Abstract
This paper compares the performance of nine time-varying beta estimates taken from three different methodologies never previously compared: least-square estimators including nonparametric weights, GARCH-based estimators and Kalman filter estimators. The analysis is applied to the Mexican stock market (2003-2009) because of the high dispersion in betas. The comparison be- tween estimators relies on their financial applications: asset pricing and portfolio management. Results show that Kalman filter estimators with random coefficients outperform the others in capturing both the time series of market risk and their cross-sectional relation with mean returns, while more volatile estimators are better for diversification purposes.
Rights
Copyright
From February 2013 articles are under a Creative Commons license: CC BY-NC-ND You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work), you may not use the work for commercial purposes and you may not alter, transform, or build upon the work.