041

Oberting IV, V. A. (2024). Generative artificial intelligence and copyright in the film and media industry. Washington & Lee Law Review Online, 82(2), 123-171. https://scholarlycommons.law.wlu.edu/wlulr-online/vol82/iss2/2

Palani, S. & Ramos, G. (2024, June). Evolving roles and workflows of creative practitioners in the age of generative AI. In Proceedings of the 16th Conference on Creativity & Cognition, (pp. 170–184). https://doi.org/10.1145/3635636.3656190

Pandy, G., Pugazhenthi, V. J. & Murugan, A. (2025). Generative AI: Transforming the landscape of creativity and automation. International Journal of Computer Applications, 186(63), 7-13. https://doi.org/10.5120/ijca2025924392

Pedreschi, D., Pappalardo, L., Ferragina, E., Baeza-Yates, R., Barabási, A. L., Dignum, F. … & Vespignani, A. (2024). Human-AI coevolution. Artificial Intelligence, 339, 104244. https://doi.org/10.1016/j.artint.2024.104244

Peng, C., Zhang, S., Wen, F. & Liu, K. (2025). How loneliness leads to the conversational AI usage intention: The roles of anthropomorphic interface and parasocial interaction. Current Psychology, 44, 8177–8189. https://doi.org/10.1007/s12144-024-06809-5

Pyae, A. (2025). The human-AI handshake framework: A bidirectional approach to human-AI collaboration. arXiv preprint arXiv:2502.01493. https://doi.org/10.48550/arXiv.2502.01493

Rammert, W. (2008). Where the action is: Distributed agency between humans, machines, and programs. In U. Seifert, J. H. Kim & A. Moore (Eds.), Paradoxes of Interactivity (pp. 62–91). https://doi.org/10.14361/9783839408421-004

Rezwana, J. & Ford, C. (2025, June). Human-centered AI communication in co-creativity: An initial framework and insights. In Proceedings of the 2025 Conference on Creativity and Cognition, (pp. 651–665). https://doi.org/10.1145/3698061.3726932

Rezwana, J. & Maher, M. L. (2022, June). Understanding user perceptions, collaborative experience and user engagement in different human-AI interaction designs for co-creative systems. In Proceedings of the 14th Conference on Creativity and Cognition, (pp. 38–48). https://doi.org/10.1145/3527927.3532789

Rezwana, J. & Maher, M. L. (2023). Designing creative AI partners with COFI: A framework for modeling interaction in human-AI co-creative systems. ACM Transactions on Computer-Human Interaction, 30(5), 1–28. https://doi.org/10.1145/3519026

Richter, F. (2024). From human-system interaction to human-system co-action and back: Ethical assessment of generative AI and mutual theory of mind. AI and Ethics, 5(1), 19–28. https://doi.org/10.1007/s43681-024-00626-z

Schneider, J. (2024). Explainable generative AI (GenXAI): A survey, conceptualization, and research agenda. Artificial Intelligence Review, 57(11), 289. https://doi.org/10.1007/s10462-024-10916-x

Serena, A. (2025). The impact of generative AI on the film industry: Opportunities, challenges, and ethical implications [Doctoral dissertation, Politecnico di Torino]. https://webthesis.biblio.polito.it/id/eprint/35575

Silalahi, A. & Demirci, S. (2025). The paradox of frustration and anger in driving users’ continuance intention toward generative AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5231025

Shneiderman, B. (2002). Creativity support tools. Communications of the ACM, 45(10), 116–120. https://doi.org/10.1145/570907.570945

Simondon, G. (2017). On the mode of existence of technical objects. Univocal.

Stray, J. (2023). The AI learns to lie to please you: Preventing biased feedback loops in machine-assisted intelligence analysis. Analytics, 2(2), 350–358. https://doi.org/10.3390/analytics2020020

Sundar, S. S. (2020). Rise of machine agency: A framework for studying the psychology of human–AI interaction (HAII). Journal of Computer-Mediated Communication, 25(1), 74–88. https://doi.org/10.1093/jcmc/zmz026

Tallala, T. (2024). Generative artificial intelligence, content creation and intellectual property rights in commercial use: Crediting the audiovisual output. [Bachelor’s Thesis, Turku University of Applied Sciences]. https://urn.fi/URN:NBN:fi:amk-2024062623863

Taffel, S. (2019). Automating creativity. Spheres: Journal for Digital Cultures, (5), 1–9. https://doi.org/10.25969/mediarep/13495

Turchi, T., Carta, S., Ambrosini, L. & Malizia, A. (2023). Human-AI co-creation: Evaluating the impact of large-scale text-to-image generative models on the creative process. In L. D. Spano, A. Schmidt, C. Santoro & S. Stumpf (Eds.), End-User Development. Lecture Notes in Computer Science, 13917. Springer. https://doi.org/10.1007/978-3-031-34433-6_3

Valverde-Valencia, À. (2023). Self-effects in AI-mediated communication. Hipertext.net, (26), 47–52. https://doi.org/10.31009/hipertext.net.2023.i26.07

Verbeek, P. P. (2005). What things do: Philosophical reflections on technology, agency, and design. Penn State Press.

Viñolo Locubiche, S. (2024). AI and the development of new audiovisual narratives. In R. V. Benítez-Rojas & F-J Martínez-Cano (Eds.). Revolutionizing Communication: The Role of Artificial Intelligence (pp. 37–47). Springer. https://doi.org/10.1201/9781003473633

Voinea, D. V. (2025). The algorithmic auteur: AI, cultural production, and the reconfiguration of audiovisual media. Social Sciences and Education Research Review, 12(1), 256–268. https://doi.org/10.5281/zenodo.15804554

Voynov, A., Aberman, K. & Cohen-Or, D. (2023, July). Sketch-guided text-to-image diffusion models. In ACM SIGGRAPH 2023 Conference Proceedings, article 55, 1–11. https://doi.org/10.1145/3588432.3591560

Wan, Q., Hu, S., Zhang, Y., Wang, P., Wen, B. & Lu, Z. (2024). “It felt like having a second mind”: Investigating human-AI co-creativity in prewriting with large language models. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW1), article 84, 1–26. https://doi.org/10.1145/3637361

Wang, B., Han, J., Zhao, X., Yin, Y., Chen, L. & Childs, P. (2025). Creative combinational design through generative AI in different dimensional representations: An exploration. Design and Artificial Intelligence, 1(1), 100006. https://doi.org/10.1016/j.daai.2025.100006

Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y. & Wang, Q. (2020, April). From human-human collaboration to human-AI collaboration: Designing AI systems that can work together with people. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 1–6. https://doi.org/10.1145/3334480.3381069

Xu, W., Dainoff, M. J., Ge, L. & Gao, Z. (2021). From human-computer interaction to human-AI interaction: New challenges and opportunities for enabling human-centered AI. arXiv preprint arXiv:2105.05424. https://doi.org/10.48550/arXiv.2105.05424

Zhang, C., Wang, W., Pangaro, P., Martelaro, N. & Byrne, D. (2023, June). Generative image AI using design sketches as input: Opportunities and challenges. In Proceedings of the 15th Conference on Creativity and Cognition, 254–261. https://doi.org/10.1145/3591196.3596820

Zhu, F. & Zou, W. (2023). The role of generative AI in human creative processes: Experimental evidence. SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.4676053