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RESUMEN 

En este trabajo, analizamos el comportamiento experi-
mental presión-temperatura en la transición de fase Iso-
trópico-Nemático para el cristal líquido p-azoxianisol a 1 
atm utilizando un desarrollo para el modelo Convex Peg 
HERSW. Adicionalmente, obtenemos los valores del volu-
men molecular para las corazas duras y atractivas por me-
dio de calculos cuánticos teóricos a los niveles PM3, PM6 
y B3LYP/6-311++G considerando la interacción molecular 
alrededor de los cristales líquidos (PAA)5. Se encontró que 
la mejor predicción de los datos experimentales aparecen 
cuando el efecto de la interacción molecular es conside-
rada en el cálculo del volumen. Especificamente para a/
b=3.7, V0=70.86 Å3  y a/b

l
=1.95 se obtuvo la mejor pre-

dicción.

Palabras clave: Transición de Fase, P-azoxianisol, Isotró-
pico-Nemático, Convex Peg, PAA.

SUMMARY

In this work, we analyzed the experimental pressure-tem-
perature behavior in the Isotropic-Nematic phase transi-
tion for the liquid crystal p-azoxianisol at 1 atm using a 
development for the HERSW Conveg Peg model. Addi-
tionally, we obtained the values of the molecular volumes 
for the hard and attractive cores from theoretical quantum 
calculations at PM3, PM6 and B3LYP/6-311++G levels 
considering the molecular interaction among the liquid 
crystals (PAA)5. We found that the best prediction for ex-

perimental data appears when the effect of the molecular 
interaction is considered in the volume calculation. 
Specifically for a/b=3.7, V0=70.86 Å3 and a/b

l
=1.95 the 

best prediction was obtained.

Keywords: Phase Transitions, P-azoxianisol, Isotropic-
Nematic, Convex Peg, PAA.

RESUM

En aquest treball, analitzem el comportament experimental 
pressió-temperatura en la transició de fase isotròpica-
nemàtica per al cristall líquid p-azoxianisol a 1 atm 
utilitzant un desenvolupament per al model Convex Peg 
HERSW. Addicionalment, obtenim els valors del volum 
molecular per les cuirasses dures i atractives mitjançant 
càlculs quàntics teòrics als nivells PM3, PM6 i B3LYP/6-
311++G considerant la interacció molecular al voltant dels 
cristalls líquids (PAA)5. Es va trobar que la millor predicció 
de les dades experimentals apareix quan es considera 
l’efecte de la interacció molecular en el càlcul del volum. 
Específicament, per a/b=3.7, V0=70.86 Å3 y a/b

l
=1.95 es 

va obtenir la millor predicció.

Paraules clau: Transició de fase, p-azoxianisol, Isotròpic-
Nemàtic, Convex Peg, PAA.
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INTRODUCTION

Onsager [1] showed that, certain colloids solutions 
comprised highly asymmetrical particles (plates or rods) 
and they form anisotropic phases at remarkably low 
concentrations. Such theory exhibits limitations for the 
case when the hard rods have intermediate elongations; 
however, the predictions about the phase transition are 
accurate when the rods are infinitely large. An alternative 
to improving the quantitative predictions of Onsager´s 
theory is including higher-order virial coefficients [2-3]. It 
is important to note that when this consideration is done, 
the inclusion of a greater number of parameters causes 
a higher computational cost. One of the most successful 
approaches has been the scaling method proposed by Lee 
[4-5], in which Parson´s approach [6] is used to describe 
the pair distribution function for a fluid with a non-spherical 
hard-core. Also, this approach has been studied for other 
kind of hard-models [7-8].
On the other hand, it has been reported several models 
that consider the existence of Maier-Saupe´s attractive 
interactions [9]. Thus, considering such theory the 
Isotropic-Nematic (I-N) transition can be described by 
means attractive interactions of long-range dispersal. 
Despite the difference in the basic principles, Onsager´s 
and Maier-Saupe´s theories are alike. In both theories, 
Helmholtz´s free energy consists of a mixing entropy 
term, where molecules with different orientations are 
treated as different species, additionally a term of energy 
interaction is considered. Recent results have motivated 
the development of new theories which consider the 
properties of the Maier-Saupe´s anisotropic attractive 
interactions [10-11].
There are several studies that describe the I-N phase 
transition of the p-azoxianisol (PAA) using different 
theoretical models. In such studies, it was used the 
perturbation´s theory to first order type Barker-Henderson 
[12], developed by Williamson [11], using specifically the 
HERSWS model “Convex Peg”. A Convex Peg model 
comprises a hard uniaxial ellipsoidal (HER) core with 
Square Well (SW) spherical and incorporates the Ponce 
and Renon´s approximation [13], in conjunction with 
the Parsons decoupling approximation [6]. For the case 
of PAA, Williamson reported a comparison among the 
theoretical prediction and some experimental values 
[11]. The theoretical values were obtained following the 
adjustment procedure proposed by Tjipto-Margo and 
Evans [10] for two cores of rigid uniaxial ellipsoids 3:1. 
In such study, the molecular volume of PAA was fixed at 
230 Å3, which corresponds to a spheroid, and then fitting e 
(depth square well potential) to reproduce the I-N transition 
temperature to 1 atm. The results obtained by Williamson, 
indicate that the adjustment procedure Tjipto-Margo 
and Evans [10] is ineffective, because the theoretical 
predictions do not compare favorably with experimental 
results. In this context, Martinez-Richa et al. [14] used 
the perturbation´s theory developed by Williamson to 
analyze the experimental behavior for PAA at 1 atm. The 
main difference in the original work of Williamson [11] and 
Martinez-Richa et al. [14], was that the size and volume of 
the PAA molecule were calculated using the parameters of 
the principal axis a of the ellipsoid semi axis of the Ellipsoid 
of revolution b and c, for the case uniaxial (b = c), It is 
important to mention that these parameters were previously 
reported by Garcia-Sanchez et al. [15]. Martinez-Richa et 

al. obtained that the molecular volume was approximately 
150 Å3. The results obtained by Martinez-Richa et al. in the 
case of two rigid uniaxial ellipsoids cores of 3.5:1 (where 
a=7.6 Å3 and b=c=2.17 Å, then a/b=3.5:b/b=1), were better 
than those obtained by Williamson [11], however, in such 
work it was no possible to get a quantitative prediction 
comparable with an experimental behavior.
In another study [15], it was proposed a perturbation 
theory to second order in conjunction with the approach 
of Parsons´s [6] and the approximation of long-range 
by Ponce and Renon´s [13] to analyze the behavior of 
the I-N phase transition for PAA at 1 atm. In that study, 
the PAA structure was obtained performing a geometry 
optimization at PM3 level. To determine the volume of 
the molecule, the minimal energy structure of PAA was 
enclosed in an ellipsoid of revolution, and then the values 
a and b for uniaxial case were measured [15]. It was 
found that a/b ≈ 3.5 and the molecular volume as 70.7 Å3. 
Comprising the theoretical predictions for the reason 3.5:1 
obtained by García-Sánchez et al. [15] with the obtained 
for Williamson [11] and Martínez-Richa et al. [14] with the 
experimental behaviour, one can conclude that the results 
obtained by García-Sánchez et al. [15] showed the best 
prediction. Analyzing the previous results, it is possible to 
observe that the molecular volume value is essential in the 
prediction of the pressure-temperature behavior and in the 
quality of the results obtained.
In other work, our group used the perturbation theory 
developed by us [15] for studying the experimental 
pressure-temperature behaviour of PAA at 1 atm in an 
I-N transition phase [16]. We proposed to calculate the 
isolated molecule volume by using density functional 
theory and Isodensity Polarized Continuous Model (IPCM); 
the results indicated that the molecular volume for PAA 
was 70.6 Å3. A comparison of the results found by García-
Sánchez et al. [15-16] indicates that the best theoretical 
prediction of the PAA experimental behavior was obtained 
when a DFT theory and IPCM model was employed [16]. 
Additionally, in that work it was found that a/b ≈ 3.643. 
Thus, we performed theoretical calculations for the ratio 
3.6:1 and 3.7:1. Albeit, the effect of a/b ratio was analyzed, 
it was found that, for the case a/b = l = 3, the theoretical 
prediction overestimates the experimental behavior 
pressure versus temperature for the PAA, while for a/b = l 
= 3.5 is the best theoretical prediction of the experimental 
behavior until now. On the other hand, García-Sánchez et 
al [17] used the perturbation theory developed by García-
Sánchez et al [15], and they reported a study on the 
effect of the potential range in the experimental behavior 
pressure versus temperature for the PAA.
In other context, González-Cabrera et al [18] used 
different convex peg models, and they found that the 
convex peg model HERSW predict quantitatively the 
experimental pressure-temperature behavior for the 
isotropic-nematic phase transition. In this work, we 
used the HERSW Convex Peg Model [18] to analyze the 
pressure-temperature behavior in the I-N phase transition 
of PAA at 1 atm. Additionally, we calculated the molecular 
volume of PAA using the semiempirical methods PM3 [19] 
and PM6 [20] and Density Functional Theory (DFT) [21] at 
B3LYP/6-311++G level. The reason for testing these levels 
of theories is to be able to assess whether it is critical or 
not to include all-electron effects (PM3 and PM6 methods 
versus DFT theory), and the effect of the correlation energy 
(DFT theory vs. PM3 and PM6 methods). Also, we analyzed 
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the effect of the molecular interaction by calculating the 
molecular volume from the system (PAA)5 (Figure 1). In 
this system, the molecular volume was calculated using 
an isosurface electronic density with the values of 0.08 
and 0.002 e/u.a.3. The individual PAA molecular volume 
was calculated through the ratio (total volume of (PAA)5)/
(number of PAA molecules).The volume so calculated 
was used into the perturbation theory for studying the 
experimental behaviour of PAA.

Figure 1 Five Molecules of p–azoxi-
anisol interacting with them.

MATERIALS AND METHODS

If one considers a system of N molecules in a volume V at 
a temperature T, density (r) is defined as N / V.  The center 
of the mass coordinates in a molecule i can be written as ri 
and the orientational coordinates as Wi. The normalization 
condition for an orientation of a set of coordinates is given 
by:

     (1)

In the case of a linear molecule dWI may be written as 
dcosq df/4p, where q is the polar angle of the molecular 
axis and f the azimuthal angle. The full set of translational 
and orientational coordinates is written as di = dri dWi.

From perturbation theory it has been shown that the 
Helmholtz free energy of a fluid interacting through a 
potential with both attractive and repulsive contributions 
can be written as

    

(2)

Where k is the Boltzmann’s constant, Aideal is the ideal 
contribution to the free energy, AΩ is a contribution to the 
free energy for entropy loss due to the orientational order, 
Aexcess is the free energy of the reference fluid and Aattractive 
is the attractive contribution of the free energy. The ideal 
contribution or kinetic contribution is given by

    (3)

In this expression Δ is the Broglie’s mean thermal 
wavelength. The orientational term of free energy is given 
by the Onsager’s expression

    (4)

Where f (Ω) is the single particle orientational distribution 
function for a solid angle Ω, that satisfies the normalization 
condition 

    (5)

The hard core or excess free energy is given by the 
following expression [4, 6-7]

    (6)

In this expression

    (7)
and

    (8)

In last equations, V0 is the hard core volume, η=rv0 is the 
packing fraction, <Vex

HC(Ω1,Ω2)> is the volume excluded 
to one convex hard core particle  with orientation given 
by Ω2 due to the presence of another convex hard core 
particle oriented along Ω1, the pointed brackets represent 
a weighted average over the molecular orientations 
and finally, the expression (8) is the Carnahan-Starling´s 
equation state [22]. For sake of clarity, we described the 
attractive contribution for a set of potential’s family in next 
sections.

THE HERSW POTENTIAL FAMILY

In this section we consider a potentials family which 
comprise a hard uniaxial ellipsoidal (HER) surrounded by a 
SW which is close to the edge of the hard core at the end 
of its major axis.
Into the Van der Waals approach of Tjipto-Margo and 
Evans, the attractive contribution to the free energy is 
given by

(9)

Here, Uat is the attractive part of the intermolecular po-
tential. For HERSW family we have the next potential

(10)

Where e is the square-well depth, l is the square-well 
range, σ(r12,Ω1,Ω2) is the closest approach of the center of 
mass of two molecules, σHC(r12,Ω1,Ω2)  y σ

l
(r12,Ω1,Ω2) are the 

closest approach of the centre of mass of two molecules 
of Hard Core and attractive of two molecules, respectively. 
Using this potential for evaluating the expression (9), we 
have

(11)
or

    (12)
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Where T* = kT/e is the reduced temperature and 
<Vex

l(Ω1,Ω2)> is the volume excluded to one attractive 
core due to the presence of relative orientations of two 
attractive cores. 
In general, the excluded volume of two uniaxial ellipsoids 
with arbitrary orientations Ω1 and Ω2 can be written as

    (13)

Where a/b is the ratio of the semi-major axis and the semi-
minor axis, which describes the anisotropy of an ellipsoid, 
σ is the minor axis and P2n (Ω1·Ω2) is the 2nth Legendre 
polynomial of Ω1·Ω2. In the case of the HERSW family the 
necessary volume functions for expression (11) are

    (14)
and

    (15)
Where b

l
 is the semi-minor axis of the ellipsoidal shaped 

SW range.
Additionally, the expression (12) can be expressed by

(16)

In this work, we proposed that

    (17)

ISOTROPIC-NEMATIC PHASE TRANSITION
In general, to evaluate the free energy, the functional must 
be minimized with respect to ƒ(W). In the isotropic phase 
calculations are simple because ƒ(W) is uniform and takes 
the value 1 according to the normalizing condition (1). 
Substituting this into the full expression for the free energy, 
the necessary integrals can be evaluated and a closed 
expression for the isotropic free energy is obtained. The 
reduced pressure and chemical potential can be calculated 
by using the usual thermodynamic relationship, given by

 

    (18)

and

    (19)

Where P is the pressure and μ is the chemical potential. 
To evaluate the thermodynamic properties of the nematic 
phase we must minimize the free energy functional with 
respect to ƒ(W); however, the procedure can be simplified 
employing symmetry properties of the nematic phase. In 
the nematic phase, the symmetry of hard cores is cylindrical 
and thus ƒ(W) does not depend on the azimuthal angle f and 
can be written as ƒ(q). In all the system considered in this 
work, the angular dependence of second virial coefficient 
is expressed using a Legendre’s expansion in

 
(W

1
⋅W

2
). The 

explicit dependence on these Legendre’s polynomials can 
be written employing the addition theorem:

(20)

Since ƒ(q) does not depend on the azimuthal angle each 
term in the polynomial series can be integrated with 
respect to f1 and

 
f2, which leaves to:

   (21)

To perform a final minimization, in this work we adopt the 
trial function method suggested by Onsager [23]. 

   (22)

In this approach, the functional form f (q) is assumed by 
choosing a function with one or more variable parameters. 
The necessary integrals can be evaluated and the free 
minimized with respect to the variable parameter η. 
Usually, in this process, a temperature is chosen and the 
free energy is minimized over a range of a. The minimized 
values for η are fitted to a polynomial in a and substituted 
back into the free energy for the Nematic phase expression. 
The pressure and chemical potential are then calculated 
from:

    (23)

and

(24)

Where σ(a) is obtained by substituting the trial function 
into the expression (4) and integrating. The isotropic-
nematic phase transition is then evaluated by ensuring 
for a fixing temperature that the chemical potential and 
pressure of each phase are the same.

MOLECULAR VOLUME
The molecular volume can be defined as the space region 
that is occupied by the molecule and such space can be 
related to the spatial distribution of minimal energy of 
nucleus and electrons in the molecule. The application 
of quantum theory to chemical systems allows the 
calculation of this molecular parameters [24] performing a 
geometry optimization [19]. In a previous works, our group 
has calculated the molecular volume of PAA considering 
different levels of theory and the influence of the solvent by 
mean of an isodensity PCM model [21]. In present work we 
analyzed the influence of molecular interactions caused 
by others PAA molecules on the individual molecular 
volume. We performed geometry optimizations of (PAA)5 
employing the PM3 and PM6 semiempirical methods 
[19-26]. Next, we optimized the (PAA)5 molecule using 
B3LYP/6-311++G level and the IPCM model [21]. From 
last calculation we determine the volume value occupied 
by an isosurface density of 0.08 and 0.002 electrons/Å3 
and we related this to the molecular volumes of the hard 
and attractive cores for the molecule. All calculations were 
performed on a server with Intel Core 2 Duo processors 



AfinidAd LXiX, 560, Octubre - Diciembre 2012 263

Xenon (Linux Fedora 1 operating system, 2.8 GHz, 1 Gb 
RAM) and calculated with Q-chem ver. 3.0 [27]. In Table 1 
are reported the molecular volumes values obtained from 
quantum calculations and IPCM methods for different hard 
attractive cores considering electron densities of 0.08 and 
0.002 electrons/Å3.

Table 1. Molecular volume obtained for (PAA)5 from 
PM3, PM6 and B3LYP/6-311++G calculations.

Optimized geom-
etry methods

Molecular Volume
0.08 electrons/Å3

Molecular Volume
0.002 electrons/Å3

PM3 70.90 281.12

PM6 70.85 282.15

B3LYP/6-311++G 70.86 254.25

RESULTS AND DISCUSSION

The main objective in this work is analyzing the predictive 
capacity of the Convex Peg Model HERSW of pressure-
temperature behavior in the Isotropic-Nematic phase 
transition for PAA at 1 atm. In general, we found that the 
phase diagram obtained in this work exhibits a Liquid (L) 
– Vapor (V) coexistence with a critical temperature Tc. Also 
there is an L-V-N triple point with a triple point temperature 
Tt. Under this point there is an N phase which coexists with 
the V phase. Note the triple point and the critical point of 
the N phase is coexisting with the L phase and above the 
critical point with a supercritical Isotropic fluid. Maybe the 
main limitation of this theory is that it is valid only for the 
Isotropic and Nematic fluids and it cannot predict phases 
with positional Smectic order (Sm), Crystalline (K), V-L-Sm 
or V-L-K triple points. Here, it is important to mention that 
as far as we know, the experimental phase diagram of PAA 
does not show these phases and triple points [28] which 

offers new possibilities to use perturbation theories for 
these kinds of studies [15, 29].

In Table 2, we compared the theoretical predictions for the 
PAA I-N phase transition at 1 atm, with the experimental 
data reported [28]. In this table <P2> is the second rank 
order parameter, <P4> is the four rank order parameter and 
DS/Nk is the entropy change. Observe that the all theories 
predict correctly the transition temperature. For the 
packing fraction, Flapper et al [30] by using an equation of 
state for hard sphere predicted adequately the properties 
considered in the Table 2. However, the others theories 
underestimate such properties even though the biaxial 
cores are used. It has been observed [10] that for systems 
formed by biaxial ellipsoids the I-N phase transition shifts 
to higher densities by increasing their biaxiality. Thus the 
opposite trend observed in Table 2 suggests the biaxial 
core theory overestimates the angular dependence on 
the attractive forces and then it induces a shift on the 
phase transition at lower densities. Biaxiality decreases 
the density jump in the I-N transition and reduces the 
orientational order in the nematic phase. These effects 
are predicted correctly by the biaxiality core theory when 
it is compared with the uniaxial models. Also, the entropy 
change in the phase transition is well represented by using 
a biaxial core, and the effect can be explained because the 
density, which jumps for the I-N phase transition, is smaller 
for these models. Also, it is important to mention that, 
in order to improve the prediction of the PAA isotropic-
nematic behavior, several approximations have been 
proposed. Thus, most of them include higher order virial 
coefficients since the inclusion of these parameters causes 
a higher computational cost. Additionally, some terms in 
those theories employ fitting parameters without physical 
meaning. Additionally, an advantage of the Convex Peg 
model used in this work is related to the inclusion of 
molecular measurable parameters such as the molecular 

Table 2 Comparison of experimental parameters of the I-N phase transition at 1 atm for PAA with the theoretical prediction.

Work a:b:c σ0 1+L/D l a/b
l

Vm [A3] (T[K])1 atm ηN <P2> <P4> DS/Nk

Experiment (PAA) [28] 408.9 0.620 0.550 0.180 0.170
Linder et al. [31] 5 230 408.0 0.220 0.120

Kromhout et al. [32] 5 230 408.0 0.380 0.200
Eldredge et al. [33] 2.5 230 434.0 0.510 0.970 6.500

2.5 295 295.0 0.510 0.970 6.500
Baron et al. [34] 2.5 230 627.0 0.450 3.500

2.5 295 208.0 0.550 0.930 3.250
Flapper et al. [30] 1.464 230 409.0 0.620 0.437 0.536

1.380 230 409.0 0.621 0.452 0.567
Ypma et al. [35] 3.0 409.0 0.596 0.473 0.590
Cotter M. A. [36] 3.0 230 410.4 0.445 0.542 0.887

Williamson D. C. [11] 3:1:1 3.0 100 408.8 0.548 0.570 0.230 0.670
3:1:1 3.0 230 409.0 0.548 0.570 0.230 0.670

Tjipto-Margo et al. [10] 3:1.4:1 3.0 230 406.0 0.523 0.400 0.110 0.230
3:1.45:1 3.0 230 411.0 0.523 0.360 0.090 0.230

Martínez-Richa et al. [14] 3:1:1 3.0 150 409.0 0.562 0.630 0.220 0.800
García-Sánchez et al. [15] 3:1:1 3.0 230 409.0 0.562 0.630 0.220 0.800

3.5:1:1 3.5 70 409.0 0.519 0.690 0.300 1.070
García-Sánchez et al. [16] 3.5:1:1 3.5 70.7 408.9 0.519 0.690 0.300 1.070

3.6:1:1 3.6 70.7 408.9 0.511 0.706 0.319 1.124
3.7:1:1 3.7 70.7 408.9 0.504 0.741 0.373 1.340

González-Cabrera et al [18] 3.5:1:1 1.75 70.7 408.9 0.499 0.972 0.910 2.705
3.6:1:1 1.80 70.7 408.9 0.493 0.771 0.423 2.788
3.7:1:1 1.85 70.7 408.9 0.492 0.782 0.443 2.869

In this Work 3.5:1:1 1.75 70.7 408.9 0.493 0.760 0.404 2.704
3.5:1:1 1.75 70.75 408.9 0.493 0.760 0.404 2.704
3.5:1:1 1.778 70.75 408.9 0.495 0.765 0.414 2.754
3.5:1:1 1.928 70.90 408.9 0.504 0.775 0.432 2.969
3.6:1:1 1.80 70.7 408.9 0.492 0.776 0.493 2.788
3.6:1:1 1.80 70.75 408.9 0.492 0.776 0.493 2.788
3.6:1:1 1.828 70.75 408.9 0.494 0.776 0.434 2.833
3.6:1:1 1.938 70.90 408.9 0.504 0.787 0.453 3.056
3.7:1:1 1.85 70.7 408.9 0.492 0.785 0.449 2.869
3.7:1:1 1.85 70.75 408.9 0.492 0.785 0.449 2.869
3.7:1:1 1.879 70.75 408.9 0.494 0.787 0.453 2.901
3.7:1:1 2.038 70.90 408.9 0.506 0.777 0.434 3.149
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volume in the prediction. In where the terms employed to 
improve the prediction a have physical meaning. 
Figure 2 shows a comparison between the HERSW 
model and experimental data [28], in the figure, the best 
prediction is obtained for the case, which considers the 
interaction between molecules, which a/b=3.5, V0=70.86 
Å3 and a/b

l
=1.85. In this context, Figure 3 shows that 

for a/b=3.6, the best theoretical prediction was obtained 
when the model considers the volume (V0=70.86 Å3) and 
the parameter a/b

l
=1.9. Finally, in Figure 4 we can see 

the same result as in the previous cases, as in the case 
a/b=3.7, the model that better describes the transition 
is when the molecular interaction is considered, it is for 
V0=70.86 Å3 and a/b

l
=1.95. On the other hand, in Figure 5 

a comparison of the theoretical model with experimental 
data is shown. In all cases the molecular volume employed 
was V0=70.86 Å3 and different values for a/b

l
. It is possible 

to observe that the best prediction is for a/b
l
=1.95.

Figure 2 Comparison between theoretical prediction 
HERSW model (with a/b=3.5 and different values for a/
b

l
) and experimental data of pressure-temperature be-

havior in the I-N phase transition at 1 atm of PAA [28].

Figure 3 Comparison between theoretical prediction of 
HERSW model (with a/b=3.6 and different value for a/
b

l
) and experimental data of pressure-temperature be-

havior in the I-N phase transition at 1 atm of PAA [28].

Figure 4 Comparison between theoretical prediction 
HERSW model (with a/b=3.7 and different value for a/
b

l
) and experimental data of pressure-temperature be-

havior in the I-N phase transition at 1 atm of PAA [28].

Figure 5 Comparison between theoretical prediction 
HERSW model (with V0=70.9 Å3 and different values for a/

b
l
) and experimental data of pressure-temperature be-

havior in the I-N phase transition at 1 atm of PAA [28].

CONCLUSION

In this work, we used the PAA molecular volume value 
obtained using PM3, PM6, DFT calculations and considering 
the molecular interaction among PAA molecules [28]. 
We found the best prediction for experimental data 
appears when the effect of the molecular interaction is 
considered into the volume calculation. Specifically for a/
b=3.7, V0=70.86 Å3 and a/b

l
=1.95 the best prediction was 

obtained. As to future directions, we confine ourselves 
below to isolating a few specific topics on particular 
materials considered above. Thus we single out:
1. To incorporate in Helmholtz´s free energy terms a 

contribution due to the flexibility. Although for the 
case of the PAA is quite small, for other liquid crystal 
this contribution is significant.

2. To use the HERSW model biaxial cores.
3. To study other molecules like PAP, 5CB, MBBA and 

EBBA by mean of the HERSW model and the mole-
cular volume value obtained from PM3, PM6 and DFT 
calculations considering the interaction with neighbor 
molecules. 
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