
Communication Papers
Media Literacy & Gender Studies

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 7

A game development environment to make 2D games

Autores:
Carlos Marín-Lora cmarin@uji.es

Miguel Chover chover@uji.es
Cristina Rebollo rebollo@uji.es

Inmaculada Remolar remolar@uji.es
Institute of New Imaging Technologies - Universitat Jaume I. Castellón. Spain.

Carlos Marín-Lora
Corresponding Author. E-mail: cmarin@uji.es. Phone Number: +34 616 29 76 65

This work has been supported by the Ministry of Science and Technology (TIN2016- 75866-C3-
1-R) and the research project of the Jaume I University (UJI-B2018-56). In addition, this work has
been possible thanks to the graphic resources created by Kenney from Kenney.nl.

Abstract
The creation of video games involves multidisciplinary processes that are not accessible to the
general public. Currently, video game development environments are very powerful tools, but
they also require an advanced technical level to even start using them. This article presents a
2D game development environment to propose an alternative model to reduce the technical
complexity existing in these systems, presenting a data model and a game editor that allows
fulfilling this goal. In order to test its capabilities, several games have been successfully imple-
mented in the proposed environment. With this achievement, it can be stated that it is possible
to create video games simply and affordably for the general public without giving up its poten-
tial and remarking that there is still a long way to go to reach democratization in the creation of
video games and the need to continue working in this field.

CP, 2020, Vol.9 – No18, pp. 7/23 ISSN 2014-6752. Girona (Catalunya). Universitat de Girona. MARÍN-LORA, C.; CHOVER, M.; REBOLLO, C., y
REMOLAR, I.: A game development environment to make 2D games. Recibido: 29/12/2019 - Aceptado: 13/05/2020

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-67528

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

1. Introduction
Video game development is a complex process requiring multidisciplinary knowledge and
skills, from the artistic and narrative vision to the ability to solve the technological challenges
[Blow2004]. Since its first steps as an industry, the developers tried to integrate these proces-
ses in order to accelerate production times and optimize resource management [Gregory2014].
From this trend, the game engine concept was born as an environment where compose and
implement games regardless of its genre. Currently, game engines are indispensable tools
to make commercial games and every professional studio works with one, either proprietary
software or third-party.

Certainly, game development has technical requirements that are difficult to meet, but some
authors point out other causes such as the lack of a unified language, generic designs or
architectures, or how the platform choice influences the development [Anderson2008, Am-
paztoglu2010]. These are some of the reasons why it seems necessary to keep researching the
processes involved in game development and thus bring them closer to the public without the
a priori demanded technical capabilities. In order to meet this need, proposals that alleviate the
problematic elements are required.

In this sense, this work draws from the hypothesis that it is possible to reduce the techni-
cal complexity of game development environments and without losing any potential to create
games. From this assumption, a game development environment has been designed from a
reduced data model and a behavior specification system. It starts from a 2D concept to reach
the basic elements that define a game as clean as possible.

For the complete fulfillment of this work, the game engine architecture presented by J. Gregory
[Gregory2014] has been followed, in which the editing tools are embedded in the environment
framework (see Figure 1). However, this paper just addresses the data model and the game
editor proposal.

Figure 1.- “Tools built on a framework shared with the game” from J. Gregory [Gre-
gory2014].

In this sense, the features common to the contemporary game engines have been studied
and their functionalities and requirements have been analyzed. From this process, a set of
requirements has been defined to regulate the design and specification of the proposed game
development environment. As a summary, these requirements are presented below:
• A data model based on scenes and game objects known as actors.
• Visual programming based on binary decision trees [Laurent1976, Russell2016].
• Needlessness of loops and complex data structures such as vectors or matrices.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 9

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

From this point, a game editor has been developed where the composition of scenes and the
definition of the actor’s behaviors is done through visual elements. Further on this document,
the process of implementing two arcade games on the editor will be detailed as demonstrators
to verify its validity and show its main characteristics. These games will be described to display
the data model and the game mechanics description system defined after the development of
this work.

The rest of the document is organized as follows: in section 2, the state of the art about game
development environments and its appearance in the literature is presented. Next, in section
3 the environment structure, the data model, and the scene editor and the behavioral rules
editor are presented. With this framework, in section 4 two arcade games are developed as
demonstrators for this work. Finally, the conclusions of the work will be presented in section 5.

2. State of the art
It is notable that despite the general trend towards the democratization of content creation, it is
still complicated to self start with commercial game engines. This problem is especially promi-
nent for the game logic definition since it usually implies certain notions of software enginee-
ring [Garlan1993, Ampaztoglu2010] and prior knowledge about general-purpose programming
languages and specific game development APIs.

From a theoretical point of view, there is a need to expand the field of research in game develo-
pment [Lewis2002]. Specifically, Anderson et al. [Anderson2008] highlight the lack of literature
in this regard and propose several research lines that should be explored in the future. Some of
these proposals are the identification of software components common to all types of games,
the establishment of a unified language for game development, the definition of generic video
game creation tools, the identification of common elements of all types of games that allow
defining an architecture-independent reference and the best practices in game development.
In this sense, some works have tried to make contributions to this need trying to redefine the
concepts established in the development of games from various perspectives, from program-
ming by components [Folmer2007, Doherty2003], a vision of the Model-View-Controller archi-
tecture [Olsson2015] or the introduction of restricted semantics [Tutenel2008] to multi-agent
paradigms [Marin-Lora2019, Marin-Lora2020].

Besides that, the analysis of state-of-the-art 2D game development environments shows that
some of these alternatives have been already applied. Table 1 shows a summary of the study
conducted on game development environments for 2D games with the differences between
these systems: their platform, their scripting system, and their behavior specification metho-
dology. The table begins with environments using a visual system like FlowLab [Flowlab2019]
and it ends with Unreal [Sanders2016] and Unity [Thorn2019], mostly based on C# and its
specific libraries. Some of them, such as Game Maker [GameMaker2019] or RPG Maker [RPG-
Maker2019], have game logic systems based on scripting tools making them complicated to
use. However, others like Stencyl [Stencyl2019] or Construct 2 [Stemkoski2017] rely on visual
programming methods such as Scratch [Resnick2009], while Gamesalad [Novak2013], Splo-
der [Sploder2019] and GDevelop [Correa2015] use their own visual interface.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675210

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Table 1.- Behaviour specification classification for the state-of-the-art 2D game engines.

Game Engine Platform Scripting method Behavior specification

Flowlab Web Visual scripting Message passing

Gamesalad Desktop/Web Visual scripting Event-driven

Sploder Web Visual scripting Event-driven

GDevelop Desktop Visual scripting Event-driven

GameMaker Desktop GameMaker language Message passing

Construct 2 Desktop JavaScript Event-driven

Stencyl Desktop Scratch style Event-driven

RPG Maker Desktop Ruby, C++, Java, JavaS-
cript

Scripting

Unreal Desktop C++, BluePrints Message passing

Unity Desktop C# Scripting

Although these are huge steps forward, its usage still requires a technical profile. Mainly be-
cause the encapsulation of scripts in visual elements has been carried out implicitly and wi-
thout reflecting on its functionality and usability. In fact, there are papers in the current li-
terature indicating how complex to solve a problem can be for a beginner to start through
computational techniques [Robins2003, Chang2005, Milne2002] and the assistance that visual
programming can provide [Chao2016, Blackwell1996]. Also, different methodologies have been
studied to introduce programming concepts, both with traditional coding [Koulouri2015] and
with visual programming [Powers2006]. In fact, some authors have carried out experiences as-
sociating visual programming and computer games. For example, some authors [Ouahbi2015,
Rebollo2018] present a study conducted on programming students to evaluate learning basic
programming concepts by creating games, and others [Chen2007] show a study to evaluate
a learning methodology for object-oriented programming through video games. On a more
specific level, some works have proposed combinations of visual programming methodolo-
gies with the elements that a game engine requires to define the behaviors of a game. In this
line, Furtado et al. [Furtado2011] propose a description of the game engines based on a more
abstract and expressive set of layers. Also, Zarraonandia et al. [Zarraonandia2015, Zarraonan-
dia2017] presented a conceptual model to organize the characteristics of the game in a mo-
dular way, where the description and definition required to create a combination of subgames
are based on a set of configurable elements and a basic vocabulary for each characteristic. In
addition, some software engineering methods have emerged as a possible plan to address this
problem, proposing a systematization of the game development process [Reyno2008, Furta-
do2006]. All this study shows that there is a lot of work in game creation and there is a need to
develop new tools to make it accessible for a large number of users.

3. Game development environment
In order to frame a proposal to make the game development accessible to the general public,
a game development environment is presented based on the definition of its data model, its
visual programming elements along with its behavior rules system, and the design of its editor.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 11

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

3.1. Data model
In this work, a game is composed of a set of properties and a list of scenes. A scene is made of
a list of actors that are composed of a set of properties and a list of behavior rules. A diagram
representing this organizational structure is drawn in Figure 2.

Figure 2.- Structure diagram for the game development environment

The game’s properties include parameters that control the scene rendering or physical beha-
viors, among others. More generally, these properties can be classified as follows:
• Camera: Includes information about the geometric transformations of the camera about

the game.
• Audio: Variables with which to define and modulate the sounds of the game based on

parameters such as bread, volume, and loop.
• Physics: Parameters to establish the intensity of gravity in the game, in case a game with

realistic physics is required.
• New: Variables added by the game designer to meet a specific need.

Besides that, each game scene represents an independent stage of the game, to be employed
as convenient in the game design.

The actors are the main and unique elements for the scene’s composition. They are responsible
for representing any game element and executing the game logic, and, as well as the game,
have a set of properties that define them. In addition, they can acquire new properties, to meet
the game needs. These properties can be grouped as follows:
• Geometry: Information related to the geometric transformations of the actors.
• Render: properties on the visual appearance of the actor including its image, opacity, and

color tinting, among others.
• Text: In addition, actors can represent text on the screen according to the font, size, color,

and style properties. In addition, they can show property values, both their own and those
of other actors or the game.

• Audio: In the same way as in the game, actors can play sounds based on the same pro-
perties.

• Physical: If the actor is physical, their speed and material properties are activated: densi-
ty, friction, and damping.

• New: In addition, actors can incorporate new properties to expand their capabilities.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675212

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

3.2. Visual programming
Actors are also responsible for defining the game logic from a model of rules of behavior. This
model is based on first-order logic [Ligeza2006, Brachman1992] and inspired by a multi-agent
paradigm [Wooldridge2009, Marin-Lora2020]. A behavior rule is determined by binary deci-
sion trees [Millington2009] driven by a reduced set of actions and conditions, ready to execute
if the flow passes through them as conditions are met or not. Both actions and conditions work
with arithmetic expressions and mathematical functions: sin, cos, tan, asin, acos, atan, sqrt,
random, etc; and with numbers and booleans data types. These elements can provide basic
coding knowledge without sacrificing the complex development of the game, considering only
that the game loop implements the evaluation of the behavior of each actor in each iteration.
Furthermore, boolean expressions and complex data structures such as matrices, matrices, or
other complex structures such as trees or graphics to create actor rules have been ruled out,
since they are not necessary for this architecture.

The actions are the elements of the game logic that give rise to the behaviors of the actors,
in fact, its operation is based on the modification of properties, either on the game or other
actors. After a review of the behaviors that commonly implement these actions in games, a
reduced set of actions has been organized. From this set, the game designer must compose
his logic. The study has resulted in the fifteen actions presented in Figure 3, some of which are
described below:
• Edit: Execution of an update operation to modify a property from the game or a game

object. The value comes from an arithmetic expression evaluation.
• Destroy: Implements the delete operation over a game object.
• Spawn: Directly derived from the create operation, it spawns a game object in a position

and in an angle as a copy of an existing one. This action is normally used to create enemies
or projectiles.

• Move: Specialisation of the update operation that applies a displacement on the game
object by an angle and speed as arithmetic expressions.

• Rotate: Equivalent to the Move action for angular displacements depending on a pivot
and a speed, where both parameters are arithmetic expressions.

• Push: Physics-based alternative to the Move, where a force is applied to the game object
in a given angle. It relies on the object’s physics component.

• Animate: Texture swapping to produce a key-frame animation controlled by an arithmetic
expression for the frames-per-second rate.

• Play Sound: Audio playback of a sound stored in the game data.
• Change Scene: Scene swapping to change the information from a scene to another. This

action could be used to switch between game levels.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 13

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Figure 3.- Visual programming actions.

Actions usually obey events that trigger them. In the proposed system, these events are called
conditions and are the elements with which the logic system conducts the execution flow of
the actions. A condition basically consists of a boolean expression that determines a logical re-
lationship between system properties and/or arithmetic expressions. To accomplish this task,
the same analysis process performed in the previous case has been carried out, resulting in a
reduced set of conditions displayed in Figure 4 that include the following types:
• Check: Evaluation of a boolean property from the game or a game object.
• Compare: Relational condition between a property with an arithmetic expression in mo-

des greater, greater-equal, equal, less-equal, or less.
• Pointer: Pointer events managed by the input system in terms of down, move, and up

events.
• Keyboard: Keystrokes condition for a key in modes such as down, up, and pressed.
• Collision: Collision detection between game objects based on tags.
• Timer: Temporary condition where a system timer is compared with a cut-off time. It is

false if the timer is below the cut-off time. When true, the timer is restarted.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675214

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Figure 4.- Visual programming conditions.

3.3. Editor
In order to facilitate the use of the data model presented in the previous section, and to enable
the creation of games with this system, a game editor proposal is presented below. One of
the goals of this work is to reduce the level of complexity inherent in game development en-
vironments, and for this, it is necessary to identify the simplest and most accessible methods
with which to group game development tools. The development environment consists of two
integrated editors: a scene editor and a rule editor. Both editors are based on a paradigm of vi-
sual composition with functionalities such as drag and drop, geometric transformations using
gizmos, and access to properties for consultation or modification. The scene editor is accessed
directly at the application start, but the rule editor is activated from the interface, by selecting
the actors’ rules button. At a specification level, the complete environment has been developed
by adopting concepts of user interface and interaction of slide-show applications [Tufte2003].
This approach is due to the fact that these applications are usually easy to use and oriented to
non-technical people, and also have similarities with game elements: slides such as scenes,
object positioning and property editing. Besides that, the design of the editor has been based
on the Google Material Design specification [GoogleDesign2019], where its definition is orien-
ted to multi-device applications with fluid navigation.

An example of the scene editor interface is presented in Figure 5, where the canvas is filled
with actors, a blue button to create a new actor, and two interface menus. On the one hand, in
the upper left corner, the options for the general control of the game such as the scene list or
the game-saving are arranged, on the other hand, in the right side, a panel displays the proper-
ties of the selected actor. Also, when selecting an actor, the actor’s transformation gizmos are
displayed along with a modular white menu located next to the red character shown in Figure
5. From this menu, the user can access the actor’s properties, the actor’s rules, and some func-
tions such as copy and paste or removal.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 15

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Figure 5.- Scene editor.

The actor’s logic is defined in the rule editor, which is based on binary decision trees and
where to arrange actions and conditions until the desired behavior is fulfilled. To edit the rule,
the user must fill in the decision tree through actions and conditions. These logical elements
are available from the If and Do buttons, which act as shortcuts to the sets of conditions and
actions available in the system, respectively. Figure 6 displays a jump mechanic rule in the rule
editor, also, and in order to facilitate the understanding of the rule, a version of pseudocode is
attached in Algorithm 1. This rule controls the jump of the character, and it waits for a keyboard
condition and a collision with the ground condition. When these two conditions are met, the
flow will travel through the right branch and an action will be applied that edits the velocity
property on the Y-axis and sets it to 350 units. If either of these two conditions is not met, the
flow will travel through the branches on the left side and no action will happen

Algorithm 1.- Example of the associated pseudocode for the rule in Figure 3.

If (collision(ground))
If (keyboard(spaceKey, down))

edit(velocity_y, 350)
End

End

Figure 6.- Rule editor

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675216

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

4. Results
Next, in order to display the features of this work, the document introduces two arcade games
implemented in the game development environment described in the previous section as de-
monstrators. The description of these games intends to display the data model and the game
mechanics description system derived from the development of this work. The methodology
followed to define the system was based on developing as many different game mechanics
and as many different genres as possible, trying to generate an extended knowledge about the
basic actions required to compose the games. As the study went forward, some required ele-
ments were added while redundant or unnecessary elements were removed. Finally, a robust
method was reached through which all the games proposed so far have been completed, su-
pporting that it is possible to reduce the technical complexity level necessary to create games
without losing potential.

4.1. Asteroids
Asteroids is an arcade shooting game published by Atari in 1976 in which the player drives a
spaceship that goes through an asteroid belt. The goal of the game is to shoot and destroy as
many asteroids as possible and not collide with them. As the game progresses, the number
of asteroids increases, increasing the degree of difficulty. Figure 7 shows a screenshot of the
game implemented in this environment during its execution.
For the implementation of this game, the degree of difficulty increases as the game progresses,
and it is controlled by a new property initialized to 1. The actors for this implementation are
spaceship, asteroids, and projectiles. The first always present on the screen, and the last two
instantiated when necessary. In addition, in a more specific way, two specializations of asteroid
actors have been created with the aim of representing their subdivision levels: AsteroidBig
and AsteroidSmall, where both actors are initialized with random direction, linear velocity, and
angular velocity. The asteroids and the spaceship change to their opposite position on the
screen with inverse speed when they reach one of the limits of the scene. On the other hand,
projectiles are created by the ship with a constant velocity vector directed from the orientation
of the ship at the time of its spawn. The implementation of two of its mechanics is detailed as
a behavior rule:

Figure 7.- Asteroids game.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 17

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Player movement: To transfer user actions to the player’s actor, the spaceship, a rule must
be set in the actor. In this game, the player controls the movement of the ship by pushing and
rotating the ship. To control this, three events must be controlled: positive rotation, negative
rotation, and thrust. The thrust will be carried out based on the rotation of the ship and an im-
pulse parameter determined by a new property. The resulting rule is defined as pseudocode
in Algorithm 2.

Algorithm 2.- Player movement rule.

If (keyboard(leftKey, down))
edit(rotation, rotation - 1)

End
If (keyboard(rightKey, down))

edit(rotation, rotation + 1)
End
If (keyboard(upKey, down))

push(thrust, rotation)
End

Asteroid Subdivision: The asteroid subdivision is implemented in one of the AsteriodBig ac-
tors’ rules set. It starts from collision events with a Projectile actor and causes its removal from
the scene along with the spawning of three AsteroidSmall actors. The pseudocode of this rule
is shown in Algorithm 3.

Algorithm 3.- Asteroid subdivision rule.

If (collision(Projectile))
spawn(AsteroidSmall)
spawn(AsteroidSmall)
spawn(AsteroidSmall)
destroy()

End

4.2. Tower Bridge Defense
The other game to be developed in this work is inspired by the London’s Tower Bridge Defense
[TBD2019] platform game, used by Unity as a tutorial for creating 2D games on its platform.
The game is framed in the context of an invasion of aliens that the player must destroy within
a scenario with five platforms. The game starts with the player-controlled character on one of
the upper platforms, and with aliens falling from the top of the screen. The player can move
around the stage, avoiding colliding with the aliens and shooting them to eliminate them and
accumulate as many points as possible while remaining alive. A screenshot of the game, while
it is running on the development environment, is displayed in Figure 8.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675218

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Figure 8.- Tower Bridge Defense game.

The description of this game has been focused on the shooting mechanics and the alien’s
autonomous movement since the movement of the player is quite similar to the Asteroids case
and it seems more useful to describe the system capabilities with different mechanics.

• Player Shooting: The shots that eliminate the aliens are generated from the spawning
of Bullet actors activated by keyboard events, this mechanic is described in Algorithm 4.
These bullets move at a constant speed and in the orientation of the player until they are
destroyed either by collision with an alien or with the limits of the screen

Algorithm 4.- Player shooting rule.

If (keyboard (space, down))
 spawn (Bullet)
End

• Alien Movement: So far, the user’s orders have been connected with the actors through
rules. At this point, it is necessary to define the movement of the Alien actors without
external interaction, in other words, autonomously. This movement has been defined by a
thrust property and two behavior rules, the first dependent on the moment in which they
come into contact with the platforms when they randomly choose a direction, and the se-
cond, which causes a direction switch when the stage limits are reached. The pseudocode
of these rules can be seen in Algorithms 5 and 6, respectively.

Algorithm 5.- Alien initial movement rule.

If (collision(Platform))
If (check(alien.first))

edit(alien.velocityX, alien.thrust * (1 − 2 * random(0, 1)))
edit(alien.first, false)

End
End

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 19

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

Algorithm 6.- Alien’s boundaries switch.

 If (collision(Boundaries))
 edit(alien.velocityX, alien.velocityX * −1)
End

5. Conclusions
In this work, an environment for the creation and development of video games has been pre-
sented. Several attempts have been made to identify the mechanisms that define the creation
of games, and their integration into an environment of composition and visual programming
has proceeded. All without relying on hierarchical scene structures, complex data structures
such as matrices or vectors, and repetition loops, assigning the game definition to the game
elements known as actors. This concept gives greater specific weight to the actors, through
which any element of the game and its mechanics are determined. To define the mechanics
of the actors, a visual rule editor based on binary decision trees has been designed, through
which the actors’ logic and, therefore, the game logic is conducted.
After defining the data model and the editor that drives it, and in order to demonstrate its po-
tential, several 2D arcade games have been implemented. In this document two of them have
been presented, through which the tools provided by the editor and the possibilities offered
are perceived.

The proposed environment has proved efficient in its task of creating games based on the
designed data model and the implemented editor. In addition, it is obtained that it is necessary
to continue working in the field of video game development, emphasizing the processes of
definition and specification of game mechanics, especially in order to introduce non-technical
personnel to the sector.

The next steps in this project are to explore the potential of the data model, the game logic sys-
tem, and the usability of the editor. Including the definition of a language for the specification
of games and the extension of the environment to a 3D version.

Acknowledgments
This work has been supported by the Ministry of Science and Technology (TIN2016- 75866-C3-
1-R) and the research project of the Jaume I University (UJI-B2018-56). In addition, this work
has been possible thanks to the graphic resources created by Kenney from Kenney.nl.

References
[Ampatzoglou2010] Ampatzoglou, A., & Stamelos, I. (2010). Software engineering research for
computer games: A systematic review. Information and Software Technology, 52(9), 888-901.

[Anderson2008] Anderson, E. F., Engel, S., McLoughlin, L., & Comninos, P. (2008). The case for
research in game engine architecture.

[Blackwell1996] Blackwell, A. F. (1996, September). Metacognitive theories of visual program-
ming: what do we think we are doing?. In Proceedings 1996 IEEE Symposium on Visual Lan-
guages (pp. 240-246). IEEE.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675220

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

[Blow2004] Blow, J. (2004). Game development: Harder than you think. Queue, 1(10), 28.

[Brachman1992] Brachman, R. J., Levesque, H. J., & Reiter, R. (Eds.). (1992). Knowledge repre-
sentation. MIT press.

[Chang2005] Chang, S. E. (2005). Computer anxiety and perception of task complexity in lear-
ning programming-related skills. Computers in Human Behavior, 21(5), 713-728.

[Chao2016] Chao, P. Y. (2016). Exploring students’ computational practice, design and perfor-
mance of problem-solving through a visual programming environment. Computers & Educa-
tion, 95, 202-215.

[Chen2007] Chen, W. K., & Cheng, Y. C. (2007). Teaching object-oriented programming labora-
tory with computer game programming. IEEE Transactions on Education, 50(3), 197-203.

[Correa2015] Correa, J. D. C. (2015). Digitopolis II: Creación de videojuegos con GDevelop. Jose
David Cuartas Correa.

[Doherty2003] Doherty, M. (2003). A software architecture for games. University of the Pacific
Department of Computer Science Research and Project Journal (RAPJ), 1(1).

[Flowlab2019] Flowlab. https://flowlab.io/ [Online; Last accessed: 2019-11-20] (November 2019).

[Folmer2007] Folmer, E. (2007, July). Component-Based Game Development–A Solution to Es-
calating Costs and Expanding Deadlines?. In International Symposium on Component-Based
Software Engineering (pp. 66-73). Springer, Berlin, Heidelberg.

[Furtado2006] Furtado, A. W., & Santos, A. L. (2006, October). Using domain-specific modelling
towards computer games development industrialization. In The 6th OOPSLA workshop on do-
main-specific modelling (DSM06).

[Furtado2011] Furtado, A. W., Santos, A. L., Ramalho, G. L., & de Almeida, E. S. (2011). Improving
digital game development with software product lines. IEEE Software, 28(5), 30-37.

[GameMaker2019] Game Maker. YoYo Games. http://www.yoyogames.com [Online; Last ac-
cessed: 2019-11-20] (November 2019).

[Garlan1993] Garlan, D., & Shaw, M. (1993). An introduction to software architecture. In Advan-
ces in software engineering and knowledge engineering (pp. 1-39).

[GoogleMaterial2019] Google Material Design. https://design.google [Online; Last accessed:
2019-11-20] (November 2019).

[Gregory2014] Gregory, J. (2014). Game engine architecture.

[Koulouri2015] Koulouri, T., Lauria, S., & Macredie, R. D. (2015). Teaching introductory program-
ming: A quantitative evaluation of different approaches. ACM Transactions on Computing Edu-
cation (TOCE), 14(4), 26.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 21

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

[Laurent1976] Laurent, H., & Rivest, R. L. (1976). Constructing optimal binary decision trees is
NP-complete. Information processing letters, 5(1), 15-17.

[Lewis2002] Lewis, M., & Jacobson, J. (2002). Game engines. Communications of the ACM,
45(1), 27.

[Ligeza2006] Ligeza, A. (2006). Logical foundations for rule-based systems (Vol. 11). Heidel-
berg: Springer.

[Marin-Lora2019] Marin-Lora, C., Chover, M., Sotoca, J. M. (2019). Prototyping a Game Engi-
ne Architecture as a Multi-Agent System. 27th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2019 (WSCG 2019).

[Marin-Lora2020] Marin-Lora, C., Chover, M., Sotoca, J. M., & García, L. A. (2020). A game en-
gine to make games as multi-agent systems. Advances in Engineering Software, 140, 102732.

[Millington2009] Millington, I. (2009). AI for Games. CRC Press.

[Milne2002] Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching programming—
views of students and tutors. Education and Information Technologies, 7(1), 55-66.

[Novak2013] Novak, J. (2013). The Official GameSalad Guide to Game Development. Cengage
Learning.

[Olsson2015] Ollsson, T., Toll, D., Wingkvist, A., & Ericsson, M. (2015, May). Evolution and eva-
luation of the model-view-controller architecture in games. In 2015 IEEE/ACM 4th International
Workshop on Games and Software Engineering (pp. 8-14). IEEE.

[Ouahbi2015] Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning
basic programming concepts by creating games with Scratch programming environment. Pro-
cedia-Social and Behavioral Sciences, 191, 1479-1482.

[Powers2006] Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V., & Car-
lisle, M. (2006, March). Tools for teaching introductory programming: what works?. In ACM
SIGCSE Bulletin (Vol. 38, No. 1, pp. 560-561). ACM.

[Rebollo2018] Rebollo, C., Marín-Lora, C., Remolar, I. & Chover, M. (2018). Gamesonomy Vs
Scratch: Two Different Ways To Introduce Programming. 15th International Conference On
Cognition And Exploratory Learning In The Digital Age (CELDA 2018). Ed. IADIS Press. ISBN
9789898533814.

[Resnick2009] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., ... & Kafai, Y. B. (2009). Scratch: Programming for all. Commun. Acm, 52(11), 60-67.

[Reyno2008] Reyno, E. M., & Cubel, J. Á. C. (2008). Model-Driven Game Development: 2D Pla-
tform Game Prototyping. In GAMEON (pp. 5-7).

[Robins2003] Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching program-
ming: A review and discussion. Computer science education, 13(2), 137-172.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-675222

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

[RPGMaker2019] RPG Maker. https://www.rpgmakerweb.com [Online; Last accessed: 2019-11-
20] (November 2019).

[Russell2016] Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malay-
sia; Pearson Education Limited.

[Sanders2016] Sanders, A. (2016). An Introduction to Unreal Engine 4. AK Peters/CRC Press.

[Sploder2019] Sploder. http://www.sploder.com [Online; Last accessed: 2019-11-20] (Novem-
ber 2019).

[Stemkoski2017] Stemkoski, L., & Leider, E. (2017). Game Development with Construct 2: From
Design to Realization. Apress.

[Stencyl2019] Stencyl. http://www.stencyl.com [Online; Last accessed: 2019-11-20] (November
2019).

[TBD2019] Unity Technologies. Unity Tower Bridge Defense Tutorial. (2019). https://learn.uni-
ty.com/tutorial/unity-for-2d-new-workflows-in-unity-4-3. [Online; Last accessed: 2019-11-20]
(November 2019).

[Thorn2019] Thorn, A., Doran, J. P., Zucconi, A., & Palacios, J. (2019). Complete Unity 2018 Game
Development: Explore techniques to build 2D/3D applications using real-world examples. Pac-
kt Publishing Ltd.

[Tutenel2008] Tutenel, T., Bidarra, R., Smelik, R. M., & Kraker, K. J. D. (2008). The role of seman-
tics in games and simulations. Computers in Entertainment (CIE), 6(4), 57.

[Tufte2003] Tufte, E. R. (2003). The cognitive style of PowerPoint (Vol. 2006). Cheshire, CT:
Graphics Press.

[Wooldridge2009] Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley &
Sons.

[Zarraonandia2015] Zarraonandia, T., Diaz, P., Aedo, I., & Ruiz, M. R. (2015). Designing educa-
tional games through a conceptual model based on rules and scenarios. Multimedia Tools and
Applications, 74(13), 4535-4559.

[Zarraonandia2017] Zarraonandia, T., Diaz, P., & Aedo, I. (2017). Using combinatorial creativity to
support end-user design of digital games. Multimedia Tools and Applications, 76(6), 9073-9098.

COMMUNICATION PAPERS –MEDIA LITERACY & GENDER STUDIES– Vol.9 - No18 | 2020 | REVISTA | ISSN: 2014-6752 23

Carlos Marín-Lora, Miguel Chover, Cristina Rebollo, Inmaculada Remolar: A game development environment to make 2D games

CURRICULUM VITAE
Carlos Marin-Lora is a Ph.D. student in Computer Science at Jaume I the University of Caste-
llón. He holds a degree in Multimedia Engineering from the University of Valencia in 2015 and
a master in Intelligent Systems from the Jaume I the University. His research interest includes
computer graphics and multimedia, game logic and game engines, artificial intelligence, beha-
vior specification, pattern recognition, and web systems. He also works as Character and Crea-
ture FX artist for animation companies such as Ilion Animation Studios and Lightbox Studio.

Miguel Chover is Full Professor in the Department of Computer Languages and Systems at
Jaume I University of Castellón. He received his PhD in computer science in the Polytechnic
University of Valencia in 1996. He is currently director of the Center for Interactive Visualization
and member of the Institute of New Imaging Technologies of Jaume University I. His research
lines include: geometric modeling, interactive visualization and video game technology. He is
an active member of the Spanish Computer Graphics Association EUROGRAPHICS S.E and
member of the executive committee of the Spanish Society for Video Game Sciences (SECiVi).

Cristina Rebollo is a professor at the Universitat Jaume I of Castellón in Spain. She received
her MS degree in Computer Science in 1988 from the University of Deusto of Bilbao, Spain.
She received her Ph.D. in Computer Science from the Universitat Jaume I of Castellón, Spain
in 2006. She is currently working at the Department of Computer Languages and Systems at
the University Jaume I. Her research areas include multiresolution modeling, real-time visuali-
zation, video games, and virtual and augmented reality.

Inmaculada Remolar received her Ph.D. in Computer Science at the Universitat Jaume I in
2005. Currently, she is director of the Institute of New Imaging Technologies and associate pro-
fessor at the Computer Languages and Systems Department at the Universitat Jaume I since
2008. Her research interests include geometric modeling, interactive visualization, and video-
game technologies. In reference to these subjects, she has participated in numerous research
projects, being IP of some of them. She has also participated in numerous projects with com-
panies, where she has been involved in the application of the research to the business fields.

