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ABSTRACT: This article examines how the European Union’s environmental 

perspective on artificial intelligence has evolved, contrasting the high 

expectations set forth by the European Green Deal with the subsequent AI Act. 

Although the European Green Deal acknowledged AI’s potential to enhance 

energy efficiency, it did not thoroughly address water and energy consumption 

or the handling of e-waste arising from the development of large deep learning 

models. Subsequently, the AI White Paper delved more deeply into the 

environmental dimension of this technology. However, the AI Act—enacted in 

2024—does not fully translate these proposals into concrete obligations. The 
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article discusses the main provisions of the AI Act that refer to sustainability, 

underscoring the absence of direct mechanisms to limit energy consumption, 

mitigate water footprints, or ensure proper electronic waste management. In this 

context, two de lege ferenda measures are proposed to remedy these 

shortcomings: the mandatory inclusion of environmental impact factors in 

competitive AI benchmarks, and the implementation of an environmental 

labeling system that informs consumers about the sustainability of the data 

centers where models operate. 

 

RESUM: Aquest article examina com ha evolucionat la perspectiva 

mediambiental de la Unió Europea sobre la intel·ligència artificial, tot 

contrastant les elevades expectatives fixades pel Pacte Verd Europeu amb 

l’Acte IA que el va seguir. Malgrat que el Pacte Verd reconeixia el potencial de 

la IA per millorar l’eficiència energètica, no va abordar de manera exhaustiva el 

consum d’aigua i d’energia ni la gestió dels residus electrònics derivats del 

desenvolupament de grans models d’aprenentatge profund. Posteriorment, el 

Llibre Blanc sobre IA va aprofundir més en la dimensió ambiental d’aquesta 

tecnologia; tanmateix, l’Acte IA —aprovat el 2024— no tradueix completament 

aquestes propostes en obligacions concretes. L’article analitza les principals 

disposicions de l’Acte IA relacionades amb la sostenibilitat, incidint en 

l’absència de mecanismes directes per limitar el consum energètic, mitigar la 

petjada hídrica o garantir una gestió adequada dels residus electrònics. En 

aquest context, es proposen dues mesures de lege ferenda per resoldre 

aquestes mancances: la inclusió obligatòria de factors d’impacte ambiental en 

els benchmarks competitius de IA, i la implementació d’un sistema d’etiquetatge 

mediambiental que informi els consumidors sobre la sostenibilitat dels centres 

de dades on operen els models. 

 

RESUMEN: El presente artículo analiza la evolución de la perspectiva 

medioambiental en la Unión Europea en torno a la Inteligencia Artificial, 

contrastando las expectativas generadas por el European Green Deal y la 

reciente Ley IA. Aunque el Green Deal reconoció la relevancia de la IA para 
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mejorar la eficiencia energética, su enfoque no contempló a fondo el consumo 

de recursos hídricos y energéticos, ni la gestión del e-waste vinculado al 

desarrollo de grandes modelos de aprendizaje profundo. Posteriormente, el 

Libro Blanco de la IA profundizó en la dimensión ambiental de esta tecnología, 

pero la Ley IA —aprobada en 2024— no acaba de materializar estas 

propuestas en obligaciones concretas. Se exponen los principales artículos de 

la Ley IA que se refieren a la sostenibilidad, señalando la ausencia de 

mecanismos directos para limitar el consumo energético, mitigar la huella 

hídrica o gestionar adecuadamente los residuos electrónicos. En este contexto, 

se formulan dos medidas de lege ferenda para corregir esas carencias: la 

introducción obligatoria de factores de impacto ambiental en los benchmarks 

competitivos de IA, y la implementación de un sistema de etiquetado ambiental 

que informe al consumidor sobre la sostenibilidad de los centros de datos 

donde operan los modelos.  

 

KEY WORDS: Green AI – AI Act – Artificial intelligence – European Union – 

Sustainability – Data centers. 

PARAULES CLAU: Green AI – Acte IA – Intel·ligència Artificial – Unió Europea 

– Sostenibilitat – Centres de dades. 

PALABRAS CLAVE: Green AI – Ley IA – Inteligencia artificial – Unión Europea 

– Sostenibilidad – Centros de datos.  

 

SUMMARY: I. THE GREEN DEAL AS A PRECURSOR OF THE EU’S ENVIRONMENTAL 
AWARENESS CONCERNING ARTIFICIAL INTELLIGENCE. II. GREEN AI AND THE 
ENVIRONMENTAL PERSPECTIVE IN THE AI ACT. III. AI LABELING AND SELF-
REGULATED TRANSPARENCY AS A “DE LEGE FERENDA” PROPOSAL FOR AMENDING 
THE AI ACT. IV. CONCLUSIONS. V. BIBLIOGRAPHY.  

 

I. THE GREEN DEAL AS A PRECURSOR OF THE EU’S ENVIRONMENTAL 

AWARENESS CONCERNING ARTIFICIAL INTELLIGENCE 

It is broadly acknowledged that, based on a clear reading of, among others, 

articles 191 and 193 of the Treaty on the Functioning of the European Union 

(hereinafter, the “TFEU”), this institution maintains a strong commitment to 
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implementing public policies aimed at environmental protection, including the 

efficient management of water and energy resources (Campins Eritja, 2018). In 

this regard, it should be noted that the aforementioned articles explicitly refer to 

“the conservation, protection, and improvement of the quality of the environment 

in the European Union,” as well as to the protective measures established to 

that end.  

Moreover, classical administrative law scholars such as Harlow and Rawlings 

(2009:195–201) pointed out that whenever a particular law grants an entity 

competence over certain matters, it inevitably nurtures the expectation that 

policies will be developed to address a current issue—or one foreseen to arise 

within a given timeframe. This same rationale was subsequently expanded 

upon in the context of European law (Majone, 2014) and its orientation toward 

environmental protection and the promotion of sustainability. In other words, if 

the TFEU grants the EU competence in environmental matters, it is because (a) 

it recognizes a potential or actual concern of social relevance, and/or (b) it 

expects the European Union to take a conspicuously proactive stance on the 

matter. 

Accordingly, various scholars have formulated their own critical assessments of 

the milestones in the European Union’s environmental policy. Such scholarly 

commentary is certainly diverse: some authors present a favorable view (Haigh, 

2015: 31), contending that European initiatives such as the Paris Climate 

Conference, the Kyoto Protocol, or the EU’s 2020 Climate and Energy Package 

constitute fundamental milestones. Others (Jordan & Lenschow, 2010) 

underscore that European commitments heavily hinge on the political will of 

national governments, arguing that the European Union tends not to adopt 

compulsory compliance measures in this domain. In that same context, as early 

as 2020, certain Members of the European Parliament—among them Eugen 

Jurzyca—criticized the European Commission on grounds that the EU’s 2020 

Climate and Energy Package had neglected the matter of CO2 emissions tied 

to artificial intelligence (hereinafter  “AI”) (European Parliament, 2020). 

Regarding this latter point, a noteworthy critique in scholarly circles posits that 

the European Commission, authorized under articles 258 through 260 of the 
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TFEU, often acts in accordance with interests that can be more or less 

politically charged. This shift away from sanctioning noncompliant national 

governments toward a more informal supervisory role has been highlighted by 

some authors (Kelemen and Pavone, 2022: 292–299), who note that any 

enforcement mechanism limited by political considerations has also limited 

utility. In other words, the European Union does not generally enforce direct, 

interventionist environmental protection mechanisms; moreover, the penalty 

associated with governmental noncompliance is indeed subject – more or less 

and depending on the issue - to political nuance. 

Hence, prior to the adoption of Regulation (EU) 2024/1689 of the European 

Parliament and of the Council, of June 13, 2024 (Hereinafter, the “AI Act”), the 

European Union was operating within a turbulent legislative environment, as will 

be discussed below, due to the approval of numerous EU environmental laws 

whose implementation across member states was variably effective. In this pre–

AI Act context, scholars identified three key environmental challenges the EU 

was addressing—and would need to continue addressing—regarding AI 

development and usage. First (a) water resource consumption, especially “gray 

water” resulting from the hardware-cooling processes in data centers, including 

ethical and responsible approaches when establishing such centers in water-

scarce locales (Azarifar et al., 2024). Secondly, (b) efficient electricity usage 

and the shift toward sustainable models (Zhuk, 2023: 933–938), particularly 

through “smart grids”. That is, digitalized power networks geared toward 

maximizing efficiency and sustainability in electricity supply, often entailing 

strategic placement of data centers in cooler regions to reduce energy demand 

for equipment cooling and promoting energy transfers among centers to 

optimize consumption. And finally, (c) the creation of circular-economy 

frameworks for adequately managing e-waste generated by data centers and AI 

development labs (Sovacool, Monyei & Upham, 2022: 17). 

A key reference for understanding the EU’s perspective on these AI-related 

problems—before the AI Act—can be found in the so-called European Green 

Deal (Hainsch et al., 2022: 239). In a broad sense, and with particular relevance 

for AI as discussed below, the European Green Deal was indeed an ambitious 

EU plan aimed at tackling the global climate crisis and achieving a sustainable, 
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“climate-neutral” economy. Climate neutrality, in this sense, meant mitigating 

100% of the pollution incurred by European society’s routine activities by 2050. 

This plan, inherently complex, sought to align and synchronize changes across 

energy, industry, agriculture, and consumption. Within that framework, AI 

played a fundamental role, thus foreshadowing the regulatory discussion on the 

intersection of AI and environmental concerns. 

The European Green Deal’s central objective was to attain net-zero greenhouse 

gas emissions by fostering renewable energy sources, including solar and wind 

power, modernizing electricity networks, and enhancing energy storage 

capabilities for locations or periods with lower solar irradiation. In this context, 

some authors (Kougias, Taylor and Kakoulaki, 2021: 5) stress the particular 

relevance of photovoltaic infrastructure for certain regions aiming to advance 

their solar energy transition. The European Green Deal likewise emphasized 

promoting a circular economy through waste reduction and transitioning away 

from energy-intensive industries—an aspect that would also affect AI-related e-

waste, as explained further on. Specifically, the European Union formally 

acknowledged the socioeconomic repercussions of so far-reaching a 

transformation, instituting the so-called Just Transition Mechanism (hereinafter, 

the “JTM”) to offer financial support to the communities most impacted. Some 

scholars (Sikora, 2021: 547) underscore the central role of this economic and 

social dimension in the broader environmental measures, as discussed below. 

The JTM is a new financial instrument under the EU’s cohesion policy, intended 

to back territories facing serious socioeconomic challenges stemming from the 

transition to climate neutrality. It would subsequently facilitate the European 

Green Deal itself, which aims to establish a climate-neutral EU by 2050. 

Some scholars have criticized the European Green Deal for being excessively 

“Eurocentric,” pointing out that, notwithstanding the JTM, it lacks a worldwide 

perspective on systemic change (Almeida et al., 2023). One might also question 

whether it truly falls to the EU to carry out and finance such an extensive global 

undertaking. Along similar lines, Leonard et al. (2021) suggest that the 

European Green Deal, somehow “cleans up” Europe by importing energy from 

countries whose governments presumably do not implement comparable 
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measures, thus revealing what they view as inherent weaknesses in the 

European energy framework. 

As for the European Green Deal’s influence on AI, it is indeed present, though 

not exactly as many might have anticipated. AI is primarily understood as a tool 

for optimizing the social and production goals set forth in the European Green 

Deal (Asnaz, 2024: 685). In this vein, some authors (Koundouri, Devves and 

Plataniotis, 2021: 744–751) explain that the environmental role envisaged for AI 

under the Europenan Green Deal largely focuses on three aspects: (a) 

predictive analytics for consumption cycles, (b) optimization of systems to either 

reduce energy consumption or enhance productivity without increasing it, and 

(c) enabling better decision-making for policy-making and green finance. 

Meaning that even if pollution continues, frameworks would be designed to 

alleviate any intrinsically harmful effects. In essence, the emphasis lies in 

harnessing AI to lessen pollution, rather than curbing pollution generated by AI 

itself. 

Yet, other authors (Corrigan and Lucaj, 2020 :8) warn that using AI to serve 

these otherwise commendable ends may involve ethical—and notably 

environmental—risks, given that the European Green Deal seems to treat AI 

solely as a planning device to enhance processes for better environmental 

efficiency, overlooking that AI itself entails considerable environmental costs. A 

study commissioned by the European Parliament’s Special Committee on 

Artificial Intelligence in a Digital Age (AIDA) reached essentially the same 

finding (Gailhofer et al., 2021: 30), concluding that applying AI to streamline 

processes can constitute a double-edged sword. Accordingly, the AI Act 

integrates a set of measures addressing these concerns. 

One significant hazard flagged in the cited report is the high energy 

consumption of AI systems, particularly those reliant on advanced deep learning 

architectures—commonly referred to as Large Language Models (LLMs). Rilling 

et al. (2023) highlight several ethical considerations related to these models in 

environmental contexts. Strictly speaking, these systems are designed for 

complex natural language processing (NLP) tasks that demand (a) a protracted, 

resource-intensive training phase and (b) an equally intensive cloud-based 
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maintenance stage in data centers. Global data centers are anticipated to 

represent up to 8% of total carbon emissions worldwide by 2030 (Cao et al., 

2022: 895), largely due to expanding AI usage. As regards model training, a 

single LLM such as GPT-3 can consume approximately 700,000 liters of fresh 

water (Li et al., 2023: 2), and training a 175-billion-parameter model may use 

about 1,287 MWh (megawatt-hours) of electricity, emitting around 552 metric 

tons of CO2 (Patterson et al., 2021: 7). This is, utilizing AI as a “green planning” 

instrument can itself be counterproductive. 

Another key issue addressed in the same report is the growth of e-waste tied to 

AI. The rapid obsolescence of the hardware required for both training AI and 

making it available in the cloud, paired with insufficient recycling strategies, 

could expand global e-waste by as much as 1.2 to 5 million tons by 2033 (Wang 

et al., 2024: 19). While attributing all such growth exclusively to AI would be 

misleading, it could nonetheless pose ethical quandaries concerning the 

“export” of e-waste to countries with fewer resources. 

Reflecting on the clear limitations of the European Green Deal—including its 

handling of AI’s environmental risks—the European Commission published its 

White Paper on Artificial Intelligence a mere year later. Ulnicane (2022) notes 

that this paper explicitly addresses water and energy consumption and e-waste 

generated by AI, topics that had not been explicitly considered in the European 

Green Deal. Consequently, one might say that it was not the European Green 

Deal, but rather the White Paper, that heightened awareness of AI’s 

environmental footprint (touching on both energy and water consumption, as 

well as hardware life cycles). Certain critics simultaneously argued that an 

overly cautious stance by the European Union toward AI might hamper 

innovation and technological advancement (Lilkov, 2021:168–172), even for 

socially beneficial ends. 

Ultimately, the White Paper contends that Artificial Intelligence can and should 

help realize the goals of the European Green Deal, but must do so in a 

sustainable manner throughout all phases (Bolón–Canedo et al., 2024: 7)—

namely training, fine-tuning, and cloud-based deployment—so as not to 

undermine the very objective of environmental conservation. From that point 
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onward, the EU seems to fully acknowledge the environmental and 

sustainability challenges that legal scholars have repeatedly underscored, 

particularly concerning water usage, energy consumption, and e-waste 

generation. Indeed, the official document explicitly states that “Given the 

growing importance of artificial intelligence, it is necessary to take due account 

of the environmental repercussions of AI systems throughout their life cycle and 

supply chain, for example regarding the use of resources for algorithm training 

and data storage” (European Union, 2020: 3). 

 

II. GREEN AI AND THE ENVIRONMENTAL PERSPECTIVE IN THE AI ACT 

The environmental outlook on AI development and usage (commonly referred to 

as Green AI) is gaining its own standing in scholarly debates (Rivero Silva & 

Chinarro Vadillo, 2024: 3). Consequently, it appears that key issues—such as 

the handling of gray water or efficient energy consumption—are being distanced 

from the often-cited ‘ethical perspective’ and evolving into an independent 

approach to AI. In this regard, it is worth highlighting certain AI tools like 

DestilBERT (Sanh, 2019), CHANO (Rivero Silva & Chinarro Vadillo, 2024), or 

TinyLlama (Zhang et al., 2024), which incorporate an environmental vision from 

the outset. That is, they seek optimal energy efficiency without forgoing a 

reasonable level of performance. 

Green AI has been extensively addressed by scholars (Schwartz, 2020: 56 - 

61), though it has been only sparsely developed by European lawmakers. This 

is significant, as Green AI should by nature be inseparable from this emerging 

and standalone environmental perspective, focusing specifically on efficiency 

and sustainability strategies throughout every stage of AI model development 

and public availability. Along these lines, the importance of transparency and 

standardization in measuring the overall environmental impact and energy 

consumption involved in creating AI solutions has been underscored 

(Henderson et al., 2020). Essentially, Green AI has two facets: (a) minimizing 

the environmental impact during AI generation (training, data loading, and fine-

tuning for specific NLP tasks), and (b) mitigating the environmental impact while 

the model is running in the cloud, assisted by a data center. The following 
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section focuses on the latter format; for now, we concentrate on the first one. By 

“NLP task,” we refer to a specific task that an AI system can understand and 

that is intended by a human operator, such as translation, identifying color 

patterns, or generating responses. 

Regarding point (a), we can highlight three main techniques: (a1) knowledge 

distillation, (a2) pruning, and (a3) deep compression. Bucilua et al. (2006: 535) 

were the first to propose model compression for transferring knowledge from a 

large model—or an ensemble of models—to train a smaller one without a 

significant drop in accuracy. Later on, this was formally popularized as the 

knowledge distillation technique, following the publication by Hinton, Vinyals y 

Dean (2015: 3). This system involves transferring “knowledge”—defined as the 

dataset with which it was trained—from a large AI model to a smaller, more 

efficient model. Such a transfer is effected by incorporating the probability 

distributions of outputs from the master model (usually referred to in scholarship 

as the teacher or “parent” model) into the training of the student model. The 

main goal is to achieve a neural network with fewer parameters that can retain 

much of the original model’s performance. In other words, a connection is 

established between the teacher model and the student model so that all 

generic, irrelevant knowledge is discarded, keeping only what is needed for the 

student model’s specific purpose. The challenge is, therefore, how to pass 

knowledge from a large teacher model to a smaller student model. Essentially, 

a knowledge distillation system comprises three key components: the 

knowledge itself (refined dataset), the distillation algorithm, and the teacher-

student architecture that allows the transfer of the refined dataset. 

For instance, there is no sense in a model designed for computer programming 

to know the recipe for the Latin American tres leches cake, thus reducing both 

the dataset size (the body of data comprising the model’s knowledge) and the 

training time. In short, the objective is to avoid broad, generic datasets and load 

only the strictly necessary data that the AI model will truly require for its 

designated NLP task. The authors cited above demonstrated that a pre-built 

ensemble of ten neural networks attained a 19.7% phoneme error rate, whereas 

a student model trained via distillation reached a 20.5% error rate. Despite a 
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minor 0.8% degradation, the student model was substantially smaller and more 

computationally efficient. 

Meanwhile, the technique known as pruning seeks to reduce neural network 

complexity by removing weights deemed irrelevant. Han, Pool, Tran y Dally 

(2015) laid the groundwork for this approach, which is particularly useful in AI 

transformer-type models developed by Vaswani et al. (2017), publishing 

“Attention Is All You Need.” That paper is regarded as a historical turning point 

in AI research, especially in the field of Natural Language Processing (NLP), 

due to the introduction of the transformer neural architecture—revolutionizing 

the way modern language models are built and trained. 

Transformer-based neural networks function much like sieves: each model 

“attends” when it receives a specific keyword or concept, ignoring the remainder 

of the input. Thus, if a model is not intended to address cooking, is it logical for 

it to include neural network nodes that pay attention to cooking-related input? 

The procedure may be carried out post-training—removing small-magnitude 

weights that do not recur frequently—or even at the start of training (Frankle et 

al., 2021: 5), starting with a more compact neural topology. Transformers, 

exceptionally effective in processing natural language, are the true engine of 

large language models (LLMs). Their efficiency and scalability have facilitated 

the development and training of LLMs with billions of parameters. These 

techniques not only speed up input-output inference for generative results but 

also curb the model’s energy consumption—an essential factor in large-scale 

production environments. Molchanov et al. (2017: 6) presented promising 

findings in this area. Moreover, the “lottery ticket hypothesis” proposed by 

Frankle & Carbin (2019) suggests the existence of “winning sub-networks” that, 

when trained from a common starting point, can retain the entire model’s 

performance while using 20% or even more fewer parameters across diverse 

neural architectures.  

More recent perspectives on transformers have emerged as well. One example 

is Tarzanagh et al. (2024: 19), which draws a formal connection between the 

transformer architecture and support vector machines (SVM), a classic 

machine-learning algorithm, by focusing on separating and selecting optimal 
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tokens within a sequence. These insights contribute to a better theoretical 

understanding of transformers and may inspire fresh architectures and training 

methods. 

Finally, deep compression techniques (Han, Mao & Dally, 2015) integrate 

quantization and intelligent encoding—referred to by some as green coding 

(including the well-known Huffman coding)—building on the idea of reducing 

model size by limiting interactions among the model’s neuronal connections 

(commonly called “weights”) to find the efficiency curve. It identifies values that 

rarely appear in the model’s output while preserving those more likely to occur. 

Essentially, this entails lowering the precision of output generation and input 

analysis up to the point where such a reduction begins to become significant or 

compromise the model’s overall integrity. By decreasing the precision of 

weights—for instance, from 32 bits to 8 bits—less memory is needed for 

training, and less bandwidth is required to run the model. Although this 

approach may cause a slight drop in accuracy, in many cases the performance 

loss is minimal compared to the efficiency gains. The previously mentioned 

authors, Han, Mao & Dally (2016), achieved up to a 49x compression ratio in 

networks like AlexNet and VGG-16 only a year after presenting their original 

approach, with under a 0.4% loss in accuracy. 

In conclusion, given that (a) after issuing its White Paper, it seems the 

European Union recognized the growing need to gear the development of 

complex AI models—LLMs in particular—toward Green AI solutions, and (b) 

legal scholarship has identified three highly specific strategies to implement in 

developing such models, it was anticipated that the AI Act would indeed 

incorporate some of these concrete, effective measures for mandatory 

compliance by AI developers, at least for general-purpose models. Some 

authors have observed that the AI Act is surrounded by a sort of mythical aura, 

as if it were a panacea for all AI-related issues in Europe, whereas in truth there 

are positive elements but also numerous shortcomings or ambiguities (Veale & 

Zuiderveen Borgesius, 2021: 98 – 105). In this context, it is also appropriate to 

acknowledge that, albeit subtly, the AI Act demonstrates an emerging interest in 

assessing the energy consumption of artificial intelligence systems. 

Environmental considerations are thus incorporated in a secondary and 
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voluntary manner (Tu & De Castro e Silva, 2025: 20). According to Annex XI 

(related to Article 53(1)(a)), when direct data on an AI system’s energy 

consumption is not available, it may be estimated through alternative means. In 

other words, for the first time, energy consumption—an issue of central 

importance in the context of Green AI—is recognized as a relevant factor that 

general-purpose AI providers should account for in order to comply with the 

legislation. It would have been valuable for the Act to distinguish between the 

energy used during training and that consumed during deployment, but this 

nonetheless represents a significant and promising first step. 

The AI Act distinguishes between three types of AI models and associates 

specific safeguards with each category. First, there are models that engage in 

prohibited practices as outlined in Article 5, which do not incorporate any 

environmental considerations. Second, so-called “high-risk” AI models, defined 

in Articles 6 and 7, are subject to the assessment obligations set forth in Title III 

of the regulation. Although these provisions do not include explicit 

environmental measures, Recital 48 opens the possibility that violations of the 

EU Charter of Fundamental Rights could serve as grounds for classifying a 

model as high-risk. Given that Article 37 of the Charter explicitly refers to 

environmental protection as a fundamental right, it could be inferred that 

particularly polluting AI systems might, at least indirectly, fall within this 

category. Nevertheless, some scholars argue that there is currently no objective 

way to assess such environmental risks (Kusche, 2024: 2). 

Finally, the third category includes “low-risk” AI models, which are subject to 

limited transparency obligations set out in Title V, applicable in specific cases 

such as the identification of deepfakes or realistic conversational agents. 

Beyond these requirements, such systems are primarily governed by voluntary 

codes of conduct. Yet, even so-called low-risk AI can have significant 

environmental impacts, particularly due to its high energy demands and carbon 

footprint (Pagallo, 2025: 5–7). In short, many environmental risks and the 

protection of related rights may still fall outside the scope of the Act’s definitions. 

Ultimately, it can be said that through the AI Act, the European legislator 

conducted an in-depth risk assessment related to AI development, —albeit 
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within an environmental paradigm that is present, yet not concretely articulated. 

Accordingly, Article 1 of the regulation stipulates as one of its objectives, among 

others: the “protection of the environment against the harmful effects of AI 

systems.” Likewise, Article 3(49) defines a “serious incident” as one that causes 

environmental damage. Similarly, Article 95.1(b) states that a key principle 

within the voluntary code of conduct shall be “the assessment and minimization 

of AI systems’ environmental sustainability impacts, including energy-efficient 

programming and techniques for designing, training, and using AI in an energy-

efficient manner” (European Parliament and Council of the European Union, 

2024: 113). Based on the aforementioned scholarly discussions, this means 

that environmental factors would include analyzing energy consumption, carbon 

footprint, the use of natural resources (especially water and minerals), e-waste 

generation, and any other relevant environmental impacts throughout the AI 

system’s life cycle. Next, to continue the work set out in the AI Act, metrics and 

indicators would be needed to quantify environmental impact, such as the 

energy consumed during training depending on the AI model and the volume of 

data processed, along with parameters that affect the hardware’s lifespan. 

Algorithms aimed at minimizing energy consumption and computing resources 

would also be required—ultimately seeking AI architectures that are inherently 

more efficient, optimizing the training process through smaller models with 

fewer parameters, as well as model compression techniques to significantly 

reduce energy usage. 

Additionally, since article 10 of the AI Act provides for standardized data-sharing 

requirements prior to placing “high-risk” AI models on the market, article 40.2, in 

conjunction with article 10, stipulates that “the request for documents on the 

processes for submitting information and documentation to improve resource-

related performance of AI systems, such as reducing energy usage and other 

resource consumption by high-risk AI systems throughout their life cycle, as well 

as energy-efficient development of general-purpose AI models,” must be 

included among those shared documents. In line with that provision, article 

112.6 of the same regulation states: “By no later than August 2, 2028, and 

subsequently every four years, the Commission shall present a report reviewing 

the progress in drafting standardization documents on the energy-efficient 
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development of general-purpose AI models and shall assess the need for 

additional measures or actions, including binding measures or actions. This 

report shall be forwarded to the European Parliament and the Council and shall 

be made public.” (European Parliament and the Council of the European Union, 

2024: 76). 

Some commentators note (Pagallo, 2025: 5) that while Recital 27 of the AI Act 

highlights the need to develop AI systems that uphold environmental 

responsibility and serve the common good, the concrete commitments to 

environmental protection remain vague. Shortly after the initial draft was 

introduced in 2021, the AIDA committee criticized the proposal for neglecting 

serious ecological risks—an omission that suggests that, despite rhetorical 

references to sustainability, the Act’s mechanisms for addressing environmental 

harm lack binding obligations. Critics argue that (a) this approach falls short of 

enforcing genuine accountability for ecological impacts and that (b) it results in 

a de facto delegation to technical experts regarding the acceptability of specific 

AI models (Laux, Wachter & Mittelstadt, 2024: 4), a dynamic that may ultimately 

undermine both the credibility of the AI Act and public trust in AI technologies 

more broadly. 

In relation to the above, other authors (Pagallo et al., 2022: 4) had previously 

examined the AI Act’s draft, cautioning that the provisions on “high-risk” are 

confined to scenarios posing threats to human health, safety, or fundamental 

rights, thereby overlooking potential ecological damage. For instance, Articles 5 

and 6 neither address biodiversity loss nor greenhouse gas emissions unless 

they result in a direct human impact. This perspective is shared by other 

authors (Melikidou, 2025: 38) who argue that the drafting largely overlooks 

environmental protection, focusing instead on human-centered concerns such 

as safety, rights, and livelihoods in its risk-based assessment of AI systems. 

Environmental risks are mainly addressed when they directly impact human 

interests, revealing a limited scope.  

Be that as it may, it is worth noting that the Article 47 of the AI Act allows for 

compliance exceptions, insofar as Member States may — in exceptional cases 

— deviate from the standard framework and impose more (or less) restrictive 



 

 
S. Rivero Silva, D. Chinarro Vadillo y A. Prieto Andrés RCDA VOL. XVI Núm. 1 (2025): 1– 38 

 
16 

measures for the protection of the environment. However, some authors 

(Smuha et al., 2021: 47 - 48) argue that the exception clause granted to 

Member States under the AI Act Proposal—allowing them to deviate for 

reasons such as environmental protection, is overly broad and lacks sufficient 

clarity. They warn that such ambiguity could lead to unjustified infringements of 

fundamental rights, especially considering that many high-risk AI systems are 

operated by state authorities themselves. Consequently, the power to exempt 

their own systems from regulatory safeguards may create incentives for 

potential abuses of power, unless more robust constraints and clearer criteria 

are introduced.  

In sum, one may conclude that the AI Act has indeed acknowledged the 

existence of an environmental and sustainability issue linked to the creation of 

AI solutions. Moreover, it recognizes that energy usage and other general 

resources must be a genuine concern when building AI solutions. Nonetheless, 

in my view, these brief and rather generic legal provisions cannot be seen as a 

distinctly environmental or Green AI approach in the strict sense. Thus, without 

prejudging the EU’s stance on the matter, it appears the Act aims to project a 

“green” image without incorporating practical, concrete measures in the text. 

This practice could reasonably be construed as insufficiently transparent on the 

part of the administration vis-à-vis the regulated community, evoking Zehner’s 

(2012) famous concept of green illusions—the mistaken belief that renewable 

energies alone would represent an ethical and environmental panacea. 

Why might the AI Act be labeled a green illusion? Simply because it repeatedly 

asserts that environmental protection—and specifically addressing AI’s harmful 

effects—is a priority of the regulation, yet it establishes no truly concrete 

measures to implement Green AI strategies like those described earlier. Nor 

does it provide any immediate mechanism to curb indiscriminate training with 

superfluous data for a given NLP task or to practically enforce any standard of 

environmental sustainability. Indeed, prioritizing technological development over 

its detrimental environmental impacts is a perfectly defensible position, and it 

has been supported by some of the scholars mentioned previously. What is 

even harder to justify, however, is maintaining that stance in practice while 

simultaneously, through legislative measures, endorsing the opposite. . 
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In this vein, recent scholars (Alder et al., 2024) noted that a critical examination 

of the AI Act cannot ignore the obvious “gap” concerning indirect greenhouse 

gas emissions from AI applications and the absence of a standardized method 

for exchanging information that, at some point, will likely emerge between 

authorities and developers. Hacker (2024: 2) similarly argues that the AI Act 

could be substantially improved in terms of environmental protection, 

particularly by making it more comprehensible and specific. Clearly, the AI Act 

focuses on other types of risks—certainly significant ones—but sidelines the 

environmental perspective, leaving it without a clear, enforceable framework for 

national authorities and developers. In this same context, Members of the 

European Parliament such as Eero Heinäluoma have recently criticized the 

European Commission for relying on developers’ voluntary disclosure of training 

data, describing it as improbable or untrustworthy (European Parliament, 2024). 

This point has a critical impact on an AI system’s environmental perspective, 

given that model size and the training and fine-tuning duration are key factors 

for measuring environmental impact. Without standardized, reliable access to 

these data, it is impossible to determine whether a given AI contaminates more 

or less. 

Similarly, as we have seen, the AI Act employs a terse phrase—“energy and 

other resource consumption”—to describe the e-waste challenge, along with its 

exportation to developing countries and the gray water generated by hardware 

cooling, all of which we have touched on elsewhere and which pertain to 

reducing environmental impact during AI model operation. This directly involves 

data centers, a subject we address below. Specialized scholarship has 

extensively explored data centers as a major environmental sustainability 

concern for AI, and one that is not strictly connected to its training phase (Ebert 

et al., 2024: 4). Likewise, Members of the European Parliament such as Spain’s 

Nicolás González Casares have voiced apprehension that the AI Act disregards 

the energy demand of these data centers, which could potentially double 

between 2022 and 2026 (European Parliament, 2024). 
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III. AI LABELING AND SELF-REGULATED TRANSPARENCY AS A “DE 

LEGE FERENDA” PROPOSAL FOR AMENDING THE AI ACT 

The reality of AI as a top-tier consumer of energy resources and a producer of 

CO2 emissions—principally due to large-scale training of LLM models 

associated with increasingly complex NLP tasks—seems beyond dispute. In 

this regard, it is indeed striking that despite being well-documented by scholars 

(Liu et al., 2022), as well as referenced in the European Commission’s 

Communication: Shaping Europe’s digital future (2020: 6), the AI Act does not, 

in my view, adequately address the matter, relegating environmental 

considerations to a mere expression of concern without offering any concrete 

short-term measures to resolve the issue. 

Calls for measures aligned with the so-called Green AI, mentioned above, have 

proliferated since 2019, when Schwartz, Dodge, Smith, and Etzioni introduced 

the term and contrasted it with what the scientific community calls Red AI. In 

other words, there has been an ongoing race to achieve higher scores on 

benchmarks—standard tests used to measure AI models’ capabilities—

regardless of cost (Dhar, 2020: 423–425). Essentially, this competition to create 

ever larger AI models with ever more knowledge has led to unsustainable 

computational, energy, and water demands, which underpins the core of Red 

AI. This point is key: AI, per se, is not necessarily environmentally 

unsustainable; rather, it is the Red AI perspective that frequently entails this 

unsustainable factor. In any event, scholarly commentary is largely unanimous 

in maintaining that leveraging AI for process and system efficiency 

improvements—precisely the aim of the European Green Deal—cannot occur 

without acknowledging and addressing the ethical and environmental 

challenges associated with extensive use of this technology (Coeckelbergh, 

2021: 68–70). 

Within this broader clash between the Red AI perspective embraced by 

developers and the Green AI perspective espoused in academia, the AI Act’s 

ambiguity in recognizing environmental risks has prompted a range of reactions. 

Particularly noteworthy is the energy sector’s concern, given that the regulation 

does not clearly reveal how the European Union intends to reduce or make AI’s 
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electricity consumption more efficient, creating uncertainty in financial and 

investment terms (Apráez & Noorman, 2024). In this regard, certain authors 

observe that in the midst of a clear energy transition, especially one oriented 

toward “green” systems, clarity about the growing computational and energy 

demands of AI is vital for the industry’s proper and sustainable development 

(Heymann et al., 2023). 

This lack of specificity on the EU’s part, when formulating the AI Act, is hardly 

accidental. Moreover, while the AI Act was being finalized, the European 

Commission was simultaneously seeking experts to measure AI’s impact on 

CO2 emissions (European Comission, 2024). Hence, it is not that the European 

Union is unaware of AI’s environmental risks—indeed, the European Green 

Deal already confirmed an understanding of these issues—but rather that, 

despite this awareness, the EU has been either unable or unwilling to be 

sufficiently precise about what measures it plans to implement to address the 

problem. 

In line with the above, it is worth noting that the European Commission (2021) 

has introduced a community-financing project called Horizon Europe, initially 

planned to run until 2027 and aimed precisely at these matters. Under Horizon 

Europe, three research initiatives have been launched to explore Green AI 

approaches for the development of AI in Europe: (a) SustainML, (b) dAIEDGE, 

and (c) ELIAS (European Parliament, 2024). The fact remains, however, that 

little information is publicly available regarding these projects’ environmental 

sustainability outcomes. 

Against this background, by way of a “de lege ferenda” proposal, we present 

two key amendments to strengthen the AI Act’s specificity—each focusing on a 

different sub-dimension of Green AI. The first concerns the training of AI 

models; the second concerns making them publicly available through the 

above-mentioned data centers and the more or less sustainable way in which 

these centers operate. We will further expand on the latter proposal below. 

First, it is essential to explain that the concept of benchmarking is closely tied to 

the previously discussed notion of Red AI. Each of the general-purpose AI 

models has been fiercely competing to outperform rivals on a very limited set of 



 

 
S. Rivero Silva, D. Chinarro Vadillo y A. Prieto Andrés RCDA VOL. XVI Núm. 1 (2025): 1– 38 

 
20 

benchmarks. Certain authors’ studies reflect a lack of variety in these 

benchmarks and in the metrics they use to assess different AI models 

(Bowman, 2021: 6). 

Ultimately, this “benchmark fever” drives entire teams of LLM developers—out 

of sheer pride, as well as the promotional interests of their respective 

corporations—to tweak algorithms or datasets purely for the sake of surpassing 

competitors in the usual public benchmarks. That said, other authors have 

noted that the current set of general-purpose benchmarks, whether by design or 

oversight, often contains loopholes in their evaluation methods, thus 

undermining the final results of a model’s performance assessment (Zheng et 

al., 2024: 8). Along similar lines, yet another segment of the academic literature 

advocates best practices to avoid making one’s AI model a “benchmark 

cheater” that exploits such flaws. In other words, it cautions against maliciously 

fine-tuning an LLM solely to pass predictable questions in a particular 

benchmark, rather than genuinely refining it for a specific NLP task (Zhou et al., 

2023: 7). 

What we propose is simply the inclusion of an energy cost factor—and 

environmental impact more generally, in keeping with Green AI policies—as a 

negative factor that reduces a model’s performance score in the 

aforementioned general-purpose benchmarks. By doing so, we seek to 

introduce a paradigm whereby disproportionate use of energy and water 

resources might be viewed as a form of “unfair competition,” or, put differently, 

as poor practice in AI development. The objective is for Green AI methods (e.g., 

pruning, deep compression, and knowledge distillation) to be embedded from 

the outset during AI model training. This approach could also reassure certain 

Members of the European Parliament, such as Andreas Schwab, who have 

raised concerns about potential cartel-like or oligopolistic behavior by some 

leading AI solution providers (European Parliament, 2024). 

Conversely, other MEPs—among them the aforementioned Andreas Schwab 

and Brando Benife (European Parliament, 2024)—point out that, despite article 

53 of the AI Act establishing a limited exchange of information, opacity remains 

the norm among AI model developers, and there is still no standardized 



 

 
RCDA VOL. XVI Núm. 1 (2025): 1– 38 Green AI and AI Act... 

 

 
21 

measurement system that, at the same time, can protect trade secrets of the 

corporate entities behind these development teams. Likewise, the absence of a 

standardized information system makes it evidently difficult to compare AI 

models. Although the solution this paper proposes calls for the benchmarks 

themselves to institute ad hoc measurement schemes, the lack of clarity in the 

Act can be deemed a legitimate criticism. 

This is without prejudice to the fact that, under article 56 of the AI Act, the EU AI 

Office is expected to draft a Code of Conduct for so-called general-purpose AI 

(GPAI), yet the European Parliament still lacks any details—even as to who the 

expert panel members will be (European Parliament, 2024). Thus, in a setting 

where scholars highlight that lack of transparency is a major problem for these 

benchmarks (Daneshjou et al., 2021: 1362–1368), it remains to be seen how 

the European Union will effectively mandate that transparency.  

A straightforward, if somewhat liberal, response to this problem is that such a 

complicated issue—specifically, in this area—should not, in my view, be 

handled via specialized legislation promoted by the EU. Especially in light of 

certain authors’ observations pointing to a sort of overregulation (Brownsword, 

2019) of a matter that does not require more rules, but rather greater specificity 

on points that, regulation after regulation, remain unaddressed: for instance, e-

waste management, handling of gray water contaminated after its use in cooling 

data centers, and mandatory Green AI strategies in general-purpose AI 

solutions. Therefore, in an attempt at a self-regulatory approach, it would be 

advisable for the benchmarks themselves to institute internal review and 

evaluation systems—akin to how e-commerce entities do so under Directive 

2000/31/EC. Soft-law strategies within a self-regulation framework have proven 

effective in other areas marked by regulatory complexity. 

This arrangement would allow competition not only among developers but also 

among the benchmarks themselves, who would highlight their environmental 

impact metrics—and, ideally, the practice would become an industry standard. 

At a minimum, the parameters laid out by Strubell, Ganesh, and McCallum 

(2020) should apply. These consist of (a) the carbon intensity of the energy mix, 

i.e., the type of energy available in the geographic region where the model is 
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trained—since the ratio of fossil fuels to renewables can hugely impact the 

environmental footprint of a training session; (b) the type of hardware utilized for 

training (GPU, TPU, or multicore CPU) and its energy efficiency, which directly 

influence the kWh consumed per hour of training; and (c) whether “best 

practices” for Green AI, such as pruning or transfer learning (teacher–student 

model), were employed. 

In the end, the aim is to capitalize on this “benchmark fever” so that 

development teams, in their obsession with showcasing a superior record on 

general-purpose benchmarks, implement environmental sustainability measures 

from the outset—which would, at least initially, be evaluated on a self-regulated 

basis. The constructive competition among benchmarks seeking more accurate 

measurement methods and among developers striving to adhere to them and 

score better, in my view, represents the crux of our first proposed amendment 

to the AI Act. 

Finally, as a second major proposal, it would be worthwhile introducing a 

labeling system—one that must be both put into practice and disclosed to 

consumers, whose purchasing power ultimately drives the financing of these 

systems. While the foregoing benchmarking measure was aimed at 

development teams, this second measure targets the sales and marketing arms 

of major AI providers. As previously noted, Green AI includes strategies to 

ensure the data centers on which AI systems depend for their operation achieve 

the highest possible efficiency.  

Consequently, the premise here is that end users of AI systems should be 

aware if they are using a model that is especially polluting in its cloud phase, 

and to what extent it is polluting. In that regard, “green marketing” scholars 

(Ottman, 2011) have already noted the commercial benefits associated with 

projecting a “green” image and the fact that, to a greater or lesser degree, we 

are all “green consumers,” which will inevitably affect how licenses for large 

LLMs are marketed. Thus, the aim is likewise to bring competition among AI 

model vendors into the “marketing fever,” competing over who can design a 

more energy-efficient cloud platform. 
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Such labeling should indeed be grounded in some code of conduct endorsed by 

the European Union in collaboration with experts in the field. It would 

concentrate on the cloud system and address one of the major concerns in the 

literature regarding AI: namely, what happens within the data centers that 

accommodate the hundreds of thousands of user queries AI models receive 

each day. In my view, a self-regulatory framework akin to what was mentioned 

earlier could keep this labeling “alive” and up to date, adapting it to new AI 

generations featuring novel complexities (e.g., quantum computing). Mere 

regulation is prone to becoming “dead letter” shortly after a cutting-edge 

technology emerges. 

In this context, some authors (Nassar, 2025: 26) point out that, within the 

European Union, data centers consumed 124 TWh of energy in 2018. 

Furthermore, a 28.2% rise in energy consumption is projected by 2030 

compared to 2018 levels—potentially representing about 3.2% of the EU’s total 

electricity demand. Similarly, others (Zhu et al., 2023: 17) warn that by 2023, 

data centers may have produced anywhere from 2% to 4% of worldwide carbon 

emissions. 

Scholars generally identify three main shortcomings in current data centers 

intrinsically tied to AI, which should be addressed by the proposed labeling: (a) 

inefficient energy use, (b) substandard hardware life-cycle management, and (c) 

inadequate cooling strategies. Beloglazov (2011: 50) suggests that the primary 

solution to (a) is dynamic consolidation of virtual machines, thereby reducing 

the power consumed by idle servers and optimally assigning resources. 

Essentially, this means running multiple virtual machines or servers on a single 

hardware unit, thus decreasing energy consumption—hosting multiple operating 

systems (software) on one CPU, provided that CPU can handle the load, rather 

than using multiple CPUs and increasing electricity and water usage for cooling, 

as well as e-waste. Similarly, Wang et al. (2022: 162–168) propose a 

comprehensive “green data center” framework that entails adopting renewable 

energy, using indicators such as PUE or WUE (efficient cooling systems), and 

redesigning infrastructure to minimize thermal loss. Particularly noteworthy is 

placing data centers in cold regions to exploit natural temperatures and using 

high-performance cooling chemicals rather than water-based systems, which 
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generate large volumes of so-called “gray water.” These are waters used for 

cooling data center hardware which, once used, become contaminated and unfit 

for human consumption or irrigation, with seepage into the ground posing health 

hazards (Liu & Chang, 2024). 

Moreover, electronic waste accumulation remains a critical issue for data 

centers—especially those located in developing countries that lack recycling 

systems for outdated servers. Other authors (Kiddee, 2013: 1240–1245) 

observes that for nearly a decade, we have struggled with the absence of 

phased renewal plans and inadequate disposal of electronic components, which 

often pollute soil and water sources by leaching heavy metals. The solution 

calls for implementing hardware life-cycle management protocols, ensuring 

device traceability, and promoting reuse and recycling. 

Consequently, if an AI model runs on more efficient, less polluting servers—

referred to in scholarship as green data centers (Jin et al., 2016: 4)—the user 

could make an informed choice in a market that, as noted earlier, tends toward 

oligopoly. Hence, both environmental benchmarking and environmental labeling 

emerge as clear and tangible proposals that I hereby lay out de lege ferenda. 

The hope is that, at some point, a future amendment to the AI Act might adopt 

them, thus addressing the scholarly criticisms regarding the Act’s uncertainty 

and limited effectiveness in this domain. 

It is also worth briefly highlighting the use of quantum computing, which—with 

its exponentially higher processing capacity compared to classical computing—

shows immense potential for revolutionizing Green AI, even if it remains in an 

early stage at the moment. As is well known, training large AI models consumes 

vast amounts of energy. Quantum algorithms could streamline this process, 

reducing both training times and computational resource needs, and thereby 

drastically cutting the carbon footprint. Specific examples include companies 

like Zapata AI, which employs quantum algorithms to compress LLMs and thus 

significantly reduce training energy requirements, and Google Quantum AI, 

which is investigating how quantum computing can optimize AI algorithms and 

foster more energy-efficient AI hardware designs. It’s opinion of the authors 
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that, in the future, Green AI will be complemented with the aid of this new 

technology.  

 

IV. CONCLUSIONS 

The environmental challenges resulting from the growing use of AI reveal a 

tension between the European Union’s longstanding commitment to 

environmental protection—rooted in the earliest stages of the TFEU—and the 

pressing need to regulate a technology whose implications extend far beyond 

the traditional economic paradigm, which from the outset has also 

encompassed social and environmental considerations, as stated in Article 11 

of that treaty. The European Green Deal, in its quest for a carbon-neutral 

Europe, recognized the potential of AI as a tool for enhancing energy efficiency 

and streamlining production processes. Yet it fell short of establishing specific 

provisions to address the inherent environmental impact of AI in terms of water 

and energy consumption, as well as e-waste generation. 

The rise of AI poses a major challenge for the European Union: reconciling its 

historical protective vocation, present since the TFEU’s inception, with the 

necessity of regulating a technology whose ramifications transcend the 

traditional economic model. In this sense, making accurate and reliable 

information on the environmental impact of an AI model available to the 

consumer is imperative.  

Subsequent to the European Green Deal, the approval of the so-called AI Act 

(Regulation (EU) 2024/1689) aimed to remedy the lack of clear provisions 

addressing AI’s direct environmental impact, setting out reference frameworks 

to protect fundamental rights and prevent risks, including those relating to the 

environment. Nevertheless, the final text exhibits tangible shortcomings that 

restrict its effectiveness. While it does refer to environmental protection as one 

of its main objectives and acknowledges the possibility of treating environmental 

breaches as a serious incident, it fails to create a regulatory apparatus with 

specific, enforceable, and—above all—verifiable sustainability obligations. 

Instead of imposing binding requirements, the AI Act relies on 

recommendations and voluntary codes of conduct, accompanied by the promise 
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of a future review report that, in practice, postpones the adoption of executive 

measures to an uncertain date. 

This essentially programmatic approach lacks the force necessary to curb the 

so-called Green Illusions—namely, environmental rhetoric unbacked by 

effective regulatory mechanisms. In the field of AI, these illusions arise from the 

absence of mandatory technical requirements for reducing energy and water 

footprints, the lack of tools for monitoring the discharge of “gray water” in data 

centers, and the failure to establish a unified method of evaluating the 

production and management of electronic waste. The gulf between 

acknowledging the problem and taking concrete action underscores a 

predominantly reactive regulatory mindset, that appears more concerned with 

avoiding barriers to innovation than with setting clear boundaries for 

unsustainable technology usage. 

The de lege ferenda proposals advanced in this article precisely reflect the 

urgency of moving from abstract formulations to tangible mechanisms. The first, 

involving the inclusion of environmental impact factors in AI performance 

benchmarks, aims to ensure that energy consumption, carbon footprint, and 

water usage become evaluation criteria as relevant as accuracy or processing 

speed. Given how prevalent these benchmarks are in the competitive culture of 

both the research community and industry, they present an opportunity to 

redirect efforts toward efficiency and to encourage the use of Green AI methods 

such as pruning, deep compression, or knowledge distillation. 

The second proposal—implementing an environmental labeling system for AI—

seeks to instill transparency in the procurement and use of cloud-based 

services. The goal is to provide end users, as well as investors and regulators, 

with objective information about the type of data center employed, its energy 

efficiency, the origin of the energy used, and the level of emissions per 

operation. This measure would not only enable users to distinguish providers 

genuinely committed to sustainability but could also spur responsible 

environmental competition in a market increasingly dominated by large cloud-

service providers. 
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Furthermore, it is worth highlighting the emergence of promising technological 

breakthroughs such as quantum computing, which has the potential to 

accelerate Green AI solutions, making them more sustainable and efficient 

across various domains, from renewable energy to precision agriculture. 

Monitoring the evolution of this technology will be essential for future proposals. 

In short, the AI Act has fallen short in its ecological dimension, limiting itself to a 

formal acknowledgment of risks without establishing clear obligations or strict 

deadlines for adopting solutions. Self-regulation or the future development of 

codes of conduct will not be sufficient to address the magnitude of the issue 

unless real incentives and sanctions are introduced. Consequently, this paper 

advocates the need to rethink the regulatory framework—through amendments 

or new legislative guidelines—to integrate Green AI requirements at every stage 

of AI development and deployment. By doing so, the EU could demonstrate 

consistency between its globally recognized leadership in environmental 

discourse and its actual regulatory practice concerning a technology as pivotal 

to the future as AI. 
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