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ABSTRACT

Solid-state fermentation (SSF) is on the way to become
an attractive alternative for the valorisation of a wide
range of organic waste. In biological terms, SSF can be
defined as the cultivation process in which microor-
ganisms grow on solid materials without the presence
of free water. When these solid materials are organic
waste and the objective is to produce one or several
bioproducts of added value, SSF is a clear opportunity
for circular bioeconomy, with a new paradigm “from
waste to resource”. The development of SSF started
a couple of decades ago, with biomolecules that only
could be produced through biological systems, such
as enzymes or antibiotics. However, a new generation
of SSF bioproducts, which have a “twin” produced
by chemical pathways, has emerged in the last years,
with the advantages of having lower environmental
impacts (for instance, no need of water and less energy
requirements) and using waste as substrate. Some of
these compounds are highly relevant in the field of
chemical engineering: biosurfactants, biopesticides,
aromas, bioplastics, pigments and bioflocculants, among
others. This review explores the new advances in SSF:
from the organic waste used as substrate to the main
challenges SSF is facing, that is, mass and heat transfer
limitations, bioproducts downstream and scale-up.
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RESUMEN

La fermentacidn en estado sélido (FES) estd en camino
de convertirse en una alternativa atractiva para la valo-
rizacién de una amplia gama de residuos organicos. En
términos bioldgicos, la FES se puede definir como un
proceso biotecnoldgico en el que los microorganismos
crecen sobre materiales sélidos sin la presencia de agua
libre. Cuando estos materiales sélidos son residuos orgé-
nicos y el objetivo es producir uno o varios bioproductos
de valor afiadido, la FES es una clara oportunidad para
la bioeconomia circular, con un nuevo paradigma “de
residuo a recurso”. El desarrollo de la FES comenzé hace
un par de décadas, con biomoléculas que solo podian
producirse a través de sistemas biolégicos, como en-
zimas o antibidticos. Sin embargo, en los tltimos afios
ha surgido una nueva generacién de bioproductos, que
tienen un “gemelo” producido por vias quimicas, con
la ventaja de tener menores impactos ambientales (por
ejemplo, no necesitan agua y requieren menos energia)
y utilizar residuos como materia prima. Algunos de
estos compuestos son de gran relevancia en el campo
de laingenierfa quimica: biosurfactantes, biopesticidas,
aromas, biopldsticos, pigmentos y biofloculantes, entre
otros. Esta revision explora los nuevos avances en FES,
desde los residuos organicos utilizados como sustrato
hasta los principales desafios a los que se enfrenta la
FES: limitaciones de transferencia de materia y energfa,
necesidad de purificacion de los bioproductos y escalado
de los procesos.
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RESUM

La fermentacié en estat solid (FES) s’esta convertint
en una alternativa atractiva per a la valoritzacié d’'una
amplia gamma de residus organics. En termes biologics,
la FES es pot definir com un procés biotecnologic en
que els microorganismes creixen sobre materials solids
sense presencia d'aigua lliure. Quan aquests materials
solids son residus organics i l'objectiu és produir un
o diversos bioproductes de valor afegit, la FES és una
oportunitat clara per a la bioeconomia circular, amb un
nou paradigma "de residu a recurs". El desenvolupament
de la FES va comencar fa un parell de décades, amb
biomolecules que només es podien produir a través de
sistemes biologics, com ara enzims o antibiotics. Tot
i aixo, en els tltims anys ha sorgit una nova generacié
de bioproductes, que tenen un "bessé" produit per vies
quimiques, amb l'avantatge de tenir menors impactes
ambientals (per exemple, no necessiten aigua i reque-
reixen menys energia) i utilitzar residus com mateéria
primera. Alguns d’aquests compostos sén de gran
rellevancia al camp de l'enginyeria quimica: biosur-
factants, biopesticides, aromes, bioplastics, pigments i
biofloculants, entre d’altres. Aquesta revisié explora els
nous avengos a FES, des dels residus organics utilitzats
com a substrat fins als principals desafiaments a que
senfronta la FES: limitacions de transferéncia de materia
i energia, necessitat de purificacié dels bioproductes i
escalat dels processos.

Paraules clau: bioeconomia circular; bioproductes;
biorefineria; fermentacié en estat solid; residu organic.

INTRODUCTION

With the continuous increase in the worldwide
generation of organic waste, the need to find cleaner
and sustainable alternatives to the traditional ways of
treatment and management, such as incineration and
disposal in landfills, is being intensively explored. This
need, together with the current situation of scarcity of
materials and energy, favours an approach in which
organic waste plays an important role as a part of
circular economy, considering waste as resource. The
main technologies already available to lead this tran-
sition are anaerobic digestion [1] and composting [2].
Notwithstanding this, in recent years, a new alternative
has been gaining acceptance: solid-state fermentation
(SSE). According to Pandey [3], SSF is defined as “the
fermentation involving solids in absence (or near ab-
sence) of free water; however, substrate must possess
enough moisture to support growth and metabolism
of microorganisms”. When using organic waste as
substrate, the main objective of SSF is to produce bi-
ological compounds of high value as an alternative to
traditional chemical compounds, with the benefit of

being biodegradable [4]. In addition to this, the exhaust
solid resulting from the SSF after the recovery of the
bioproducts can be valorised using anaerobic digestion
or composting [5].

In practical terms, SSF takes place in a bioreactor,
typically aerobic, which is filled with the solid substrate
and inoculated with the strain of interest to produce the
desired bioproduct [6]. Once produced, this bioproduct
must be recovered, although in some cases the final
fermented solid can be used as end product, without
a defined downstream process [7]. Several types of
reactors have been used in SSF: packed-bed reactors,
mechanically stirred reactors, tray reactors and some
approaches to continuous or semicontinuous flow con-
figurations [8]. Figure 1 shows a schematic representa-
tion of the different elements involved in solid-state
fermentation, with examples of different microorgan-
isms, support materials, carbon sources, other specific
sources, reactor types and bioproducts produced. All
these configurations have a common objective in the
scaling process: to overcome the limitations of mass
and heat transfer in an organic porous matrix, which
hampers the scale-up of SSF, one of the main obstacles
to its full use and commercialization [9,10].
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Figure 1: Schematic representation of the different
elements involved in solid-state fermentation. Examples
of different microorganisms, support materials, carbon
sources, other specific sources, reactor types and bioprod-
ucts produced.

SSF is not a totally new idea as it has been used in
the food industry. Composting can be also considered
a type of SSE. However, in the last two decades, this
technology has become a promising biotechnological
tool to produce new bioproducts, beyond the hydrolytic
enzymes, which were the first ones produced by SSF
[11]. Currently, SSF is being investigated to produce
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materials that replace high-volume chemical products
such as biopesticides, biosurfactants, aromas or bio-
plastics, among others. This work is focused on these
new generation of bioproducts, the organic waste used
as substrate and some of the main limitations of SSF.

ORGANIC WASTE AS SUBSTRATE FOR SOLID-
STATE FERMENTATION

Lignocellulosic agricultural waste is the most com-
monly used substrate in SSF [12]. However, other ty-
pologies of organic waste have been recently used as
substrates to obtain a defined bioproduct to take profit
of their specific biochemical composition. This is the
typical case of biosurfactants, for instance, where lipids
are essential [13], whereas other complex organic ma-
terials such as the organic fraction of municipal solid
waste or digestate have been also tested [14].

Table 1 summarizes a compilation of some substrates
used in SSF to produce specific metabolites. Table 1
does not intend to be exhaustive but to show recent
and representative organic waste used in SSF.

Table 1 shows the wide variety of combinations used
in SSF to produce selected bioproducts. It is important
to note that most studies are performed at lab scale
under well-controlled conditions, which is somewhat
unrealistic. It can also be observed that fungi have a
predominant role in SSF. Nonetheless, it is expected an
increase of the number of strains used in SSF, as new
microorganisms are being isolated [19].

EMERGING BIOPRODUCTS FROM SOLID-STATE
FERMENTATION

The current list of bioproducts produced from SSF is
very long and it changes in time, to be updated with
new products and processes [6,20]. In this review, some
of the main ones will be considered:

Biosurfactants: Biosurfactants refer to surfactants of
microbial origin. Like synthetic surfactants, they are
composed of a hydrophilic moiety made up of amino

acids, peptides, (poly)saccharides or sugar alcohols and
a hydrophobic moiety consisting of fatty acids. Cor-
respondingly, the significant classes of biosurfactants
include glycolipids, lipopeptides and lipoproteins, and
polymeric surfactants [12,21].

Biopesticides: A large number of microorganisms are
able to produce compounds that are lethal for some
typical plagues that are a problem for the cultivation
of certain crops. Biopesticides have gained impor-
tance in the last years in comparison to traditional
chemical products, because of their selective action, its
biodegradability and, in general, their innocuousness
to the environment and food chain. Biopesticides is a
denomination that include biological control agents
for plagues of mainly insects and fungi, and they are
produced from a wide number of species [18,22]. In the
case of SSF using waste as substrate, their development
is relatively recent. The reason for this is that not all
the biopesticide producing strains are able to thrive in
non-sterile solid-state media.

Aromas and flavours: This field is especially interesting
as typically synthetic products or natural products (after
a costly extraction) are being used in food and other
industries. Some molecules such as 2-phenylethanol,
widely used in industry due to its rose-like odour and
antibacterial properties, have been produced via SSF
using several agro-industrial wastes (mainly bagasse and
molasses). Other similar processes have been focused
on the production of fruit-like odour, using advanced
reactor configurations [23,24].

Bioplastics: This field has been traditionally related
to wastewater research, especially in the case of PHA
(polyhydroxyalkanoate) and PHB (polyhydroxybutyrate).
In the case of SSF, several recent works report how to
produce these novel materials through SSF, using ligno-
cellulosic-derived residues to produce lignocellulolytic
enzymes from fungal strains [25].

Table 1: Compilation of the nexus organic waste/strain/bioproduct recently used in solid-state fermentation.

Solid-state fermentation objectives

Increase the nutritional value and degrade the lignin of wine
production waste

Use of radiofrequency for drying the SSF solid using soybean
and rice residues as substrates

Techno-economic analysis of the production of sophorolipids
using molasses and sunflower oil winterization waste

Continuous distillation combined with vapour permeation
for the extraction of ethanol produced by the fermentation of
sorghum in a rotary drum

Production of fungal conidia from rice husk and beer produc-
tion waste as substrates

Bioproduct Strain Reference
Animal feed White rot fungi [15]
Antioxidants Wolfiporia cocos [16]
Sophorolipids Starmerella bombicola [17]

Bioethanol Saccharomyces cerevisiae [11]
Biopesticides Trichoderma harzianum [18]
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Antioxidants: this is a property of certain chemicals
that is of high value for the food and cosmetics industry,
among others. In the case of SSE, there are several works
showing the suitability of certain waste to be used as
a substrate for the production of antioxidant phenolic
compounds, being waste from olive oil production the
most used [26].

Recent literature is full of other specific bioproducts
obtained from SSF of selected organic waste: biofloc-
culants, pigments or other more specific compounds.
Although interesting, most of these studies are again
performed at lab scale [27].

MAIN CHALLENGES OF SOLID-STATE FERMEN-
TATION
Heat and mass transfer limitations. Scale-up

To reach the status of a consolidated and commercial
technology, SSF still needs to overcome a big challenge
regarding mass and heat transfer limitations in solid
organic matrices. More specifically, several variables are
critically affected by these limitations. This is the case
of temperature, which plays an important role in SSF
performance at pilot or representative demonstration
scales. On one hand, microbial strains used in SSF
often need very specific temperature conditions for
their growth, hence it is very important to control this
parameter. On the other hand, SSF produces a tempe-
rature increase that needs to be regulated in an organic
matrix with low thermal conductivity and a significant
percentage of free air space [28]. Temperature control
in SSF is normally achieved by convection through
forced-aeration to increase heat dissipation and to
avoid undesired temperature gradients. However, for-
ced aeration also provokes moisture losses and drying,
therefore, it must be carefully controlled [29]. In this
sense, the configuration of novel SSF bioreactors, with
innovative aeration and cooling strategies (including
irrigation, mixing, etc.) has been the topic of recent
research [30,31]. Figure 2 shows a representation of
how different aeration strategies can affect different
parameters such as temperature or moisture. The first
image (left) shows an inefficient aeration system, where
the air takes the path of least resistance creating gra-
dients of temperature and moisture shown in the image
as darker substrate. The second image (right) shows a
more optimized strategy that allows an even aeration
of the substrate.

Regarding mass transfer, this specific limitation cannot
be considered as independent from those related to
heat transfer. In SSF, the access to oxygen is essential
for the microbiological process and, in consequence,
to have a proper aeration system becomes critical [32].
Mixing is also a useful strategy to address mass (and
heat) transfer issues, maintaining more uniform con-
ditions of temperature and enhancing gas or liquid
interface transport. The presence of a heterogeneous
medium can hamper the access of microorganisms to
substrates, with zones with different nutrient content
[33]. However, mixing must be carefully designed, as it
can have a negative impact on porosity, on the micro-
organisms’ attachment to the substrate, etc.
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Figure 2: Representation of how different aeration
strategies can affect different parameters such as tempera-
ture or moisture. Left: an inefficient aeration system,
where the air takes the path of least resistance creating
gradients of temperature and moisture shown in the image
as darker substrate. Right: a more optimized strategy that
allows an even aeration of the substrate.

All the above mentioned issues imply important prob-
lems in the modelling or scale-up of SSF processes [34].
In the case of SSF bioreactors, several attempts to find
a suitable model for scaling them up have been recently
published [28,35]. In summary, tray and packed bed
reactors are the most used and known configurations
[9,15,36].

Purification and down-stream

The other main challenge of SSF is the downstream
or purification of the end bioproducts to get a com-
mercial material. This challenge is mainly due to the
heterogeneity and solid-state of the materials, which
usually results in a complex multiple-step downstream
processes. In fact, SSF downstream cost can reach up to
70% of the total cost if a high recovery yield and purity
is to be achieved [37]. Moreover, SSF has another typical
problem related to the extraction of some bioproducts:
the use of environmentally unfriendly solvents [38].
Contrarily to the problems derived from heat and mass
transfer limitations and the proposal of new SSF bio-
reactors, scientific literature on downstream processes
of SSF bioproducts is very limited.

Nevertheless, it is worthwhile to mention that, in
some applications, the fermented solid can be directly
used as the final product, thus avoiding an expensive
process with a high environmental impact [7]. If this
strategy is not possible, after the extraction of the bio-
products, the exhausted solid becomes a new waste to
manage. Animal feed, substrate for anaerobic digestion
or composting and SSF are the most attractive options
to valorise this material [39].

Product recovery can be more difficult if the metab-
olites of interest diffuse into the solid matrix, as the
extraction often involves the use of organic solvents,
which has several disadvantages: high cost, high en-
vironmental impact, time constraints and toxic sol-
vents that affect the recovery of the spent solid [40].
This strategy also presents some incompatibilities with
health regulations, preventing the marketing of some
bioproducts. For this reason, new techniques have
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Table 2: Summary of some processes used in the purification of bioproducts obtained from solid-state fermentation.

Category Bioproducts Extraction methods Details References
Biosurfactant Sophorolipids Solvent extraction Ethyl acetate [34]
Biopesticides Bt-crystal protein Enriched compost [7]
Bioplastics PHA Solvent extraction [41]
Aromas 2-phenyl-ethanol Methanol Filtration [42]
Antioxidants Phenolic compounds Microwave Water or ethanol [34]
Other bioproducts 6-Pentyl-a-pyrone Soxhlet extraction Hexane [44]
Bioflocculant Water [27]
Animal feed Improvement of solid properties [14]
emerged to overcome this problem, such as ultrason- 2. Cerda, A., Artola, A., Font, X., Barrena, R,
ic-assisted extraction, microwave-assisted extraction, Gea, T., Sanchez, A. (2018). Composting of
supercritical fluid extraction, solid-liquid extraction, food wastes: Status and challenges. Bioresource
with pressurized liquids, subcritical water extraction, Technol,, 248, 57-67. https://doi.org/10.1016/j.
solid-solid extraction or enzyme-assisted extraction [6]. biortech.2017.06.133.
Anyway, the selection of an extraction method depends 3. Pandey, A. (2003). Solid-state fermentation.
on the characteristics of the product to be extracted Biochem. Eng. J., 13(2-3), 81-84. https://doi.
and there are no universal recipes (Table 2). Nowadays, org/10.1016/S1369-703X(02)00121-3
downstream seems the more important handicap for a 4. Sénchez, A. (2022). Adding circularity to organ-
full development and implementation of SSF. ic waste management: From waste to products
through solid-state fermentation. Resources Envi-
ron. Sustain., 8, 100062. https://doi.org/10.1016/j.
CONCLUSIONS resenv.2022
5. Thomas, L., Larroche, C., Pandey, A. (2013).
This review highlights the most novel and recent ap- Current developments in solid-state fermenta-
plications of SSF to obtain bioproducts using practically tion. Biochem. Eng. J., 81, 146-161. https://doi.
all typologies of organic waste as substrate. Bioproducts org/10.1016/j.bej.2013.10.013
from SSF are of a wide variety and some of them are 6. Oiza, N., Moral-Vico, J., Sdnchez, A, Oviedo, E.R,,
called to play a key role in the full development of the Gea, T. (2022). Solid-State Fermentation from
Circular Bioeconomy. However, given that SSF research Organic Wastes: A New Generation of Bioprod-
is still in an emerging stage with an important lack of ucts. Processes, 10, 2675. https://doi.org/10.3390/
studies that, at least, present bench-scale SSF experi- pr10122675
ments, the main challenges of SSF to overcome in the 7. Ballardo, C., Vargas-Garcia, M.C,, Sanchez, A.,
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home compost: Biopesticide properties through
Bacillus thuringiensis inoculation. Waste Man-
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