Resumen
When the same data are used to fit a model and estimate its predictive performance, this estimate may be optimistic, and its correction is required. The aim of this work is to compare the behaviour of different methods proposed in the literature when correcting for the optimism of the estimated area under the receiver operating characteristic curve in logistic regression models. A simulation study (where the theoretical model is known) is conducted considering different number of covariates, sample size, prevalence and correlation among covariates. The results suggest the use of k-fold cross-validation with replication and bootstrap.
Derechos
Derechos de autor
From February 2013 articles are under a Creative Commons license: CC BY-NC-ND You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work), you may not use the work for commercial purposes and you may not alter, transform, or build upon the work.