Abstract
Likelihood estimates of the Dirichlet distribution parameters can be obtained only through numerical algorithms. Such algorithms can provide estimates outside the correct range for the parameters and/or can require a large amount of iterations to reach convergence. These problems can be aggravated if good starting values are not provided. In this paper we discuss several approaches that can partially avoid these problems providing a good trade-off between efficiency and stability. The performances of these approaches are compared on high-dimensional real and simulated data.
Keywords
- Levenberg-Marquardt algorithm
- re-parametrization
- starting values
- metabolomics data
Rights
Copyright
From February 2013 articles are under a Creative Commons license: CC BY-NC-ND You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work), you may not use the work for commercial purposes and you may not alter, transform, or build upon the work.