Abstract
Ranked set sampling (RSS) is known to be superior to the traditional simple random sampling (SRS) in the sense that it often leads to more efcient inference procedures. Basic version of RSS has been extensively modied to come up with schemes resulting in more accurate estimators of the population attributes. Multistage ranked set sampling (MSRSS) is such a variation surpassing RSS. Entropy has been instrumental in constructing criteria for fitting of parametric models to the data. The goal of this article is to develop tests of uniformity based on sample entropy under RSS and MSRSS designs. A Monte Carlo simulation study is carried out to compare the power of the proposed tests under several alternative distributions with the ordinary test based on SRS. The results report that the new entropy tests have higher power than the original one for nearly all sample sizes and under alternatives considered.
Keywords
- Information theory
- ranked set sampling
- test of fit
Rights
Copyright
From February 2013 articles are under a Creative Commons license: CC BY-NC-ND You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work), you may not use the work for commercial purposes and you may not alter, transform, or build upon the work.