Linking early diagenesis and relative sea-level changes in ancient corals: a multiproxy approach from the Benassal Formation (Lower Cretaceous, Maestrat Basin, E Spain) Diagenesis of Aptian corals
Article Sidebar
Main Article Content
The Aptian shallow-water carbonate platform of the Benassal Formation in eastern Spain (Maestrat Basin) contains facies dominated by scleractinian corals. Corals and coral reefs are widely used as environmental archives; however, the effects of their complex diagenetic evolution are a major factor impacting reliable reconstructions of the environments. This study addresses the environmental signatures (i.e. relative sea-level changes) and burial conditions that controlled the various diagenetic minerals present in the Aptian coral facies. A multiproxy approach including petrographic and geochemical evaluation reveals the diagenetic pathways, fluid compositions and timing accounting for the syn- to post depositional history of this ancient coral facies. Cc1, which shows low Fe and Mn content and high Na content, precipitated within the primary porosity, alongside the replacement of coral skeletons, in a mixing zone dominated by marine waters. Cement Cc2, characterized by its higher Fe and Mn content and low Na values, precipitated in the mixing zone dominated by meteoric waters related to a relative sea-level drop. Cement Cc3, distinguished by low Fe and Mn content and high Na content, reflects a subsequent phase of increased marine influence, likely associated with a relative sea-level rise. Silica and isolated rhombohedral dolomite crystals formed concurrently in this mixing zone. During intermediate burial, saddle dolomite and cement Cc4 precipitated from high-temperature formation brines. Finally, during uplift, meteoric fluids caused the calcitization of previously formed dolomite rhombohedra.
Article Details

Aquesta obra està sota una llicència internacional Creative Commons Reconeixement-CompartirIgual 4.0.
(c) S. Tomás, D. Parcerisa, I. Cantarero, V. Baqués, R. Salas, A. Travé, 2025
Drets d'autor
opyright
Geologica Acta is the property of the UB, GEO3BCN, IDAEA and UAB. Geologica Acta must be cited for any partial or full reproduction. Papers are distributed under the Attribution-Share Alike Creative Commons License. This license allows anyone to reproduce and disseminate the content of the journal and even make derivative works crediting authorship and provenance and distributing possible derivative works under the same or an equivalent license.
Author Rights
Authors retain the copyright on their papers and are authorized to post them on their own web pages or institutional repositories. The copyright was retained by the journal from the year 2003 until 2009. In all cases, the complete citation and a link to the Digital Object Identifier (DOI) of the article must be included.
The authors can use excerpts or reproduce illustrations of their papers in other works without prior permission from Geologica Acta provided the source of the paper including the complete citation is fully acknowledged.
Al-Dabbagh, M. E., El-Sorogy, A. S., 2016. Diagenetic alterations of the upper Jurassic scleractinian corals, Hanifa Formation, Jabal Al-Abakkayn, central Saudi Arabia. Journal of the Geological Society of India, 87(3), 337–344.
Allison, N., Finch, A.A., Webster, J. M., Clague, D.A., 2007. Palaeoenvironmental records from fossil corals: the effects of submarine diagenesis on temperature and climate estimates. Geologica et Cosmochimica Acta, 71(19), 4693-4703.
Alonso-Zarza, A.M., Sánchez-Moya, Y., Bustillo, M.A., Sopeña, A., Delgado, A., 2002, Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: an example of meteoric-dominated diagenesis from the Triassic of central Spain. Sedimentology, 49, 303-317.
Andrade, C. N., Chafetz, H. S., Lapen, T. J., 2020. Paragenesis of silicified mid-Paleozoic and mid-Cenozoic corals based on petrography and silicon isotopic analyses. Chemical Geology, 538, 119483.
Badali, M. 2003. Paleoenvironments, diagenesis, and sequence stratigraphy of the mid-cretaceous section (Albian/Cenomanian) in the main pass field area, Northeastern Gulf of Mexico. Carbonates and Evaporites, 18, 29-40.
Banner, J.L., Hanson, G.N., 1990. Calculations of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123-3137.
Bathurst, R. G., 1975. Carbonate sediments and their diagenesis. Elsevier, Amsterdam.
Bover-Arnal, T., Moreno-Bedmar, J.A., Frijia, G., Pascual-Cebrian, E., Salas, R., 2016. Chronostratigraphy of the Barremian-Early Albian of the Maestrat Basin (E Iberian Peninsula): integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49, 41-68.
Burton, E.A., Walter, L.M., 1991. The effects of PCO2 and temperature on magnesium incorporation in calcite in seawater and MgCl2-CaCl2 solutions. Geochimica et Cosmochimica Acta, 55, 777-785.
Bustillo, M.A., La Iglesia, A., 1978. Procesos de formación y diagénesis en las rocas silíceas de Sangunto. Estudios Geológicos, 34, 167-174.
Centrella, S., Beaudoin, N.E., Trebucq, C., Hoareau, G., Gomez Rivas, E., Martín-Martín, J.D., Callot, J. P., 2023. Textural and chemical evolution during dedolomitization: A case study of the Benassal Formation, Maestrat Basin, Spain, Marine and Petroleum Geology, 153, 106290.
Choquette, P.W., James, N.P., 1987. Diagenesis #12. Diagenesis in limestone-3. The deep burial environment. Geoscience Canada, 14, 3-34.
Craig, H., 1965. Measurement of oxygen isotope paleotemperatures. In E. Tongiorgi (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, p. 161-182.
Craig, H., Gordon, I., 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In E. Tongiogi, (Ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, p. 9-130.
Davies, G.R., Smith Jr, L.B., 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90, 1641-1690.
Donnelly, W., Merrill, L., 1977. The scavenging of magnesium and other chemical species by biogenic opal in deep–sea sediments. Chemical Geology, 19, 167-187.
Dromgoole, E.L., Walter, L.M., 1990. Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry. Chemical Geology, 81, 311-336.
El-Saiy, A. K., Jordan, B. R., 2007. Diagenetic aspects of tertiary carbonates west of the Northern Oman Mountains, United Arab Emirates. Journal of Asian Earth Sciences, 31(1), 35-43.
Enmar, R., Stein, M., Bar-Matthews, M., Sass, E., Katz, A., Lazar, B., 2000. Diagenesis in live corals from the gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochimica and Cosmochimica Acta, 64 (18), 3123-3132.
Erragragui, M., Masrour, A., Benbaqqal, H., Jilali, A., 2023. Diagenetic evolution and carbonate reservoir quality of the Domerian-Bajocian South-Rifain Ridges, Morocco. Journal of African Earth Sciences, 200, 104860.
Friedman, I., O'Neil, J. R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. Professional Paper 440kk. US Geological Survey.
Friedman, G.M., Amiel, A.J., Scneidermann, N., 1974, Submarine cementation in reefs: example from the Red Sea. Journal of Sedimentary Petrology, 44, 816-825.
Gomez-Rivas, E., Warber, K., Kulzer, F., Bons, P.D., Koehn, D., Martín-Martín, J.D., 2012. Structural evolution of the Benicàssim area (Maestrat basin, NE Spain): insights from fracture and vein analysis. Geogaceta, 51, 79-82.
Gomez-Rivas, E., Corbella, M., Martín-Martín, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A., Cardellach, E., 2014. Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). Marine and Petroleum Geology, 55, 26-42.
Humphrey, E., Gomez-Rivas, E., Martín-Martín, J.D., Neilson, J., Salas, R., Guimerà, J., 2022. Depositional and structural controls on a fault-related dolostone formation (Maestrat Basin, E Spain). Basin Research, 34, 961-990.
Insalaco, E., 1998. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sedimentary Geology, 118, 159-186.Jacka, A.D., 1974. Replacement of fossils by length–slow chalcedony and associates dolomitization. Journal of Sedimentary Petrology, 44, 421-427.
James, N.P, Ginsburg, R.N., Marzalek, D.S., Choquette, P. W., 1976. Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. Journal of Sedimentary Petrology, 46, 523-544.
Katz, A., 1973. The interaction of magnesium with calcite during crystal growth at 25-90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37, 1563-1586.
Katz, A., Sass, E., Starinsky, A., Holland, H.D., 1972. Strontium behavior in the aragonite-calcite transformation: An experimental study at 40-98°C. Geochimica et Cosmochimica Acta, 36, 481-496.
Kidder, D. L., Erwin, D. H., 2001. Secular Distribution of Biogenic Silica through the Phanerozoic: Comparison of Silica‐Replaced Fossils and Bedded Cherts at the Series Level. The Journal of Geology, 109(4), 509-522.
Knauth, L. P., 1979. A model for the origin of chert in limestone. Geology, 7(6), 274–277.
Knauth, L. P., 1994. Petrogenesis of chert. In Heaney, P.J., Prewitt, C.T., Gibbs, G.V. (eds.). Silica: physical behavior, geochemistry, and materials applications. Reviews in Mineralogy and Geochemistry, 29, pp. 233-258.
Longman, M.W., 1980. Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bulletin, 64, 461-487.
Macintyre, I.G, Marshall, J.F., 1988. Submarine lithification in coral reefs: same facts and misconceptions. In Proceedings 6th International Coral Reef Symposium. Australian Institute of Marine Science, Townsville, Australia. James Cook University Press pp. 263-272.
Machel, H.G., 1987. Saddle dolomite as a by–product of chemical compaction and thermochemical sulfate reduction. Geology, 15, 936-940.
Maliva, R. G. 1998. Skeletal aragonite neomorphism; quantitative modelling of a two-water diagenetic system. Sedimentary Geology, 121(3–4), 179-190.
Maliva R. G., Siever R., 1989. Nodular chert formation in carbonate rocks. The Journal of Geology, 97 (4), 421-433.
Martín-Martín, J.D., Gomez-Rivas, E., Travé, A., Salas, R., Vergés, J., 2012. Dolomías controladas por fracturas en carbonatos aptienses de la zona de Benicàssim (SE Cuenca del Maestrat): distribución y características petrográficas. Geogaceta 51,19-22.
Martín-Martín, J.D., Gomez-Rivas, E., Bover-Arnal, T., Travé, A., Salas, R., Moreno-
Bedmar, J.A., Tomás, S., Corbella, M., Teixell, A., Vergés, J., Stafford, S.L., 2013. The Aptian syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault controlled stratabound dolostones. Cretaceous Research, 41, 217-236.
Martín-Martín, J.D., Travé, A., Gomez-Rivas, E., Salas, R., Sizun, J.P., Vergés, J., Corbella, M., Stafford, S.L., Alfonso, P., 2015. Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain): petrology and geochemistry constrains. Marine and Petroleum Geology, 65, 83-102.
Martín-Martín, J. D., Gomez-Rivas, E., Gómez-Gras, D., Travé, A., Ameneiro, R., Koehn, D., Bons, P. D., 2018. Geological Society, London, Special Publications, 459(1), 157-176.
McGregor, H.V., Gagan, M.K., 2003. Diagenesis and geochemistry of Porites corals form Papua New Guinea: implications for paleoclimate reconstructions. Geochimica et Cosmochimica Acta, 67 (12), 2147-2156.
McIntire, W.L., 1963. Trace element partition coefficients - a review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27, 1209-1264.
Meyers, W.J., Lohmann, K.C., 1985. Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico. In: Schneidermann, N., Harris, P.M. (eds.). Carbonate Cements. SEPM Special Publications, 36, 223-239.
Misik, M., 1968. Some aspects of diagenetic recristallization in limestones. XXIII International Geological Congress, 8, 129-136.
Moore, C. H., Wade, W. J., 2013. Carbonate diagenesis: Introduction and tools. In Developments in Sedimentology, 67, 67-89.
Mucci, A., 1987. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta, 51, 1977-1984.
Mucci, A., Morse, J.W., 1983. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochimica et Cosmochimica Acta, 47, 217-233.
Perry, C.T., Hepburn, L.J., 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation, and cementation: Taphonomic signatures of reef accretion and reef depositional events. Earth Science Reviews, 86, 106-144.
Pingitore, N. E., 1976. Vadose and phreatic diagenesis: processes, products and their recognition in corals. Journal of Sedimentary Petrology, 46, 985-1006.
Rabier, C., Anguy, Y., Cabioch, G., Genthon, P., 2008. Characterization of various stages of calcitization in Porites sp corals form uplifted reefs- Case studies form New Caledonia, Vanuatu, and Futuna (South-West Pacific). Sedimentary Geology, 211, 73-86.
Radke, B.M., Mathis, R.L., 1980. On the Formation and Occurrence of Saddle Dolomite. Journal of Sedimentary Research, 50, 1149-1168.
Ribaud-Laurenti, A., Hamelin, B., Montaggioni, L., Cardinal, D., 2001. Diagenesis and its impact on Strontium/Ca ratio in Holocene Acropora corals. International Journal of Earth Sciences, 90, 438-451.
Riding, R. 2011. Microbialites, stromatolites, and thrombolites. In: Reitner, J., Thiel, V. (eds.). Encyclopedia of Geobiology. Encyclopedia of Earth Science Series, Springer Verlag, Heidelberg, pp. 635-654.
Riding, R., Tomás, S., 2006. Stromatolite reef crusts, Early Cretaceous, Spain: Bacterial origin of in situ-precipitated peloid microspar? Sedimentology, 53, 23-34.
Roca, E., Guimerà, J., 1992. The Neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics, 203 (1), 203-218.
Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228 (1-2), 33-55.
Salas, J., Guimerà, J., Mas, R., Martín-Closas, A., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tethyan Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Museum National d´Histoire Naturelle 186, Paris, 145-185.
Sherman, C.E., Fletcher C.H., Rubin, K.H., 1999. Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. Journal of Sedimentary Research, 69, 1083-1097.
Spötl, C., Pitman, J.K, 1998. Saddle (baroque) dolomite in carbonates and sandstones: a reappraisal of a burial-diagenetic concept. In: Morad, S. (ed.). Carbonate cementation in sandstones. International Association of Sedimentologists Special Publication 26, 437-460.
Stoessell, R.K., Klimentidis, R.E., Prezbindowski, D.R., 1987. Dedolomitization in Na-Ca-Cl brines from 100 to 200°C at 300 bars. Geochimica et Cosmochimica Acta, 51, 847-855.
Sumner, D. Y., 1997. Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios, 12, 302-318.
Sumner, D.Y., 2000. Microbial versus environmental influences on the morphology of Late Archean fenestrate microbialites. In: Riding, R., Awramik, S.M. (eds.). Microbial Sediments. Springer Verlag, Berlin. pp. 307-314.
Tomás, S., Aguirre, J., Braga, J.C., Martín-Closas, C., 2007a. Late Hauterivian coralline algae (Rhodophyta, Corallinales) from the Iberian Chain (E Spain). Taxonomy and the evolution of multisporangial reproductive structures. Facies, 53, 79-95.
Tomás, S., Comas Nebot, M., Salas, R., 2007b. La plataforma carbonatada Aptiense superior de Benicàssim-Orpesa (Cuenca del Maestrat, Cadena Ibérica): modelo de depósito. Geogaceta, 41, 235-238.
Tomás, S., Comas Nebot, M., Salas, R., 2007c. Evolución diagenética de la plataforma carbonatada Aptiense superior del sector Benicàssim-Orpesa. Cuenca del Maestrat. Geogaceta, 41, 239-242-
Tomás, S., Löser, H., Salas, R., 2008. Low-light and nutrient-rich coral assemblages in an Upper Aptian carbonate platform of the southern Maestrat Basin (Iberian Chain, eastern Spain). Cretaceous Research, 29 (3), 509-534.
Travé, A., Labaume, P., Calvet, F., Soler, A., 1997. Sediment dewatering and pore fluid migration along thrust faults in a foreland basin inferred from isotopic and elemental geochemical analyses (Eocene southern Pyrenees, Spain). Tectonophysics, 282, 375-398.
Travé, A., Calvet, F., Sans, M., Vergés, J., Thirlwall, M., 2000. Fluid history related to the Alpine compression at the margin of the south-Pyrenean Foreland basin: the El Guix anticline. Tectonophysics, 321, 73-102.
Veizer, J., Hoefs, J., 1976. The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40, 1387-1395.
Veizer, J., Holser, W.T., Wilgus, C.K., 1980. Correlation of 13C/12C and 34S/32S secular variations. Geochimica et Cosmochimica Acta, 44, 579-587.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999. 87Sr/86Sr, δ13C, and δ18OVSMOW evolution of Phanerozoic seawater. Chemical Geology, 161 (1), 59-88.
Walker, T.R., 1960. Carbonate replacement of detrital crystalline silicate minerals as a source of authigenic silica in sedimentary rocks. GSA Bulletin, 71(2), 145-152.
Walker, T.R., 1962. Reversible nature of chert-carbonate replacement in sedimentary rocks. GSA Bulletin, 73 (2), 237-242.
Webb, G. E., Northdurft, L. D., Kamber, B. S., Kloprogge, J.T., Zhao, J-X., 2009. Rare earth geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology, 56 (5) 1433-1463.
Whittle, G.L., Alsharhan, A. S., 1994. Dolomitization and chertification of the Early Eocene Rus Formation in Abu Dhabi, United Arab Emirates. Sedimentary Geology, 92 (3-4), 273-285.
Wilson, M. E. J., Ee Wah, E. C., Dorobek, S., Lunt, P. 2013. Onshore to offshore trends in carbonate sequence development, diagenesis and reservoir quality across a land-attached shelf in SE Asia. Marine and Petroleum Geology, 45, 349–376.
Yao, S., Gomez-Rivas, E., Martín-Martín, J.D., Gómez-Gras, D., Travé, A., Griera, A., Howell, J.A., 2020. Fault-controlled dolostone geometries in a transgressive–regressive sequence stratigraphic framework. Sedimentology, 67, 3290-3316.
Articles més llegits del mateix autor/a
- David Parcerisa, David Gómez-Gras, Eduard Roca, Joan Madurell i Malapeira, Jordi , 1954- Agustí Ballester, The Upper Oligocene of Montgat (Catalan Coastal Ranges, Spain): New age constrains to the western Mediterranean Basin opening , Geologica Acta: 2007: Vol.: 5 Núm.: 1
- Telm Bover-Arnal, André Strasser, Ramon Salas, Fossil corals with skeletal lesions comparable to modern ones , Geologica Acta: 2024: Vol.: 22
- Eduard Albert-Villanueva, Telm Bover-Arna, Carles Ferràndez-Cañadel, Lenin González, Mateu Esteban, Ramon Salas, Lower Miocene carbonate platforms of the Falcón Basin (NW Venezuela) compared to the offshore Perla Field reservoir , Geologica Acta: 2025: Vol.: 23
- Telm Bover-Arnal, Enric Pascual-Cebrian, Josep Anton Moreno-Bedmar, Ramon Salas, Strontium-isotope stratigraphy of the Aptian–Albian transition in the western Maestrat Basin (E Iberia) , Geologica Acta: 2025: Vol.: 23
- Anna Travé, Judit Nadal, Elisabet Playà, Ramon Salas, Irene Cantarero, Vinyet Baqués, David Cruset, Enrique Gomez-Rivas, Juan Diego Martín-Martín, Fracture-related dolostones replacing Upper Jurassic–lowermost Cretaceous syn-rift deposits in the eastern Iberian Chain (eastern Spain) , Geologica Acta: 2025: Vol.: 23