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Resumen

Se presenta un estudio computacional sobre la estabilidad 
de agregados de aluminio, Aln

z, neutros y cargados, con n 
= {13, 18, 23, 39, 55}, y z = {0, -1, -2}. Las estimaciones de 
afinidades electrónicas (AE) se realizaron con (i) cálculos 
mecánico-cuánticos con todos los electrones y optimiza-
ción completa de geometría sobre los agregados Aln

z, con 
n = {13, 18, 23, 39, 55}, z = {0, -1, -2}, y el funcional DFT de 
Perdew-Burke-Ernzerhof (PBE), el cual incluye correccio-
nes de gradiente de la densidad,  y (ii) el modelo de esfera 
conductora cargada con y sin barreras de Coulomb y co-
rrecciones de efecto túnel. Si consideramos como único 
criterio para la producción y observación experimental de 
agregados dianiónicos de aluminio un valor positivo de la 
segunda afinidad electrónica, entonces el tamaño mínimo 
(es decir, de número de átomos) del agregado se predice 
con n ∼ 23 y n ∼ 32 mediante las computaciones con todos 
los electrones y con el modelo de esfera cargada conduc-
tora respectivamente.
Palabras clave: Agregados; Aluminio; Trampa de Agrega-
dos; Trampa de Penning; DFT; Modelo de Esfera Conduc-
tora Cargada; Barrera de Coulomb; Efecto Tunel

Abstract

A computational study on the stability of neutral, singly 
and doubly negatively charged aluminium clusters Aln

z, 
with n = {13, 18, 23, 39, 55}, and z = {0, -1, -2} is presented. 
Estimates of electron affinities (EA) were computed with 
(i) all-electron quantum-mechanical calculations with full 
geometry optimization on Aln

z, with n = {13, 18, 23, 39, 
55}, and z = {0, -1, -2}, using the Perdew-Burke-Ernzerhof 
(PBE) gradient-corrected functional within Density Func-
tional Theory (DFT) and (ii) Charged Conducting-Sphere 
Model with and without Coulomb barrier and tunnelling 

corrections. If a positive value for the second electron af-
finity of the cluster is considered to be the sole criterion for 
the production and experimental observation of dianionic 
aluminium clusters, then the predicted minimum cluster 
size (i.e. the number of atoms) is n ∼ 23 and n ∼ 32 from 
the all-electron computations and the charged conduct-
ing-sphere model, respectively.
Key words:Clusters; Aluminium; ClusterTrap; Penning 
Trap; DFT; Charged Conducting-Sphere Model; Coulomb 
Barrier; Tunneling

Resum

Es presenta un estudi computacional sobre l’estabilitat 
d’agregats d’alumini, Aln

z, neutres i amb càrrega, amb n = 
{13, 18, 23, 39, 55}, i z = {0, -1, -2}. Les estimacions d’afini-
tats electròniques (AE) es realitzen amb (i) càlculs mecànic-
cuàntics amb tots els electrons i optimització completa de 
geometria en els agregats Aln

z, amb n = {13, 18, 23, 39, 
55}, z = {0, -1, -2}, i el funcional DFT de Perdew-Burke-
Ernzerhof (PBE), el qual inclou correccions de gradient de 
la densitat,  i (ii) el model d’esfera conductora carregada 
amb i sense barreres de Coulomb i correccions d’efecte 
túnel. Si considerem com a únic criteri per a la producció 
i observació experimental d’agregats dianiònics d’alumini 
un valor positiu de la segona afinitat electrònica, aleshores 
el tamany mínim (es a dir, de nombre d’àtoms) de l’agregat 
es prediu amb n ∼ 23 i n ∼ 32 mitjançant les computacions 
amb tots els electrons i amb el model d'esfera carregada 
conductora respectivament.
Mots clau: Agregats; Alumini; Trampa d’Agregats; Trampa 
de Penning; DFT; Model d’Esfera Conductora Carregada; 
Barrera de Coulomb; Efecte Tunel

Stability and Electron Affinities of 
Negatively Charged Aluminium 
Clusters: A Computational Study

Alexander Goldberg
Accelrys, Inc., 10188 Telesis Court, San Diego, CA 92121, USA

Josep M. Oliva*
Instituto de Química-Física “Rocasolano”, CSIC, Serrano, 119, E-28006 Madrid, Spain

Noelle Walsh, Franklin Martinez, Gerrit Marx, and Lutz Schweikhard
Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany

Antonio Fernández-Barbero
Group of Complex Fluid Physics, University of Almeria, 04120-Almeria, Spain

Estabilidad y afinidades electrónicas de agregados de aluminio con carga negativa: un estudio 
computacional

Estabilitat i afinitats electròniques d’agregats d’alumini amb càrrega negativa: un estudi 
computacional

Recibido: 3 de junio de 2009; aceptado: 25 de junio de 2009

*Corresponding authors:
Josep M. Oliva: J.M.Oliva@iqfr.csic.es



Afinidad LXVI, 542, Julio-Agosto 2009286

1. INTRODUCTION

Atomic clusters range in size from very small dimers to 
much larger aggregates containing up to 106 atoms. Due 
to their ‘scalability’, they offer the opportunity to investi-
gate the evolution of chemical and physical properties as a 
function of size. Properties of particular interest include the 
atomic bonding parameters and the stability of polyanionic 
species [1].  Metal clusters are highly reactive systems and 
ion traps facilitate their investigation as pure species in the 
gas phase [2]. In the particular case of aluminium clusters 
[3] and their anions [4], comprehensive experimental and 
theoretical works on their stability [5,6], structure [7] and 
spectroscopic properties [8,9] have been performed within 
the last three decades. Clusters in the gas phase are im-
portant in chemistry due to the extended fields of research 
and application, such as size selection of supported metal 
clusters  for electrocatalysis, chemical reactivity, catalytic 
effects, and molecular chemisorption (e.g. CO, H2, O2) [10]. 
Additional reports on the formation and stability of clusters 
MAl4

– (M = Li, Na, Cu) [11] and Al13Ix
−, Al14Ix

− [12,13] also 
indicate the potential synthetic utility of superatom chem-
istry using aluminium clusters. The recent detection of di-
anions, trianions and tetra-anions of aluminium clusters in 
a Penning  trap [14] provides insight into the rich chemical-
physics of these elusive species. Questions like “What is 
the minimum size n for which Aln

2− can be observed?” or 
“What are the finite-size effects in Aln

2− as compared to Aln
1− 

?” have led to this computational work. The presentation 
is organised as follows: Section 2 describes the theoreti-
cal approach and section 3 contains the results and dis-
cussion, where we focus on the electronic structure of the 
selected  clusters and compare the charged conducting-
sphere model with the all-electron quantum-mechanical 
predictions and highlight the main differences. 

2 ComputationAL MODEL

2.1 Quantum-Mechanical Density-Functional Theory 
(DFT) Computations: All-electron computations were 
performed with the DFT code DMol3, a code that uses nu-
merical basis sets [15]. We used version 4.0 of the program 
which is a part of the Materials Studio Modeling suite pro-
vided by Accelrys [16]. In the present study, the basis set 
used consists of a double numerical (DND) set including all 

occupied atomic orbitals, a second set of valence atomic 
orbitals and polarized d-valence orbitals. The Perdew-
Burke-Ernzerhof (PBE) gradient corrected functional, 
which depends on the electron density and its deriva-
tive was used [17]. This functional, based on the Perdew 
model to correct for the local-density approximation [18], 
provides a correction which leaves only 1% error in ex-
change energy; it has a strong physical background, reli-
able numerical performance and is frequently used in DFT 
calculations. The spin unrestricted approach was applied 
with all electrons being considered explicitly. In all calcu-
lations, atom-centred grids were used for the numerical 
integration with the “Fine” option in DMol3 which includes 
about 2000 grid points for each atom. The real space cut-
off of 7.0 Å was imposed for numerical integration [19]. The 
Self-Consistent-Field (SCF) convergence criterion was set 
to the root-mean-square change in the electronic density 
to be less than 10−6 electron/Å3. Geometries were opti-
mized using an efficient algorithm which takes advantage 
of delocalized internal coordinates [20]. The convergence 
thresholds applied for geometry optimization were 10−5 
atomic units (au, Hartree) for energy, 0.002 au/Å for force 
and 0.005 Å for displacement [21]. A frequency analysis 
on all optimized geometries showed positive values and 
therefore all geometries reported in this work correspond 
to energy minima [22]. In all computations the point group 
symmetry was imposed on the structures of aluminium 

clusters.

2.2 The Charged Conducting-Sphere Model: The in-
teraction between a singly-charged cluster anion and a 
nearby electron can be described by use of classical elec-
trostatics. In this approach, the cluster monoanion is ap-
proximated by an isolated, charged, conducting sphere of 
radius Rcluster and the electron is a point charge located at 
a distance r from the centre of the sphere. The Coulomb 
potential between the two charged particles is found by 
the method of image charges [23] to be 
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where z denotes the charge-state of the sphere, i.e. 
z  ·  e  =  −  |z|  ·  e   is the charge of the precursor an-
ion before attachment of an additional electron or  

Figure 1.  (a) Coulomb barriers of cluster monoanions containing 37, 65, and 100 atoms re-
spectively and (b) barrier height (Vcmax) as a function of cluster size.
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(z − 1) · e = − (|z|+1) · e is the charge of the precursor anion 
before emission of an electron. (To avoid sign confusion in 
connection with the negative charge states of the anionic 
species considered in this contribution, the charge state 
will be indicated by use of the absolute value, |z|, where 
appropriate. Note that the equations presented in this no-
tation are only correct for anions and do not apply to cat-
ions!) The Coulomb barriers of singly charged aluminium 
clusters containing 37, 65 and 100 atoms, respectively, are 
plotted in figure 1(a) for cluster radii Rcluster = Reff ·n

1/3 with 
the Wigner-Seitz radius of aluminium, RWS =1.58×10−10 m 
[24, 25, 26] as the effective atomic radius and a charge 
state z = −1 of the sphere. The maximum height of the 
Coulomb barrier ranges from 0.98 eV for Al100

− to 1.36 eV 
for Al37

−. Figure 1(b) shows the barrier heights as a function 
of cluster size. For very small clusters, n ≤ 10, the barrier 
height exceeds 2eV.
In the charged conducting-sphere model, the electron af-
finity, EA, of a cluster containing n atoms and with charge 
state z (in the present case z = −1), can be estimated as 

    (2)

where W is the bulk work function of the metal, α is a di-
mensionless factor and Rcluster = Reff n

1/3 is the cluster radius 
as described above. Note that there has been consider-
able controversy in the literature about the correct value 
of α. Following classical electrostatic calculations, it has 
been proposed that  [27, 28] from the spherical con-
densator approach or  [29, 30] from the image poten-
tial approach. It is now generally accepted that the value 
of  is in fact correct and that the value of  was 
obtained due to an error in the theoretical image poten-
tial consideration [31, 32]. However, experimentally vari-
ous values of α have been found and have been explained 
by quantum effects [30]. A positive value of EA(n, z), in-
dicates that a cluster of charge state z, is large enough 
to accept another electron, resulting in a stable (with re-
spect to electron emission) n-atom cluster of charge state 
(z − 1) · e = − (|z|+1) · e. Figure 2a shows the electron af-
finities of monoanionic aluminium clusters containing 
between 25 and 65 atoms as predicted by the charged 
conducting-sphere model with Reff = RWS  as given above 

and W = 4.28 eV as recently determined from experimental 
ionisation potentials of aluminium clusters [24]. Figure 2b 
depicts the expected lifetimes of aluminium cluster dian-
ions as a function of cluster size (from 25 to 42 atoms) as 
predicted by the charged conducting-sphere model. For a 
more comprehensive explanation of the concept of meta-
stability in aluminium polyanion clusters, the Reader is 
referred to section VI.A and Equations (5) and (6) from ref-
erence [14c]. For completeness, an earlier approximation 
[14] with Ra=1.431×10−10 m [33] as the atomic radius of the 
aluminium atom are also included (crosses). As mentioned 
above, the larger the radius of the cluster, the more posi-
tive is its electron affinity. Indeed, using the Wigner-Seitz 
radius rather than the atomic radius has a large effect on 
the predicted dianion appearance size. Whereas for Reff = 
Ra only clusters containing n ≥ 45 atoms (crosses) were es-
timated to have positive electron affinities, the use of RWS 
as the effective atomic radius (Figure 2a) shifts that lower 
limit to n ≥ 33 atoms (circles). The expected experimental 
dianion appearance size shifts to even smaller cluster siz-
es if the stabilising effect of the Coulomb barrier (Equation 
1) is taken into account; whilst this inhibits the attachment 
of an electron to an already negatively charged species, 
once the electron is attached, the barrier helps to stabilise 
the dianion against immediate electron loss. Thus, some 
clusters that have slightly negative second electron affini-
ties, for example Al29 to Al32 (see figure 2a, open circles), 
can form metastable dianions. In these cases, the electron, 
once attached to the monoanion, has insufficient energy to 
overcome the Coulomb barrier and it can only detach from 
the monoanion via tunnelling. If the cluster dianion has a 
lifetime greater than the typical period of an experimental 
cycle of 1s, it is possible to observe it at the ClusterTrap 
setup.
Therefore, in light of the current approximations, taking 
into account both the electron affinity of the monoanion 
and the effect of the Coulomb barrier, it is estimated that 
aluminium cluster dianions containing n ≥ 29 atoms could 
be observed at ClusterTrap. 
Note again, that the present model provides only rough 
approximations. The calculation of the second electron af-
finities is purely classical and assumes the cluster to be 
a metallic conducting sphere. In the case of the lifetime 
calculations, tunnelling of the excess electron through the 
Coulomb barrier of the monoanion is considered, but a 

Figure 2. (a) Electron affinity, EA, of aluminium cluster monoanions and (b) lifetimes of alumini-
um cluster dianions as a function of cluster size, where the effective atomic radius, Reff was tak-

en to be Rws  (open circles) or Ra (crosses) of the aluminium atom (see text).
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number of important phenomena have not been corrected 
for. Such phenomena include the deviation of the shape of 
the cluster from the spherical approximation, the neglect 
of electronic shell structure, the interaction of the electrons 
with one another and the “electronic spill-out” effect [34]. 
The discussion in Section 3 highlights the differences be-
tween the quantum mechanical DFT calculations and the 
charged conducting-sphere classical model. 

3. RESULTS AND DISCUSSION

3.1 Electronic Structure: Table 1 gathers the computed 
properties of the clusters included in this work: Aln

−z with ( 
z = 0, 1, 2; n = 13, 18, 23, 39, 55).

Cluster εn (eV) IP1 (eV) IP2(eV) H-L gap (eV) EA1 (eV) EA2 (eV)

Al13 2.44 6.70 10.18 1.99 2.18 -1.03

Al18 2.45 5.90 8.99 0.36 2.85 -0.13

Al23 2.84 5.87 8.69 0.77 3.01 0.18

Al39 2.92 5.38 7.80 0.18 2.98 0.61

Al55 2.99 5.33 7.54 0.45 3.13 0.94

Table 1. Computed energetic properties of Aln
− z clusters 

( z = 0, 1, 2; n = 13, 18, 23, 39, 55): Cluster binding ener-
gies εn , first and second ionization potentials (IP1 and IP2 
respectively), HOMO-LUMO gaps (H-L gap) and first and 

second electron affinities (EA1 and EA2 respectively). DFT 
computations with the PBE functional and a DND basis set.

Based on the analysis of energetic properties – Table 1 – 
the cluster binding energies increase with cluster size, i.e. 

ε13 < ε 18 < ε23 < ε39  < ε55    (3)

The average binding energy per atom − cluster binding en-
ergy − is defined as

εn = E(Al) – E(Aln)/n.    (4)

and, according to previous computations [5], when n → ∞, 
εn converges to the cohesive energy ε

∞
 = εcoh = 3.35 eV, i.e., 

the bulk binding energy per atom. The first and second 
Ionization Potentials (IP) of the clusters follow a reverse 
order. The cluster reactivity can be evaluated based on the 
HOMO-LUMO gap (Table 1). Al39 has the smallest HOMO-
LUMO gap and therefore is predicted to be the most reac-
tive. As regards to electron affinities (EAs), the first EAs are 
all positive and appear to increase with size and hence 
attachment of an electron can be expected. Furthermore, 
Al23 and Al39 are predicted to have almost the same values of 
EA1 and this could perhaps be a reflection of the enhanced 
stability of the Al23

− cluster due to valence electron shell clo-
sure as has been predicted in Jellium computations [3]. The 
computed values of EA2 from Table 1 are further discussed 
below. Figure 3 shows the HOMO and LUMO orbitals for 
aluminium cluster anions Al23

-1 and Al39
-1:

We have chosen these two clusters as representative of the 
regions where electrons can be attached to monoanioninc 
aluminium clusters: As will be shown  below (see Sections 

Figure 3. Frontier orbitals for Al23
-1 and Al39

-1: (a) HOMO in Al23
-1, (b) LUMO in Al23

-1, (c) HOMO in Al39
-1, (d) LUMO in Al39

-1. 

(a)

(b)

(d)(c)
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3.2 and 3.2.1), the transition point from negative to positive 
EA2’s in Aln

− clusters is for n ~ 23. As depicted in Figure 1, 
the HOMO and LUMO in the anion Al23

-1 is localized mainly 
in the equatorial and axial region of the cluster, the latter 
having even a more localized character on the Al atoms of 
the top and bottom of Al23

-1. Therefore the excess electron 
in Al23

-1 is mainly localized on the equatorial region of the 
cluster; on the other hand, the additional electron on Al23

-2 
will be attached more likely on the axial region of Al23

-1. 
Turning now to the larger cluster Al39

-1 the HOMO and 
LUMO – Figure 3c and Figure 3d respectively – show a 
more spread wave function amplitude throughout the 
whole surface of the cluster anion: the secondary electron 
in Al39

-2 should thus be attached to the monoanion more 
easily as shown by a larger positive value of EA2 due to 
the less localized nature of both the additional electron in 
Al39

-1 and also the delocalized nature of the ‘hole’ electron 
density in the first virtual orbital (LUMO).
We turn now to the estimation of reactivity in the alumin-
ium clusters included in this work. The chemical poten-
tial, chemical hardness and softness, and reactivity indi-
ces have been used by a number of workers to assess a 
priori the reactivity of chemical species from their intrinsic 
electronic properties [35]. Various methods have included 
atomic charge computation, free valency, spin popula-
tions, and the Laplacian of the charge density, among oth-
ers. Perhaps one of the most successful and best known 
methods is the frontier orbital theory of Fukui [36, 37]. De-
veloped further by Parr and Yang [38], the method relates 
the reactivity of a molecule with respect to electrophilic 

and nucleophilic attack to the charge density. These so-
called Fukui functions (FF) are a qualitative way of measur-
ing and displaying the reactivity of regions of a molecule. 
Specifically, we use the  FF, which measures the sen-
sitivity of the charge density,  ρ(r), with respect to the gain 
of electrons via the expression:

    (5)

The expression  measures changes in the density 
when the molecule gains electrons and, hence, corre-
sponds to reactivity with respect to nucleophilic attack or 
electron attachment. Using the finite difference approxi-
mation shown in Equation (5), the charge densities are 
converged to self-consistency for the anion. The FFs are 
computed using the finite difference approximation and 
the self-consistent charge densities for the anion. Figure 4 
shows isosurfaces of the positive Fukui function  plot-
ted on aluminium cluster monoanions Al23

− and Al39
− (Figure 

4a and Figure 4c) and a mapping of the same function onto 
an isodensity surface of the electron density in each clus-
ter (Figure 4b and Figure 4d). As depicted in Figure 4, the 
most likely region where electron attachment should take 
place corresponds to the vertices of the clusters.

The description of the all-electron DFT optimized geom-
etries of the neutral, monoanionic and dianionic aluminium 
clusters included in this work are available on request to 
the authors.

Figure 4. Fukui positive functions 
 
for monoanionic aluminium clusters. (a) Fukui positive function

 
in Al23

−. (b) Fukui positive function  superimposed on an electron density plot for Al23
−. (c) Fukui 

positive function
  

in Al39
−. (d) Fukui positive function

  
superimposed on an electron density plot 

for Al39
−. Cutoff values for electron density and Fukui function: 0.025 e/Å3 and 0.0025 e/Å3 respectively.

 

(a) (b)

(d)(c)
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3.2 Comparison of Second Electron Affinities (EA2) 
Computed with the Charged Conducting-Sphere Mod-
el and All-Electron Quantum-Mechanics 

3.2.1 Electron affinities (EAs): The second EAs (EA2) of 
a range of aluminium cluster sizes are plotted in Figure 5. 
The all-electron DFT calculations were performed for clus-
ters containing 13, 18, 23, 39 and 55 atoms and the clas-
sical approximations of the electron affinity by means of 
the charged conducting-sphere model are computed for 
clusters containing 10 to 60 atoms using Equation 2. 
It is evident from Figure 5 that the electron affinities of a 
given cluster size as calculated using DFT are more posi-
tive than those approximated for the same size using the 
charged conducting-sphere model. As a result, the expect-
ed appearance size for aluminium cluster dianions expect-
ed from DFT calculations is smaller than the predictions of 
the classical model. If the criterion for dianion creation is 
that the precursor monoanion must have a positive elec-
tron affinity, then the quantum mechanical electron affinity 
computations above suggest that the smallest aluminium 
cluster dianions should be Al23

2− (taking the electron affini-
ties alone into account)  (Figure 5: spheres). In contrast to 
this, the classically predicted dianion appearance size is 
Al33

2−
 (Figure 5: solid line).

The discrepancy between the electron affinities calculated 
using the quantum mechanical and classical values is not 
at all surprising. The classical model is an over-simplifi-
cation that assumes the cluster to be spherical in shape. 
Such an assumption is sometimes reasonable in the case 
of a cluster with a closed electronic shell. However, in most 
instances such an assumption is invalid. The DFT compu-
tations are performed by determination of the lowest ener-
gy aluminium structure which is then used to calculate the 
values of electron affinities, ionisation potentials and other 
properties of the cluster. The values obtained are therefore 
for a single structural geometry and are considered to be 
a reasonable approximation of the true values (i.e. when 
more than one geometry is considered). For these calcula-
tions all clusters were considered to have D5h symmetry 
with the exception of Al13 which was considered to have 
Ih symmetry [39]. As a final note regarding the shape of a 
cluster, it is necessary to mention that in the case of open-
shell clusters, a sphere is a particularly unsuitable descrip-
tion because those clusters are unstable towards distor-
tions due to the Jahn-Teller effect [40]. In general, a cluster 
is better described as being ellipsoidal in shape [41].
A further source of disagreement between the results of 
the rigorous DFT calculations and the classical model is 
due to the fact that the all-electron quantum mechanical 
computations account for the interaction of electrons with 
one another (exchange and correlation effects) whereas 
the classical model completely neglects this. The only 
interaction to be considered in the classical treatment 
is that between the charged-conducting sphere and the 
approaching point charge (electron). In spite of the afore-
mentioned differences, reasonable agreement between 
the two models can be achieved by redefining the radius 
of the cluster to account for an effective electronic charge 
radius that exists due to spill-out of the electronic wave-
functions beyond

Rcluster = Ratomn1/3.    (6)

The ‘spill-out effect’ [33] is a quantum mechanical effect in 
which the valence electron density is considered to have 

a quantum mechanical tail that falls off exponentially in 
the region outside the radius of the sphere. The effective 
cluster radius is then considered to be δ larger than that 
defined above in Equation 6: 

Rcluster = Rwsn
1/3 + δ     (7)

where n is the number of atoms in the cluster, Rws is the 
Wigner-Seitz radius of the atom that composes the cluster 
and δ is the extent of electron spill-out outside the cluster 
radius. As the results plotted in Figure 5 demonstrate, the 
smaller the radius of the cluster, the lower is its electron 
affinity.
Modification of the classical equation to correct for the 
electronic spill-out effect is achieved by performing a 
χ-squared fit of the classical equation to the second elec-
tron affinity values obtained via DFT. If a fit is made to all 
EA2’s obtained via DFT, a spill-out factor of 0.51199 Å is 
obtained. If instead, the doubly magic Al13

− is not used for 
the fit, a spill-out factor of 0.63072 Å is obtained. Typical 
values that have been suggested for the spill-out factor 
(δ) of aluminium range from 0.70 Å – 0.79 Å [33] and 0.54 
Å –  1.1 Å [42,47]. Comparing these values with our esti-
mates of a spill-out factor, it is clear that the first estimate 
of 0.51199 Å is slightly lower than this range of values but 
the second estimate (obtained by neglecting the electron 
affinity of the doubly magic Al13

− cluster) of 0.63072 Å is 
well within this range. 

3.2.2 Coulomb barriers
The Coulomb barriers of aluminium monoanions as ob-
tained from the DFT computations have also been com-
pared to those values obtained from the classical model. 
As mentioned above in the case of electron affinities, the 
cluster radius is estimated to be larger when the electronic 
spill-out effect is included. If a value of 0.63072 Å is used 
for the spill-out factor (dotted line), the heights of the Cou-
lomb barriers of both monoanions in Figure 6 are found to 
be in better agreement with the DFT values. The Coulomb 
barrier as computed without the spill-out effect is also in-
cluded in Figure 6 (solid line) for comparison.
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Figure 5: Second electron affinities of aluminium clusters as 
a function of cluster size calculated using all-electron DFT 
calculations (spheres) (Section 3) and the classical charged 
conducting-sphere model (solid line) (Section 2). Inclusion 
of a spill-out correction in the classical calculations of the 
cluster radius yields better agreement between the quan-
tum mechanical and classical models (see text for details).

charged conducting-sphere model
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Even better agreement is obtained between quantum me-
chanical and classical results if the spill-out factor is set 
to the lower value of ~ 0.52 Å in the case of Al13

− and a 
higher value of ~ 0.75 Å for the larger Al39

− cluster. It has 
previously been observed that the value of δ is almost 
independent of cluster size [43, 44] and hence the spill-
out factor is expected to have an approximately constant 
value independent of the radius of the cluster. Hence, we 
use δ = 0.63072 Å, which was obtained from a χ-squared 
fit of the classical equation to the DFT values of the second 
electron affinities of Al18, Al23, Al39 and Al55 because, not 
only does it lie between the two extremes (0.52 Å and 0.75 
Å), but it also lies within the range of previously suggested 
values [23, 40, 41, 45]. 

4. CONCLUSIONS

This work provides a computational work on the expected 
appearance size, n, of dianionic aluminium clusters, Aln

2−. 
With the sole criterion that an aluminium cluster monoan-
ion must have a positive electron affinity in order to attach 
a second surplus electron, the all-electron quantum-me-
chanical DFT computations predict that doubly negative 
aluminium clusters will be observed for n ∼ 23. In contrast 
to this, the second electron affinity values estimated using 
the classical charged conducting-sphere model (neglect-
ing electronic spill-out) suggest that a cluster containing 
n ∼ 32 atoms will form a dianionic aluminium cluster. If 
however, the spill-out of valence electron density beyond 
the radius of the sphere is taken into account, the effec-
tive radius of the cluster is found to be larger than previ-
ously considered with the result that the second electron 
affinities will be more positive than those obtained without 
consideration of the spill-out effect. An estimate of the ex-
tent of this electronic spill-out can be obtained if it is as-
sumed that the disagreement between the two models is 
due solely to neglect of electronic spill-out in the classical 
treatment. An estimate of δ = 0.63072 Å, was found to give 
the best agreement between the computed EA2s with DFT 
and the charged conducting-sphere classical model. This 
value lies within the range of previously estimated values 
of δ.
If the classical charged conducting-sphere model is fur-
ther developed to account for both the stabilising effect 
of the Coulomb barrier and the possibility of electron loss 

via quantum mechanical tunnelling through the Coulomb 
barrier of the monoanion, it is found that the estimated di-
anion appearance size shifts to smaller values. The new 
charged conducting-sphere classical estimates for the ap-
pearance sizes of Aln

2- are then n ∼ 29 atoms (for a dianion 
with a lifetime of 1s) when the spill-out effect is neglected 
in the estimate of the cluster radius and n ∼ 19 when a 
spill-out factor of δ = 0.63072Å is used to estimate the ef-
fective cluster radius. Aluminium cluster dianions ranging 
in size from Al34

2- to Al44
2- were experimentally observed at 

the ClusterTrap experiment recently [14]. The relative di-
anion yield was found to increase rapidly over a small size 
range (Al37

2- and Al40
2-) and a small abundance (~1%) of 

dianionic clusters were observed for the size range 34 ≤ 
n ≤  37 atoms. A number of factors should be considered 
when comparing experimental observations with theoreti-
cal predictions. With regards to the DFT computations, it 
is important to note that the second electron affinities are 
computed under an assumption of idealised conditions - 
The cluster is considered to be isolated such that it un-
dergoes no interaction between itself and other clusters, 
particles or electromagnetic fields and the computations 
are also performed at the idealized conditions of T = 0 K 
(i.e. the computed energies do not contain a temperature 
correction). The classical estimates too are incapable of 
providing an exact value of the dianion appearance size. 
The charged conducting-sphere model uses a number of 
assumptions and simplifications and thus should only be 
considered to provide a rough estimate of the expected 
dianion appearance size. Furthermore, the estimate of the 
spill-out factor that is used to calculate an effective cluster 
radius is also obtained following an assumption and thus it 
is also not considered to be exact.
Finally, a simple calculation of the polyhedral volumes (with 
aluminium nuclei taken as the vertices) of the clusters Aln

−z 
with z = {0, 1, 2} and n = {13, 18, 23, 39, 55} shows a cage 
expansion on electron addition for Al18, Al39 and Al55 :

V(Aln
0) < V(Aln

−1) < V(Aln
−2)    (8)

In contrast to those aforementioned cluster sizes, addition 
of an electron to neutral Al13, results in a decrease of the 
cluster volume (ΔV ~ −0.4 Å3) and electron attachment to 
neutral Al23 does not influence the volume of that particular 
cluster. For all other cases, in which an electron is atta-
ched to neutral and monoanionic clusters, an increase in 
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Figure 6. The Coulomb barriers of (a) Al13
- and (b) Al39

- calculated using all-electron DFT calculations (crosses) are compared 
with the classical results from the charged conducting-sphere model obtained with (dashed line) and without (solid line)  inclu-
sion of an electronic spill-out effect of 0.63072Å. Computations with the hybrid Hartree-Fock – DFT model known as B3LYP, 

with the 6-31G(d) basis set of double-zeta quality and  an additional set of polarization functions for the aluminium atoms.
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the polyhedral volumes by 0.5 Å3 – 2.0 Å3 is observed (the 
increase is observed to a greater extent on addition of the 
second surplus electron as compared to the monoanion).
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