Predient el passat: una crítica filosòfica de l’anàlisi predictiva

Main Article Content

Daniel Innerarity

Si abordem aquest tema des d’un punt de vista conceptual i crític, hem d’explicar tres tipus de qüestions: 1) per què les prediccions són massa sovint correctes, 2) per què, a la vegada, s’equivoquen tan sovint i 3) quines conseqüències sorgeixen del fet que els nostres instruments de predicció ignoren almenys quatre realitats que han de ser correctes sobre les previsions futures o almenys ser conscients dels seus límits: a) que les persones no poden ser totalment subsumides en categories, b) que el seu comportament futur tendeix a tenir dimensions impredictibles, c) que aquesta propensió no és el mateix que la causalitat i d) que les societats democràtiques han de fer que el desig d’anticipar el futur sigui compatible amb el respecte per la naturalesa oberta d’aquest.

Paraules clau
anàlisi predictiva, intel·ligència artificial, algoritmes, democràcia, futur, llibertat

Article Details

Com citar
Innerarity, Daniel. “Predient el passat: una crítica filosòfica de l’anàlisi predictiva”. IDP. Revista d’Internet, Dret i Política, no. 39, pp. 1-12, doi:10.7238/idp.v0i39.409672.
Biografia de l'autor/a

Daniel Innerarity, Universitat del País Basc / Euskal Herriko Unibertsitatea

Professor de filosofia política, investigador d’Ikerbasque en la Universitat del País Basc  (UPV) i president d’Intel·ligència Artificial i Democràcia en l’Institut Universitari Europeu (IEU). Antic membre de la Fundació Alexander von Humboldt en la Universitat de Munic (LMU), professor convidat en la Universitat de París 1-Sorbona, professor visitant en la London School of Economics (LSE) i en la Universitat de Georgetown. Els seus llibres recents en anglès inclouen Ethics of Hospitality (2017), The democracy in Europe (2018), Politics in the Times of Indignation (2019) i A Theory of Complex Democracy (2023). Ha estat guardonat amb diferents premis, recentment el Premi Nacional de Recerca de Ciències Humanes.

Referències

ABEBE, R.; KASY, M. (2021). “The means of prediction”. In: Acemoglu, D. Redesigning AI. Work, democracy, and justice in the age of automation, pp. 87-91. Cambridge: Boston Review.

ACCOTO, C. (2019). Il mondo ex machina. Cinque brevi lezioni di filosofia dell’automazion. Milan: Egea.

ADAMS, V.; MURPHY, M.; CLARKE, A. (2009). “Anticipation: Technoscience, life, affect, temporality”. Subjectivity, vol. 28, n.º 1, pp. 246-265. DOI: https://doi.org/10.1057/sub.2009.18

AGRAWAL, A.; GANS, J.; Goldfarb, A. (2018). Prediction Machines. The Simple Economics of Artificial Intelligence. Cambridge: Harvard University Press.

AMOORE, L.; PIOTUKH, V. (2015). “Life beyond big data: governing with little analytics”. Economy and Society, vol. 44, n.º 3, pp. 314-366. DOI: https://doi.org/10.1080/03085147.2015.1043793

ANDREJEVIC, M. (2013). Infoglut: How Too Much Information Is Changing the Way We Think and Know. New York: Routledge. DOI: https://doi.org/10.4324/9780203075319

ANGWIN, J.; LARSON, J. (2016, December). “Bias in Criminal Risk Scores is Mathematically Inevitable, Researches Say”. ProPublica [online]. Available at: https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematical-inevitable-researches-say

ARENDT, H. (2017). Mensch und Politik. Stuttgart: Reclam.

BOELLSTORF, T. (2013). “Making big data, in theory”. First Monday, vol. 18, no. 10. DOI: https://doi.org/10.5210/fm.v18i10.4869

BRAMAN, S. (2009). Change of State: Information, Policy and Power. Cambridge: The MIT Press.

BRAYNE, S. (2020). Predict and Surveil: Data, Discretion, and the Future of Policing. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780190684099.001.0001

BROUSSARD, M. (2018). Artificial Unintelligence: How Computers Misunderstand the World. Cambridge: The MIT Press. DOI: https://doi.org/10.7551/mitpress/11022.001.0001

DERRIDA, J. (1994). “Nietzsche and the Machine”. Journal of Nietzsche Studies, no. 7, pp. 7-65.

ESPOSITO, E. (2011). The Future of Futures: The Time of Money in Financing and Society. Edward Elgar. DOI: https://doi.org/10.4337/9781849809115

ESPOSITO, E. (2021). Artificial Communication: How Algorithms Produce Social Intelligence. Cambridge: The MIT Press. DOI: https://doi.org/10.7551/mitpress/14189.001.0001

EUROPEAN COMMISSION (EC) (2015). Evidence-Based Better Regulation. European Commission [online]. Available at: https://commission.europa.eu/law/law-making-process/planning-and-proposing-law/better-regulation/better-regulation-guidelines-and-toolbox_en

FEDERAL TRADE COMMISSION (2016, January). Big Data. A tool of Inclusion or Exclusion? Understanding the issues. United Sates of America: Federal Trade Commission [online]. Available at: https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf

FOERSTER, H. Von (2003). Understanding Understanding: Essays on Cybernetics and Cognition. New York: Springer. DOI: https://doi.org/10.1007/b97451

HILDEBRANDT, M. (2006). “Privacy and identity”. In: Claes, E., Duff, A., Gurtwith, S. (eds.). Privacy and the Criminal Law. Antwerpen/Oxford: Intersentia, pp. 43-57. DOI: https://doi.org/10.1007/s11572-006-9006-x

KAPOOR, S.; NARAYANAN, A. (2022). “Leakage and the Reproducibility Crisis in ML-based Science”. Patterns, vol. 4, no. 9. DOI: https://doi.org/10.1016/j.patter.2023.100804

MACKENZIE, A. (2015). “The production of prediction: What does machine learning want?”. European Journal of Cultural Studies, vol. 18, no. 4-5, pp. 429-445. DOI: https://doi.org/10.1177/1367549415577384

MASSUMI, B. (2007). “Potential politics and the primacy of preemption”. Theory & Event, vol. 10, no. 2. DOI: https://doi.org/10.1353/tae.2007.0066

MATZNER, T. (2018). “Grasping the ethics and politics of algorithms”. In: Sætnan, A. R., Schneider, I., Green, N. (2018). The Politics of Big Data. Big Data, Big Brother, pp. 30-45. Oxford, New York: Routledge.

MAYER-SCHOENBERGER, V.; CUKIER, K. (2013). Big Data. A Revolution That Will Transform How We Live, Work, and Think. New York: Houghton.

MERTON, R. (1948). “The self-fulfilling prophecy”. The Antioch Review, vol. 8, no. 2, pp. 193-210. DOI: https://doi.org/10.2307/4609267

NOWOTNY, H. (2021). In AI we trust. Power, illusion and control of predictive algorithms. Cambridge: Polity Press.

PORTER, T. M. (1995). Trust in Numbers. The Pursuit of Objectivity in Science and Public Life. Princeton University Press. DOI: https://doi.org/10.1515/9780691210544

SCHNEIDER, I. (2018). “Bringing the state back in. Big Data-based capitalism, disruption, and novel regulatory approaches in Europe”. In: Sætnan, A. R., Schneider, I., Green, N. The Politics of Big Data. Big Data, Big Brother, pp. 129-175. Oxford, New York: Routledge.

STRAUSS, S. (2015). “Datafication and the Seductive Power of Uncertainty-A Critical Exploration of Big Data”. Information, no. 6, pp. 836-847. DOI: https://doi.org/10.3390/info6040836

TYLER, I. (2015). “Classificatory Struggles: Class, Culture and Inequality in Neoliberal Times”. The Sociological Review, vol. 63, no. 2, pp. 493-511. DOI: https://doi.org/10.1111/1467-954X.12296