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Abstract: Jamshīd Ghiyāth al-Dīn al-Kāshī (d. 22 June 1429 ad) measured the fundamen-
tal parameters of Ptolemy’s lunar model (the radius of the epicycle, and the mean motions 
in longitude and anomaly) from his observations of the lunar eclipses of 2 June 1406, 26 
November 1406, and 22 May 1407 at Kāshān. He presents his data and his process of com-
putations in the prolegomenon to the Khāqānī zīj (1413 - 1414 ad). His data make up the 
third of four surviving full accounts of lunar measurements carried out during the late medi-
eval Islamic period. Kāshī’s error in the time of the maximum phase of the second eclipse is 
only ~ –8 minutes, an achievement that bears witness to his skill in making tolerably precise 
astronomical observations and also shows that the simple water and sand clocks available 
to him were relatively accurate. His input data include theoretical values for the longitude 
of the Sun and of the lunar ascending node, which he derives from the Īlkhānī zīj (Mara-
gha, ca. 1270 ad), based, in the solar theory, upon Ibn Yūnus’ (1009 ad) Ḥākimī zīj. Kāshī 
computes a value of ~ 5;17 for the epicycle radius; this does not represent an improvement 
over Ptolemy’s 5;15, but is more precise than other values measured in medieval Islamic 
astronomy. He uses Muḥyī al-Dīn al-Maghribī’s (d.1283 ad) last value for the mean lunar 
longitudinal motion (measured from the latter’s observations at Maragha between 1262 and 
1275 ad) and Hipparchus’ value for the mean motion of the Moon in anomaly in order to 
compute the mean lunar motions in longitude and in anomaly respectively in the time inter-
vals between his triple eclipses. As a result, his final values for the motional parameters of 
the Moon remain very close to those of his two predecessors.

Keywords: Ptolemy, Medieval Islamic Astronomy, Ghiyāth al-Dīn Jamshīd al-Kāshī, Lu-
nar Model, Eclipse, Epicycle, Mean Motion

1. Introduction

This paper aims to present a reasonably complete description and evaluation of 
the measurement of the fundamental parameters of the Moon in Ptolemy’s model, 
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carried out by the Persian mathematician and astronomer Jamshīd Ghiyāth al-Dīn 
al-Kāshī (d. 22 June 1429 ad). Kāshī presented his lunar measurements in the 
prolegomenon to his Zīj-i Khāqānī dar takmīl-i Zīj-i Īlkhānī (Zīj dedicated to the 
Great Khan, in completion of the Īlkhānī zīj),1 completed in 816 h/1413 - 1414 ad, 
and later dedicated to Ulugh Beg (d. 1449 ad).2

As its title and introductory remarks make clear, except in the case of the 
Moon, Kāshī based his zīj on the radices and parameter values used in Naṣīr al-
Dīn al-Ṭūsī’s (1201 - 1274 ad) Īlkhānī zīj, compiled at the Maragha observatory 
about 1270 ad, which was, in turn, based upon Ibn Yūnus’ (d. 1009 ad) Ḥākimī 
zīj in the case of the solar and lunar parameter values (see Section 3.2 and the end 
of Section 3.4). Kāshī was also well acquainted with Muḥyī al-Dīn al-Maghribī 
(d. June 1283 ad), the outstanding observational astronomer at the Maragha ob-
servatory, and with his Adwār al-anwār mada ʼl-duhūr wa-ʼl-akwār (Everlasting 
cycles of lights), the last zīj Muḥyī al-Dīn composed on the basis of his indepen-
dent observations performed at Maragha between 1262 and 1275 ad, which he 
explained in full detail in his Talkhīṣ al-majisṭī (Compendium of the Almagest).3 
Kāshī calls Muḥyī al-Dīn a «sage/wise man» (ḥakīm) and explicitly mentions the 
Adwār, which he calls Zīj al-kabīr (Great zīj) — an alternative title for the Adwār 
which can also be found in other sources prior to Kāshī’s time.4 For example, in 
Khāqānī zīj II.2.1, he mentions some corrections of (scribal) errors in the sine ta-

1. For bio-bibliographical information on Kāshī, see A.P. Youschkevitch’s and B.A. Rosenfeld’s 
article in DSB, Vol. 7, pp. 255 - 262; P.G. Schmidl’s entry in BEA, pp. 1161 - 1164; J. Vernet’s short 
entry in EI2, Vol. 4, pp. 702 - 703; and the references mentioned therein. The contents of Kāshī’s zīj 
were listed and surveyed in Kennedy 1956, pp. 164 - 166, 1998a, 1998b. Kennedy also studied the 
various parts of this zīj: see the papers collected in Kennedy 1983, pp. 122 - 124 (double-argument 
tables for planetary longitudes, 164 - 169 (parallax theory), 522 - 525 (an interpolation scheme) and 
in Kennedy 1998c, Traces VII (spherical astronomy), VIII (equation of time), XVIII (calculation 
of the ascendant). For Kāshī’s writings on astronomical instrumentation, see Kennedy 1960 (on an 
equatorium) and the papers in Kennedy 1983c, pp. 394 - 404 (observational instruments), 440 - 480 
(equatoria). Kennedy also prepared a translation of Kāshī’s zīj, which has not been published (I owe 
this information to Dr. Benno van Dalen). 

2. Since the base meridian of Kāshī’s zīj is Shiraz, it seems that he primarily intends to offer his 
work to Iskandar b. ʽUmar Shaykh Mīrzā I (1384 - 1415 ad). Iskandar, ruler of central Iran from 1409 
ad, who had a strong interest in knowledge and culture and was Kāshī’s patron (Kennedy 1998a, p. 2). 

3. See Mozaffari 2018a; 2018 - 2019. 
4. E.g., in Kamālī’s Ashrafī zīj (compiled at the turn of the 14th century), F: ff. 231v, 232r, 233r, 

G: f. 248v. 
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ble in the Īlkhānī zīj and in Muḥyī al-Dīn’s zīj,5 and in III.2.7, he refers to Muḥyī 
al-Dīn’s method for the calculation of the slant component of the latitude of Mer-
cury.6 More notably, Kāshī deploys Muḥyī al-Dīn’s value for the mean daily lunar 
motion in longitude as a provisional value for the computation of the mean lunar 
longitudinal motions in the periods between his trio of lunar eclipses (see Section 
3.3), and, inevitably, the final value he derives for this parameter is very close to 
Muḥyī al-Dīn’s (cf. Section 3.4).

Kāshī’s lunar measurements constitute the most original part of his zīj, at least 
as far as observational astronomy is concerned, in which he is keen to show his 
skill as an observational astronomer and for this reason, he included these mea-
surements in its introduction. Other innovations and improvements he presents in 
this work, as summarized in a long detailed list in the prologue (prior to its last 
section devoted to the lunar measurements), are related to computational proce-
dures and methods of calculation. The most interesting instance of the latter is his 
novel approach to the computation of planetary latitudes on the basis of Ptolemy’s 
models in Almagest XIII.7

According to Almagest IV and V, the quantification of Ptolemy’s lunar model 
needs the observation of a trio of lunar eclipses (as close to each other in time as 
possible) in order to derive the radius of the epicycle. One such observation would 
also suffice for the derivation of the mean motions of the Moon in longitude and 
in latitude. The derivation of the eccentricity needs an observation of the Moon 
near quadrature under some special conditions. Kāshī’s lunar measurements rep-
resent the third of four full accounts of lunar measurements that have come down 
to us from the medieval Islamic period: the first two are by Abū al-Rayḥān al-
Bīrūnī (the lunar eclipses of 1003 - 1004, Ghazna) and Muḥyī al-Dīn al-Maghribī 
(the lunar eclipses of 7 March 1262, 7 April 1270, and 24 January 1274), and the 

5. The sine table in the Maragha zījes was in fact taken from Ibn Yūnus. It is worth noting that 
the reference to Muḥyī al-Dīn in II.2.1 can only be found in MS. Q1 (f. 24r) of Kāshī’s zīj; in MS. 
S (f. 28v), the passage in question is written in the right margin, in which the reference to Muḥyī al-
Dīn’s zīj has been blacked out; and in the MSS of the final edition (IO: f. 32r, Q2: f. 24v, C: p. 46), 
there is no mention of Muḥyī al-Dīn in that place. The different versions of the Khāqānī zīj will be 
briefly discussed below (see Section 2). 

6. Kāshī, Zīj, IO: f. ff. 103v - 104r, P: —, Q1: f. 88r, Q2: f. 50v, S: f. 75v, C: pp. 179 - 180. The 
passage in question is found in al-Maghribī’s Adwār II.5.3, CB: ff. 17v - 18r; M: f. 18v. Wābkanawī 
later revised it in his Muḥaqqaq zīj III.5.4: T: ff. 54v - 55r; P: ff. 83r - v; Y: ff. 99r - 100r. 

7. See Van Brummelen 2006, for a detailed study. 
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fourth is due to Taqī al-Dīn Muḥammad b. Maʽrūf (the lunar eclipses of 1576 - 1577 
observed at Istanbul, Cairo, and Thessalonica).8

In the study of the medieval astronomical corpus, it is intriguing to try to 
establish the degree of precision astronomers attained when making direct obser-
vations. To do so, we must examine the extent to which their observational data 
were accurate (within the intrinsic constraints of their naked-eye empirical instru-
ments) in tracking the motions of the celestial objects. This information is avail-
able in the few observational records preserved from them or in other relevant 
materials (e.g., star tables), which can serve as evidence in this respect. Or, in the 
absence of any surviving observational data, we must establish to what extent the 
unprecedented values they adopted for the various structural and motional param-
eters of the Ptolemaic solar, lunar, and planetary models were precise. The times 
of the maximum phases of the triple lunar eclipses Kāshī observed in his native 
city, Kāshān, in central Iran, are the only evidence found in his works that can help 
us judge his practical skill as an astronomical observer. The paper is organized as 
follows. In Section 2, an English translation of Kāshī’s passage on his lunar meas-
urements is presented. Section 3 is devoted to commentary: his input data (both 
observational and theoretical) are analysed in 3.1 (times) and 3.2 (solar longitudes); 
in 3.3, his derivation of the lunar epicycle radius is discussed and commented upon; 
and, finally, in 3.4, his measurement of the mean lunar motions in longitude and 
in anomaly is examined. Finally, Section 4 presents my conclusions.

2. Text

The translation of the section on the lunar measurements from the prolegomenon 
of the Khāqānī zīj is presented below on the basis of seven manuscripts identified 
by the sigla IO, Q1, Q2, P, C, L, and S,9 whose bibliographical information and 
copying dates (if available) are given in the list of references at the end of the paper. 
(For the edition of the original Persian text, see the Appendix.) MS. S is, maybe, 

8. See Mozaffari 2014; Mozaffari and Steele 2015; Mozaffari 2018a, esp. pp. 599 - 600, 607. Of 
the lunar measurements in other communities in the medieval period, the ones made by Levi ben 
Gershon (1288 - 1344) are worth mentioning; for his eclipse observations, see Goldstein 1979, and 
for his non-Ptolemaic lunar models, see Goldstein 1972; 1974a; 1974b. 

9. Kāshī, Zīj, IO: ff. 4r - 6v, P: pp. 24 - 28, Q1: ff. 2r - 3v, Q2: ff. 3v - 4v, S: ff. 4r - 6v, C: pp. 6 - 9, 
L: pp. 389 - 393. 
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an autograph. In MS. L, there are only two fragments from Kāshī’s zīj in nine pag-
es, while the other six manuscripts contain the complete (or at least a large part 
of the) contents of this work.

MSS. IO, Q2, P, and C make up one family, while MSS. S and L present an-
other version. The late Prof. E.S. Kennedy already made a comparison between 
MSS. IO and S, and from «a slight indication from the simplified tables of lati-
tudes of Mercury», he tentatively concluded that MS. S «may be the earlier ver-
sion».10 The differences between the two groups of manuscripts are also evident 
in other places, for example, the table of the first lunar equation: in the final 
version (MSS. IO, Q2, P, and C), the first thirty entries are given to seconds of arc 
and the rest to arc-minutes, but in the first edition (MS. S), all entries are given 
to arc-minutes. The two editions differ clearly on four occasions in the section 
on the lunar measurements, which we have marked by underlining the relevant 
sentences in our edition/translation. One of them is where Kāshī refers, for the 
third time, to Euclid’s Elements: the correct reference is Euclid II.6, which can be 
found in the first group of MSS, while MSS. S and L erroneously refer to III.6. In 
some cases, however, two MSS belonging to the two different editions resemble 
each other. A prominent example is found in the first table containing the solar, 
lunar, and nodal positions: MSS. L and P coincide in using the Arabic names for 
the written numbers assigned to the triple lunar eclipses (while the other MSS all 
have the Persian equivalents) as well as in committing a scribal error in writing 
 MS. Q1 is almost identical to the final .(«shift») نقل instead of ,(«distance») بعد
version, but in certain places, it also resembles the earlier edition (notably, in 
mistakenly referring to Euclid III.6). Perhaps it represents an intermediate stage 
in the evolution of this zīj from the early version to the final edition. The consid-
erations given above are correct as far as the introductory remarks on the lunar 
measurements are concerned, but a thorough analysis is necessary in order to 
identify, record, and classify all the differences between the two families of extant 
manuscripts of Kāshī’s zīj.

MSS. IO and Q2 are closely related to each other, since the marginal comments 
and glosses in both are identical and arranged similarly (in diagonal lines, above 
or below a sentence, etc.). Thus, one of them might have served as a prototype for 
the other, or they might have a common origin. These comments can also be found 
in MS. P. A few of these additions are inserted into the main text in MSS. IO and 

10. Kennedy 1998a, p. 3. 
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Q2, but all of them were placed inside the text in MS. P, so that there is no way of 
recognizing that they do not belong to the original.

The other fragment preserved in MS. L is also related to the Moon: it refers to 
the procedure of the calculation of the longitude of the Moon, according to Ptol-
emy’s method.11 This was later included in Khāqānī zīj III.2.3.12 Its title (Burhān 
bar taqwīm-i qamar, «The proof for [the procedure of the calculation of] the longi-
tude of the Moon) differs slightly from the one in both versions of the zīj (Dar 
taqwīm-i qamar, «On the longitude of the Moon»). It ends with the statement «I 
will [continue to] write on these problems».

We emphasize only the major differences (all underlined in our edition/trans-
lation) which clearly distinguish the two families of MSS from each other. Our 
additions to the original text are only for the sake of clarity and are placed within 
square brackets. Some useful marginal and commentary notes inserted into the 
text in the various manuscripts consulted for the present study (mostly, from the 
first group; especially, MSS. IO and Q2) are given inside curly brackets. Most of 
the selected comments are highlighted in order to clarify the terminology applied 
to the text and to indicate the arcs and angles standing for the differences in the 
epicyclic anomaly and equation between the triple lunar eclipses. Other marginal 
glosses are added to explain the simple geometrical basics and computational 
procedures, which we do not need to include in our edition/translation.

Remark on the correction of the mean motions (awsāṭ) of the Moon from the 
observations of lunar eclipses:

[I] We observed three lunar eclipses at the city of Kāshān, and derived the mean mo-
tions of the Moon from them in the same manner as Ptolemy did, except that he as-
sumed that the centre of the [lunar] epicycle at the [times of] lunar eclipses is in the 
plane of the ecliptic, and [therefore] took the ecliptic point diametrically opposite 
(naẓīr) to the longitude (taqwīm) of the Sun at the mid-eclipse as the longitude of the 
Moon [at that time]. [Instead,] we took the intersection of the equator of the inclined 
(māʼil) [sphere/orb of the Moon] and the great circle that passes through the centre 
of the umbra (ẓill) and is perpendicular to the plane of [the equator of] the inclined 
[sphere/orb] of the Moon as the longitude (mawḍiʽ) of the Moon, because the «mid-

11. Kāshī, Zīj, L: pp. 394 - 397. 
12. Kāshī, Zīj, IO: ff. 95v - 97r, P: —, Q1: ff. 83r - v, Q2: ff. 44v - 45v, S: ff. 70v - 71v, C: pp. 168 - 170.
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eclipse» means the moment when the Moon is located at that point.13 Ptolemy 
demonstrates this in proposition 2 in chapter 6 of Book VI of the Almagest, but for 
the sake of convenience, he did not take it into account [in his lunar measurements].14

[II] The first eclipse took place on the night of the thirtieth of the old (qadīm) 
Shahrīwar-māh [i.e., the month of Shahrīwar, the sixth month] in the year 775 
Yazdigird. There had passed 3;14,30 absolute{, i.e., true,} hours (sāʽāt-i muṭlaqa{, 
yaʽnī, ḥaqīqiyya})15 or 2;56,29 equated hours (sāʽāt-i muʽaddala){, i.e., mean hours 
adjusted by the equation of time (yaʽnī, wasaṭiyya muʽaddala bi-taʽdīl al-ayyām)}16—
that is, in terms of the assumed radix which will be mentioned in the third Book 
(maqāla) [of this work]17—from midnight to the mid-eclipse.

The second eclipse took place in the night of the twenty-seventh of the old 
Isfandārmadh-māh [i.e., the month of Isfand, the twelfth month] in the mentioned 
year. The time passed from midnight to the mid-eclipse: 1;13,5 absolute hours or 
0;48,46 equated hours.

The middle of the third eclipse took place on the night of the eighteenth of the old 
Shahrīwar-māh in the year 776 Yazdigird. The time passed from midnight to the 
mid-eclipse was absolutely 4;18,30 hours or as equated: 3;58,46 hours.

[III] We computed the longitude of the Sun and the mean longitude (wasaṭ) of the [lunar] 
ascending node at the middle of the triple lunar eclipses as follows:

[Table 1: The solar and lunar positions for the times of the mid-eclipse phases of 
Kāshī’s trio of the lunar eclipses.]

[1] [2] [3] [4] [5]

First   78;55,10,41° 274;32,46°  6;32,  3°  +0;1,29,  2° 258;56,39,43°

Second 252;13,53,38 283;54,51 3;51,15 +0;0,52,40   72;14,46,18

Third   68;14,18,43 293;17,40 1;31,59 –0;0,20,58 248;13,57,45

13. A marginal note inserted in the text in MSS. P and C reads: {The middle of the eclipse is 
always closer to the node than the point at which the true conjunction [or opposition] takes place.} 

14. MSS. S and L differ slightly here: Ptolemy mentions this in chapter 6 of Book VI of the 
Almagest, but did not take it into account.

15. A marginal comment in MSS. IO, Q2, and P. 
16. A marginal addition in MSS. IO, Q2, and P. 
17. This parenthetical phrase is found only in MSS. S, L, and Q1. 
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[1] The solar longitude at the mid-eclipse [λ☉]
[2] The mean longitude of the node [i.e., the longitude of the ascending node as counted 

in the direction of decreasing longitude: 360° — λ☊]
[3] The solar distance from the [closest] node
[4] The equation of shift (taʽdīl-i naql) [s]
[5] The longitude of the Moon in the inclined sphere/orb at the mid-eclipse [λ☽]

[IV] The lunar motion {in longitude}18 from the middle of the first eclipse to the middle 
of the second is equal to 173;18,6,35°, and the period between the two eclipses is 
equal to 176 days plus 21;58,35 absolute{, i.e., true}19 hours or 21;52,17 equated{, 
i.e., mean}20 hours. In this interval of time, {i.e., the period in terms of the equated 
hours,}21 the mean [lunar] motion in longitude is 171;3,13,26°, and the [mean lunar] 
motion in anomaly is 151;20,36,10°. It is clear that the [difference in the epicyclic] 
equation corresponding to this arc [i.e., the mean lunar epicyclic motion just men-
tioned] is additive and is equal to 2;14,53,9°{, because the mean motion in longitude 
is less than the true longitudinal motion}.22 Also, the lunar motion {in longitude}23 
from the middle of the second eclipse till the middle of the third is equal to 
175;59,11,27°, and the period between the two eclipses is 177 days plus 3;5,25 abso-
lute hours or 3;10,0 equated hours. In this time span, the mean motion in longitude 
is equal to 173;57,39,20°, and the [mean] motion in anomaly is 154;13,33,34°. It is 
clear that the [difference in the epicyclic] equation corresponding to this arc [i.e., the 
mentioned mean lunar anomalistic motion] is additive and is equal to 2;1,32,7°.

[V] Then, we combine figures 3, 4, and 5 from chapter 5 of Book IV of the Almagest into 
a single figure here [Figure 1]. We take the circle ABC to be the orb of the [lunar] 
epicycle, and the points A, B, [and] C as being the positions of the Moon at the mid-
dle of the trio of lunar eclipses in sequence. The three intercepted arcs between these 
points are known, because arc AB is the [mean] anomalistic motion between the first 
and second eclipses, and its [corresponding difference in the epicyclic] equation is 
additive, and arc BC is the [mean] epicyclic motion between the second and third 
eclipses, and its [corresponding difference in the epicyclic] equation is also additive. 
Thus, there remains arc CA = 54;25,50,16°. The [difference in the epicyclic] equa-
tion corresponding to this arc is subtractive and is equal to 4;16,25,16°{, which is the 

18. A marginal comment in MSS. IO, Q2, and C. 
19. A marginal note in MSS. IO, Q2, and P. 
20. A marginal gloss in MSS. IO, Q2, and P. 
21. A marginal comment in MSS. IO, Q2, P, and C.
22. A marginal gloss in MSS. IO, Q2, P, and C. 
23. A marginal note in MSS. IO, Q2, and P. 
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sum of the two mentioned [differences in the epicyclic] equations [i.e., the positive 
differences in the epicyclic equations corresponding to arcs AB and BC]}.24 It is no 
longer unclear whether the apogee [of the epicycle] does not lie on the two arcs AB 
and BC, because both are less than half a cycle [i.e., the arc of a semicircle = 180°] 
and their [corresponding differences in the epicyclic] equations are additive. Thus, it 
should be located on arc CA. Let D be the centre of the ecliptic. We join the lines DA, 
DB, and DC. DA intersects with the epicycle at the point E. We join the lines BC, EC, 
and EB. We drop the two perpendiculars EZ and EH from the point E [, respectively,] 
to the lines DC and DB, and the perpendicular BT from the point B to the line CE.

[VI] The sine of the angle ADC { — which is the sum of the two mentioned differences in 
the [epicyclic] equation — }25 is 4;28,16,32, which is the length (miqdār, «size») of 
the line EZ in terms of units (ajzāʼ, pl. of juzʼ, «part») of which [the length of] the line 
DE is 60. Since the angle AEC taken as a central angle is equal to 54;25,50,16° and 
taken as an inscribed angle is equal to 27;12,55,8° and the angle ADC is equal to 
4;16,25,16°, the angle ECD remains, according to Euclid I.32: 22;56,29,52°; its sine: 

24. A marginal comment in MSS. IO, Q2, and C.
25. A marginal note in MSS. IO, Q2, P, and C. 

[Figure 1: The lunar epicyclic positions in Kāshī’s triple lunar 
eclipses as drawn by him in the Khāqānī zīj.]
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23;23,15,21, which is the length of EZ in terms of units of which EC is 60. Thus, the 
length of EC is equal to 11;28,15,3 in terms of the units of which DE is 60. Also, the 
sine of the angle ADB { — which is the angle of the difference in the [epicyclic] equa-
tion between the first and second eclipses — }26 is 2;21,12,56, which is the length of 
EH in terms of the units of which DE is 60. Since the angle AEB taken as a central 
angle is equal to 208;39,23,50° and taken as an inscribed angle is 104;19,41,55° and 
the angle ADB is 2;14,53,9°, the angle EBD remains equal to 102;4,48,46°; and its 
supplement, i.e., the angle EBH, is equal to 77;55,11,14°; its sine: 58;40,16,48, which 
is the length of EH in terms of units of which EB is 60. Thus, EB is equal to 2;24,24,48 
in terms of the units of which DE is taken as 60. Also, the angle CEB { — which [i.e., 
the corresponding arc BC] is the arc of the [mean motion in] anomaly between the 
second and third eclipses — }27 taken as a central angle is equal to 154;13,33,34° and 
taken as an inscribed angle is equal to 77;6,46,47°; its sine: 58,29,19,22, and its co-
sine: 13;22,54,14. These are[, respectively,] the lengths of the lines BT and ET in 
terms of the units of which EB is 60. Hence, in terms of the units of which EB is 
2;24,24,48—that is, in terms of the units of which DE is 60—the length of BT is 
2;20,46,33, the length of ET is 0;32,12,30, and the length of EC is 11;28,15,3. Thus, 
the length of CT remains equal to 10; 56,2,33; its square: 1,59; 33,11,45,42,30,9. The 
square of BT is 5;30,17,50,6,54,9. The sum of the two squares is 2,5;3,29,35,49,24,18, 
which is the square of BC; its root: 11;10,58,36, which is the length of BC in terms 
of the units of which DE is 60. In terms of the same units, the length of EB is 
2;24,24,48. But the chord BC is 116,58,38,44 in terms of units of which the half-di-
ameter of the epicycle is 60. Thus, in terms of the same units, DE is 627;37,13,55. In 
terms of the same units, the chord BE is 25;10,36,46. Thus, the arc EB is 24;13,19,42°, 
and the arc AEB is 151;20,36,10°. Hence, the arc AE is 127;7,16,28°; its chord, i.e., 
[the length of] the line AE, is 107;26,55,18. This is less than the diameter [of the 
epicycle, taken as 120]. As a result, the epicycle centre must be outside the segment 
AE. Let us take it to be the point K. We draw a line from the point D, such that it 
passes through the point K and cuts through the epicycle at [the points] L and M, both 
of which are [the epicyclic apsides: respectively, the point of] the greatest distance 
[i.e., apogee] and [the point of] the least distance [i.e., perigee]. Then, the rectangle 
contained by ED, which is 627;37,13,55, and the whole AD, which is 735;4,9,13, is 
equal to 2,8,9,4;32,22,14,49,15,55. This is equal to the rectangle MD, LD, as is 
known from Euclid III.35 [read: 36]. Then, if we add to it the square on MK, which 
is 1;0,0, according to Euclid II.6,28 this would result in the square on DK, which is 

26. A marginal addition in MSS. IO and Q2. 
27. A marginal gloss in MSS. IO, Q2, and C.
28. MSS. S, L, and Q1: III.6. 
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equal to 2,9,9,4;32,22,14,49,15,55; its root: 681;52,6,18, which is the length of DK 
in terms of units of which KM is 60. Therefore, the length of KM, the half-diameter 
of the epicycle, is 5;16,46,36 in terms of units of which DK is 60.

[VII] Then, we draw the perpendicular KNS from the point K to AE, and join AK. Thus, 
according to Euclid III.3, AN is equal to EN. Then, if we add half of AE, which is 
53;43,27,39, to DE, which is 627;37,13,55, this results in 681;20,41,34, which is 
the length of DN in terms of the units of which DK is 681;52,6,18—that is, in terms 
of the units of which KM is 60. Thus, DN is 59;57,14,10 in terms of the units of 
which DK is taken as 60. This is the sine of the angle SKM; its arc: 87;45,17,2°. This 
is [the size of] the arc SEM; its supplement is 92;14,42,58°, which is [the size of] 
the arc LS. The sum of the two arcs SE — which is half of [the arc] ASE — and EB, 
as just mentioned, is equal to 87;46,57,56. Thus, the arc LEB, [which is] the dis-
tance of the Moon from the true [epicyclic] apogee (dhurwa-i marʽī), is 180;1,40,54°, 
which is the equated [epicyclic] anomaly (khāṣṣa-i muʽaddala) [of the Moon] at the 
midpoint of the duration of the second eclipse. The angle NDK, which is the com-
plement of the angle NKD, is 2;14,42,58°. And the angle ADB is 2;14,53,9°. Thus, 
the angle KDB remains equal to 0;0,10,11°. This is the partial (or small, juzʼī) [epi-
cyclic] equation, by which the mean longitude of the Moon is less than its true 
longitude [at the time]. We subtract it from the longitude of the Moon in its inclined 
sphere/orb at the middle of the second eclipse, which is equal to 72;14,46,18°; there 
remains: 72;14,36,7°. The result is the mean longitude of the Moon at the middle of 
the second eclipse. The mean longitude of the Sun at the time is 252;52,28,57°. The 
double elongation is 358;44,14,20°. The equation of anomaly {for this centrum [= 
double elongation]}:29 0;11,6,45°. The equated anomaly: 180;1,40,54°. Thus, the 
mean anomaly would be 180;12,47,39°.

[VIII] The mean longitude of the Moon at the midpoint of the second lunar eclipse Ptol-
emy observed at Alexandria — as mentioned in the Almagest — is 29;30°; the equat-
ed anomaly: 64;38°; the double elongation: 0;3,38°; the equation of anomaly: 
0;32,40°; the mean anomaly: 64;5,20°. That had occurred 497 years, 363 days, and 
13 absolute hours at the longitude of Alexandria, which is 11;23,36 hours at the 
longitude of Kāshān, before the Yazdigird era.

[IX] Thus, the interval of time between the two observations is 1272 years, 354 days, 
and 0;36,41 absolute [hours] or 0;46,23 equated [hours]. In the period between the 
two observations, the mean motion in longitude [of the Moon] is, after 17006 

29. An addition in MSS. IO and Q2. 
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complete cycles (dawr), 42;44,36,7°, and the [mean] motion in its anomaly is, after 
16862 complete cycles, 116;7,27,39. So, we divided each of the mentioned [mean] 
motions, in longitude and in anomaly, plus the complete cycles, into the time span 
between the two observations in terms of days and fractions of a day, so that the 
[mean] daily motions were obtained. Multiplying them [by the number of days], 
we obtained the [mean] motions in days, months, and years [Table 2]. The period 
from the middle of [our] second eclipse to the midday of the first day of the year 
of 781 Yazdigird is five years, nine days, and 11;11,14 hours at the [base] meridian 
of the zīj, for the longitude of Kāshān, which is 11;3,14 hours at the [base] merid-
ian of the zīj for the longitude of Shīrāz. We determined the [lunar] mean motion 
in longitude and in anomaly in this period and added them to the corresponding 
quantities at the middle of the second eclipse, so that the results are the mean lon-
gitude and [mean] anomaly [of the Moon] at noon on the first day of the year 781 
[Yazdigird] at the [base] meridian of the zīj for the longitude of 88° [Shīrāz]. From 
the mean longitude of the Sun and the mean longitude of the Moon, we obtained 
the double elongation and its daily, monthly, and annual motions.

[Table 2: Kāshī’s mean lunar daily, monthly, and annual motions.]

Mean motion in anomaly

signs

degrees

m
inutes

seconds

thirds

fourths

fifths

sixths

In one day   0 13   3 53 56 30 37 20

In one month   1   1 56 58 15 18 40   0

In one year   2 28 43   8 46 17   6 40

In 100 years   7 21 54 37   8 31   6 40

In 600 years 10 11 27 42 51   6 40   0

At the beginning of 781 [Y]   0 27 24 39 48 56 18 12

Mean motion in longitude

signs

degrees

m
inutes

seconds

thirds

fourths

fifths

sixths

sevenths

In one day   0 13 10 35   1 52 47 50 50

In one month   1   5 17 30 56 23 55 25   0

In one year   4   9 23   6 26 11   4 14  10

In 100 years 11   8 30 43 38 27   3 36 40
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In 600 years   7 21   4 21 50 42 21 40   0

At the beginning of 781 [Y]   4   3 49 31   8 45 23 55 34 [54?]

[X] This is the result of the observations of the lunar eclipses we have mentioned. If my 
lifetime provides us with an opportunity and the government of the world’s king 
helps us, we will observe the remaining planets, on the basis of which we will com-
pose a zīj. Here we bring forward what we are able to do for the moment.

3. Commentary

3.1. The times of the lunar eclipses

Kāshī’s dates and times of the mid-eclipse phases of the trio of lunar eclipses, as 
given in paragraph [II], are summarized in Table 3.30 The first column indicates 
the number assigned to each eclipse, and the second column contains the dates 
Kāshī gives in the Yazdigird era and their equivalents in the Julian calendar and 
Julian Day Number (JDN). As can be easily understood from the date given for 
the second eclipse, Kāshī’s dates are in accordance with the reform of the Yazdi-
gird calendar carried out after 1007 ad, according to which the five epagomenal 
days were moved from the end of the eight month (Ābān) to that of the last month 
(Isfandārmadh).31 Therefore, the term qadīm in the text has nothing to do with the 
«early» Persian calendar.32 Kāshī also gives the civil date for eclipses nos. 1 and 
2, but the astronomical date (from noon to noon) for eclipse no. 3 (the civil date of 
eclipse no. 3 is 19 - 6 - 776 Y).33 The third and fourth columns include our author’s 
values for the times of the maximum phases respectively in apparent and mean lo-
cal times. The differences between them are related to the equation of time, which, 
as noted in paragraph [I], was explained in Kāshī’s zīj III.1.1.34 Finally, the last 

30. Nos. 08220, 08221, and 08222 in 5MCLE. 
31. See B. van Dalen’s entry Taʼrīkh in EI2, Vol. 10, esp. pp. 262 - 263. 
32. Kennedy (1998a, p. 5) gives the date of the second eclipse as 1 November (?) 1406. It seems 

that he had the month of December in mind, and that he mistakenly took the date to refer to the 
early Yazdigird calendar. 

33. Kennedy (1998a, p. 5) gives the date of the third eclipse as 21 May 1407. 
34. Kāshī, Zīj, IO: ff. 77r - 78r, P: —, Q1: ff. 72r - v, Q2: ff. 32v - 33r, S: ff. 60v - 61r, C: pp. 142 - 144. 

Kāshī’s table of the equation of time (see below, note 53) has already been investigated at length in a 
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column gives the errors in the time. Table 4 presents a detailed account of the situa-
tions of the triple lunar eclipses at Kāshān, including the times of the occurrence of 
their various phases in Mean Local Time (MLT) and the horizontal coordinates of 
the Moon at each (altitude/azimuth, h/Az) together with the times of moonrise and 
moonset and the eclipse magnitudes. The errors listed in the last column in Table 
3 are in fact the differences between Kāshī’s mean times and the times of the mid-
eclipse phases in Table 4. Unlike Bīrūnī, Muḥyī al-Dīn, or Taqī al-Dīn, Kāshī does 
not provide us with any magnitude estimations for his only partial eclipse (no. 1).

Table 3: Kāshī’s values for the times of the mid-eclipse phase 
of the triple lunar eclipses of 1406 - 1407.

Nos. Date Apparent time Mean time Error

1

Night of
30 - 6 - 775 Y
2 June 1406
JDN 2234752

3;14,30h 2;56,29h –1;10h

2

Night of
27 - 12 - 775 Y
26 November 1406
JDN 2234929

1;13,  5 0;48,46 –0;  8

3

Night of
18 - 6 - 776 Y
22 May 1407
JDN 2235106

4;18,30 3;58,46 –0;41

Table 4: The circumstances of the three lunar eclipses of 1406 - 1407.

N
os.

M
oonrise

S. Partial 
Phase

S. Total Phase

M
id-Eclipse

E. Total Phase

E. Partial 
Phase

M
oonset

M
ag

1
18:44

( – 1d)

  2:31 —–– 4:  6 —–– 5:42 4:52
0.77

+21;44°/  38;59° —–– +  7;38°/55;27° —–– –  8;54°/68;25°

1988 paper by Kennedy, reprinted in Kennedy 1998c, Article VIII.
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2
16:33

( – 1d)

23:17 ( – 1d) 0:20 0:57 1:34 2:37 7:11
1.31

+75;50°/329;16° +76;2°/30;36° +70;58°/54;29° +64;27°/68;23° +52;14°/82;20°

3
18:37

( – 1d)

  2:44 3:51 4:40 5:28 6:35 4:51
1.49

+20;10°/  42;40° +9;59°/54;13° +  1;48°/61;23° –  6;36°/67;40° –19;23°/75;42°

Notes:
– S. = Start, E. = End.
– In each row, the first line gives the times (all in MLT), and the second (shaded) line the hor-

izontal coordinates h/Az.

As for times, Kashī only reports the times of the mid-eclipse phases, without 
providing us with any details as to how he measured and/or computed them. In 
the introduction to Book V of the Khāqānī zīj, he briefly describes a simple clep-

Figure 2: Horizon profile as seen from Kāshān, displaying the altitude limitations due 
to the geographic bearings. The dots depict the lunar apparent motions with respect to 
the local horizon for eclipses nos. 1 and 3 during one hour before moonset. The two 
points at which the maximum phases occurred are magnified and are marked with ar-
rows pointing to the right.

18108_Suhayl18_2020.indd   8318108_Suhayl18_2020.indd   83 11/12/20   10:4011/12/20   10:40



S. Mohammad Mozaffari

84

sydra (fankān or bankām) in the shape of a bowl or container with a tiny hole at 
its apex, which could be used as either an inflow or an outflow water-clock, and 
in V.I.1, he mentions an hourglass (shīsha-i sāʽat).35

Figure 2 shows the horizon profile as seen from Kāshān: the region highlight-
ed in light grey at the bottom of the graph shows the altitude limitations, as seen 
from the city, due to its peripheral geographical bearings. A mountainous area 
blocks a great deal of the view to the southwest, with a maximum of ~ 6.3° at 
an azimuth of ~ 30°, which is caused by Siyāh kūh (Mt. Siyāh, «Black»), with a 
height of ~ 3000 m above sea level, located about 18 km from the city.

The midpoint of a partial eclipse is difficult to determine directly from ob-
servation (maybe it could be detected with the aid of an auxiliary optical de-
vice, like a camera obscura). Naturally, for a total eclipse (especially, if it shows 
a perceptible duration) it would be wholly impossible to estimate its maximum 
point. For both types of eclipse, one can derive the moment of the mid-eclipse 
from the measurement of the times of the beginning and end of the partial and/
or the total phase. There was apparently no difficulty in this regard in Kāshī’s 
second eclipse, since the Moon was far above the horizon at Kāshān during 
its occurrence (see Table 4), and for this reason Kāshī’s time is likely to be 
exceptionally precise in this case. The maximum phase in eclipses nos. 1 and 
3 occurred at times when the Moon was located very near the local horizon. 
The lunar nocturnal motions during these two eclipses in the altitudinal region 
below 10° are displayed in Figure 2: note that the two paths are inextricably 
entwined. Neither eclipse was observable from Kāshān at its end (cf. Table 
4). The maximum phase of the first eclipse, a partial one, could be observed 
at an altitude of ~ 7.5° above the mountainous area in the southwest; but the 
abovementioned difficulty cannot in any way account for Kāshī’s egregious 
error of more than one hour for its time. For the third eclipse, a total one, it is 
not known how he was able to measure the time of its maximum phase. Such a 
serious problem is not encountered in the other lunar measurements surviving 
from the late medieval Islamic period, as the Moon was above the horizon from 

35. Kāshī, Zīj, IO: ff. 183r - 184r, P: —, Q1: ff. 155r - 156r, Q2: ff. 80v - 81r, S. ff. 140v - 141r, C: 
pp. 321 - 323. Both terms used by Kāshī for the water-clock are Arabicized forms of the Persian term 
pangān. See Mozaffari 2018, pp. 620 - 628 on these names and for a short history of clepsydras in 
Islamic astronomy. Four other observational instruments and measurement devices are also men-
tioned in the introduction to Book V: the parallactic instrument, the portable quadrant, the mural 
quadrant, and line and plumb. 
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the beginning until the end of all the sets of triple lunar eclipses observed by 
Bīrūnī,36 Muḥyī al-Dīn,37 and Taqī al-Dīn.38

Nevertheless, it should be borne in mind that Kāshī had no choice: from Al-
magest IV.6 and IV.11, it is known that for the purpose of measuring the lunar 
epicycle radius, one should select a trio of lunar eclipses that are close to each 
other in time, so as to minimize the effect of the probable errors in the lunar mean 
motion in longitude and in anomaly. The almost excessive rigour Kāshī sought in 
order to achieve a precise derivation suggests that he bore this condition in mind 
when he planned for his lunar measurements. From 1400 ad, when he was a very 
young man, until the time he finished his zīj (ca. 1413 - 1414 ad), only three other 
lunar eclipses were observable at Kāshān, at least, from the beginning to the max-
imum phase: those occurred on 3 August 1403, 21 March 1410, and 2 September 
1411 (all three were total and could actually be observed from the beginning to 
the end). So, of the six lunar eclipses observable from Kāshān during the time 
interval in question, the triple eclipses of 1406 - 1407 were the closest to each 
other in time and therefore met the essential requirement laid down by Ptolemy.39

As we have seen, Kāshī must inevitably have computed the times of the maxi-
mum phases of the first and third eclipses with the aid of a priori known theoreti-
cal data, and so his observation reports of these eclipses seem to have gone through 
a process of analysis, rather than being representative of the results of pure em-
pirical work. As we shall see below, it is practically certain that not only the Īlkhānī 

36. Bīrūnī observed his first two lunar eclipses at Jurjān (Gurgān, northern Iran) and the third at 
Jurjāniyya (now in Turkmenistan). During the eclipses the altitude of the Moon was never less than 5°; 
its lowest altitudes were at the beginning of the first eclipse (~ 5 1/4°) and at the end of the third (~ 7°). 

37. All of Muḥyī al-Dīn’s three lunar eclipses were fully observable at Maragha from the be-
ginning till the end of the partial phase, as the altitude of the Moon was never below 5°; its lowest 
altitude was at the beginning of the partial phase of the first eclipse, ~ 5;11° at an azimuth of ~ 
271;4° (see the horizon profile as seen from the Maragha observatory in Mozaffari 2018a, Figure 3 
on p. 620), which took place about 23 minutes after sunset at 18:5 MLT. 

38. During all of Taqī al-Dīn’s triple lunar eclipses the Moon was above the local horizon, at al-
titudes of not less than 18°, at Istanbul and Cairo; note that, as Taqī al-Dīn remarks, the third eclipse 
was observed by someone else in Cairo, due to the cloudy weather in Istanbul, and the data (we are 
explicitly told, the altitude of Aldebaran, α Tau: ~ 71;14° at the mid-eclipse phase at Cairo) were 
then transmitted to him (see Mozaffari and Steele 2015, p. 356). 

39. Bīrūnī and Taqī al-Dīn also worked with triple lunar eclipses occurring within two years, 
but Muḥyī al-Dīn gave preference to a trio taking place between 1262 and 1274, which he believed 
to have observed «with extreme accuracy». 
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zīj, but also Muḥyī al-Dīn’s Adwār al-anwār, were among Kāshī’s main sources in 
the derivation of the theoretical data he needed in order to accomplish his lunar 
measurements. A computation of the times of the true oppositions for Kāshī’s trio 
of the lunar eclipses on the basis of the parameter values adopted in the two zījes 
mentioned, adjusted for the meridian of Kāshān (L = 86° from the Fortunate Isles), 
results in the values listed in the tabulation below:

Nos. Īlkhānī zīj Error Adwār Error

1 4:  4 –  2m 3:50 –1;10h

2 1:42 +45 1:29 –0;  8

3 5:  2 +22 4:54 –0;41

It is obvious that for the first and third eclipses both sets of theoretical times 
are significantly more precise than Kāshī’s, but the opposite is true for the sec-
ond one.

A possible way to derive the times of the maximum phases of eclipses nos. 1 
and 3 was to measure the times of the beginning of the partial phases of these two 
eclipses, and then to add to them half of their durations, as derived from a specific 
reliable zīj. This procedure could be safe and have no undesirable consequences 
if both the observational and theoretical input were sufficiently precise. If Kāshī’s 
observations of the times of the first contact in eclipses nos. 1 and 3 were as accu-
rate as the time he gives for the maximum phase of the second eclipse, he could 
achieve tolerably accurate values for the maximum points of the first and third 
eclipses, because the theories established in the Maragha astronomical tradition 
provided him with sufficiently precise values for the durations of the two eclipses 
in question, as we will now explain. According to the Īlkhānī zīj II.8, the practi-
tioner should enter the lunar eclipse table with the true lunar daily motion in lon-
gitude (v) and latitude (β) in order to derive the magnitude and the half-duration 
of the partial phase and of the totality.40 For the first and third eclipses, the Īlkhānī 
zīj gives v = 11;57°, as computed from the differences in the lunar longitude at 
noon between the two consecutive days around the eclipses. As we will see later, 

40. Ṭūsī, Īlkhānī zīj, C: pp. 47 - 49, P: ff. 17r - v, M: ff. 30r - v, T: ff. 23r - v, B: ff. 26r - v, F: ff. 
22v - 23r, L: ff. 27v - 28r, Fl: ff. 25v - 26r, O: ff. 23r - v. 
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Kāshī’s values for the lunar longitude (λ) and the longitude of the ascending node 
(λ☊) — already presented, respectively, in Cols. [5] and [2] in [Table 1] — were in 
fact computed on the basis of the Īlkhānī zīj, from which we have β = +0;34° for 
the first eclipse and β = –0;8° for the third one; by interpolating these quantities in 
the lunar eclipse table, we reach the following theoretical results:41

Nos. Half-duration Error42 Magnitude Error

1 1;25h ~ –11m 7.7 ≈ 8 digits ~ –1 digit43

3 1;49 ~ –  7 Total ~ –1 digit 

The above errors in the times of the maximum phases of the first and the third 
eclipse compare favourably with Kāshī’s error in the corresponding time of the 
second eclipse. Therefore, it seems unlikely that he applied this procedure to de-
rive the maximum points of his first and third eclipses.

Another possibility is that he adjusted the theoretical values computed for 
the times of the maximum phases of eclipses nos. 1 and 3 by taking into account 
the difference he found between the observed and theoretical values for the time 
of the maximum phase of the second eclipse. Support for this hypothesis comes 
from the fact that all differences between his times and those derived from the 
Maragha theories (as given earlier) amount to about one hour.

41. The relevant entries in the table read as follows:

v → 11;48° 12; 0°

|β|  ↓ Mag Half-duration Mag Half-duration

  8′ Total 1;49h Total 1;49h

34′ 7;35 1;23 7;47 1;25

Ṭūsī, Īlkhānī zīj, C: pp. 88 - 89, P: ff. 29v - 30r, M: ff. 54r - v, B: ff. 45v - 46r, F: ff. 38v - 39r, L: ff. 
48r - v. The tables in the other three manuscripts consulted (T: Suppl. P: ff. 22v - 24r, Fl: ff. 44v - 46r, 
O: ff. 45v - 48r) are similarly distorted, as all give mag = 7;5 and half-duration = 1;23h for |β| = 34′ 
and either v = 11;48° or 12;0°. 

42. From Table 4, the duration of the first eclipse was 3;11 hours, and the third one lasted 
3;51 hours. 

43. Note that a modern magnitude of 0.77 (cf. Table 4) corresponds to about 9 digits.
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3.2. Solar theory

All the theoretical values Kāshī put forward in paragraph [III], i.e., the longitudes 
of the Sun and of the lunar ascending node at the maximum points of the triple 
lunar eclipses ([Table 1], Cols. [1] and [2]), are in excellent agreement with the 
ones computed on the basis of the Īlkhānī zīj as adapted to the terrestrial longi-
tude L = 86° (Kāshān). All basic parameters of the solar theory in the Īlkhānī zīj, 
except for the longitude of the solar apogee, were, in turn, taken from Ibn Yūnus’ 
(d. 1009 ad) Ḥākimī zīj, very likely via Muḥyī al-Dīn al-Maghribī’s ʽUmdat al-
ḥāsib wa ghunyat al-ṭālib (Mainstay of the astronomer, sufficient for the student), 
the first work that the latter composed after joining the Maragha team.44

As laid down in Section 645 and the solar tables of the Ḥākimī zīj, Ibn Yūnus’ 
solar theory consists of the following parameters on the basis of the ancient eccen-
tric model: (1) the eccentricity e = 2;6,10 p (the radius of the geocentric orbit, the 
deferent, is taken as R = 60 p) from the maximum equation of centre qmax = 2;0,30°;46 
(2) the motion in longitude ω = 0;59,8,19,44,10,31,13,58...°, as derived from the 
solar mean motion in one Persian year 359;45,40,3,44°,47 which corresponds to (3) 
the length of the tropical year Ty = 365;14,32... days; (4) the longitude of the solar 
apogee λA = 86;10° for 372 Y, whose beginning is equivalent to 16 - 3 - 1003 ad (JDN 
2087478); and (5) the mean longitude at mean noon in Cairo (L = 65°) on 1 - 1 - 980 
ad, as derived from the tables, λ̄ = 285;25°.

In the Īlkhānī zīj, we find the tabular value for λA equal to 86;24,21° for the 
beginning of 601 Y (17 - 1 - 1232 ad = JDN 2171046), to which 2;0,30° should be 
added (due to the always-additive, but not displaced, table of the solar equation 
of centre); so, λA = 88;24,51°.48 It is obvious that the difference of 2;14,51° be-
tween the values of λA in Ibn Yūnus’ zīj and the Īlkhānī zīj does not fit any of the 

44. See Mozaffari 2018 - 2019, pp. 154 - 156, 206. 
45. Ibn Yūnus, Zīj, L: p. 120; Caussin 1804, p. 215 - 217. 
46. Table of the solar equation of centre: Ibn Yūnus, Zīj, L: pp. 173 - 174. 
47. Solar mean motion tables: Ibn Yūnus, Zīj, L: pp. 137 - 138, 155 - 156. 
48. Ṭūsī, Īlkhānī zīj, the tables of solar mean eccentric and apogeal motions: C: pp. 56 - 59, P: ff. 

20v - 21v, M: ff. 33v - 35v, T: ff. 26r - 27v, Q: ff. 32r - 33r, B: ff. 29v - 31r, F: ff. 26r - 27r, L: ff. 31r - 32v, 
Fl: ff. 28r - 29v, O: ff. 29r - 30v, Ca: ff. 22v - 24r (in T, the yearly motions are for the period 703 - 803 
Y/1333 - 1433 ad, while in the others, for 601 - 701 Y/1232 - 1331 ad); the table of the solar equation 
of centre: C: pp. 60 - 65, P: ff. 21v - 23r, M: ff. 36r - 38v, T: ff. 28r - 30v, Q: f. 33v (incomplete), B: ff. 
31v - 34r, F: ff. 27v - 29r, L: ff. 33r - 35v, Fl: ff. 30r - 32v, O: ff. 31r - 33v, Ca: ff. 24v - 27r. 
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well-known values for the rate of precession in use at the time (i.e., ψ = 1° in 66, 70, 
or 70 1/4 Persian years).49 Moreover, the abovementioned radix value of λA in the 
Īlkhānī zīj is slightly different from the epoch value of λA = 88;20,47° in Muḥyī al-
Dīn al-Maghribī’s two Maragha works, i.e., Talkhīṣ and Adwār, which, as the latter 
explains in detail in Talkhīṣ IV.4 - 5, was drawn from the value 88;50,43° measured 
for 16 December 1264 on the basis of his four solar observations in 1264 - 1265.50 
Accordingly, the value of λA in the Īlkhānī zīj must have been the result of solar 
observations and measurements made at Maragha, independent of Muḥyī al-Dīn’s. 
In his Tuḥfa and Ikhtiyārāt, Quṭb al-Dīn al-Shīrāzī (d. 1311 ad) states that the solar 
eccentricity is 2;5,51, according to the modern astronomical observers (it is Ibn al-
Aʽlam’s value),51 and that the longitude of its apogee is equal to 87(9?);6,51° at the 
beginning of 650 Y, according to the new observations (raṣad al-jadīd).52 I can see 
no reason to doubt Shīrāzī’s remark, even though it is imprecise. It is worth noting 
that Ibn Yūnus’ updated value 89;51,13° (= 86;10° + (631 - 372)/701/4) was more ac-
curate than both the values used in the Īlkhānī zīj and the one measured by Muḥyī 
al-Dīn at the time (modern: 89;46° for 17 - 1 - 1232 ad).

Kāshī worked with this revised solar theory, without realizing that in principle 
it belonged to Ibn Yūnus. Thus, from λA = 88;24,51° for the beginning of 601 Y in 
the Īlkhānī zīj and adopting ψ = 1°/70y, he computes λA = 90;0° for the year 712 Y, 
as mentioned in the heading of his table for the equation of time.53 He also states in 
III.2.2 that «in the new observation (raṣad-i jadīd), they found e = 2;6,9»,54 from 
which he computes qmax = 2;0,29,19° [...,21] for the mean anomaly of 92;0°;55 in 
the table of the solar distance from the Earth, he gives the maximum distance as 

49. See Mozaffari 2017, pp. 6 - 7. 
50. al-Maghribī, Talkhīṣ, ff. 57v - 61v. Muḥyī al-Dīn’s solar tables on the basis of his new theory 

worked out in Maragha can be found in Talkhīṣ, ff. 64r - v and Adwār, CB: ff. 73v - 74r, 80v - 81r, M: 
ff. 75v - 76r, 82v - 83r. For a presentation of Muḥyī al-Dīn’s solar observations and measurements at 
Maragha and their evaluation, see Saliba 1985; Mozaffari 2018a, esp. pp. 598, 606; 2018b, pp. 193, 
195 - 197, 204, 206 - 207, 229, 235. 

51. See Mozaffari 2013, Part 1, p. 326, 330. 
52. Shīrāzī, Tuḥfa, f. 38v; Ikhtiyārāt, f. 50v. The tabular value in the Īlkhānī zīj for this year is 

87;6,21°, and so λA = 89;6,51°. 
53. Kāshī, Zīj, IO: ff. 126v - 127r, P: p. 106, Q1: ff. 103v - 104r, Q2: —, S: ff. 91v - 92r, C: pp. 

215 - 216. 
54. Kāshī, Zīj, IO: f. 95v, P: —, Q1: f. 82v, Q2: f. 44v, S: f. 70v, C: p. 167. 
55. Kāshī, Zīj, IO: ff. 130v - 131v, P: pp. 113 - 115, Q1: ff. 107v - 108v, Q2: —, S: ff. 95r - 96r, C: 

pp. 223 - 225. 
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62;6,9,0.56 By «new observation», he is undoubtedly referring to work carried 
out at the Maragha observatory; it can be seen here how, without considering 
the historical chain of the development of the Islamic zīj literature, even an out-
standing figure as Kāshī was liable to make anachronistic mistakes as well as alter-
ations in the fundamental parameter values. He gives the values 170;1,9,58° and 
90;59,8,34°, respectively, for the solar mean anomaly and longitude of apogee at 
the epoch, that is, the beginning of 781 Y (4 - 12 - 1411 ad, JDN 2236763), which 
are in full agreement with the Īlkhānī zīj.57 The only component of Kāshī’s solar 
theory that departs from Ibn Yūnus and the Īlkhānī zīj is the solar parallax: in the 
table of the horizontal parallax of the Sun in V.1.2, he gives πmax = 0;2,21° for the 
least Sun-Earth distance and πmax = 0;2,11° for its greatest distance;58 both values 
appear to have been derived from the mean solar distance of 1523;2,5E.r., which 
he had already calculated in his Sullam al-samāʼ (The stairway to the heavens, 
1407 ad).59

It is curious to see whether and how Ibn Yūnus’ solar theory could have been 
in use for over four centuries and still provide tolerably accurate result. As we 
have discussed in detail elsewhere, a solar theory constructed on the basis of the 
eccentric model can potentially trace the solar motion within the degree of pre-
cision attainable in observational instruments of the pre-telescopic era, on con-
dition that its parameters are determined with acceptable precision. This is prin-
cipally because of the simplicity of the Earth’s motion, in comparison with that 
of the planets, which means that the theoretical deviation between the eccentric 
motion in a circular orbit and the Keplerian motion in an elliptical orbit is only 
small. Ibn Yūnus’ value for Ty is only +9 seconds in error, which causes the error 
in ω to be only –2.57339 ×10 - 7°; thus the error in the mean longitude accumulates 
to 1′ after the passage of 177.3 years, presumably because, unlike the Mumtaḥan 
team (first half of the ninth century) and al-Battānī (d. 929 ad), Ibn Yūnus did 
not use Ptolemy’s faulty equinox times with the errors of more than +1 day. For 
this reason, his solar theory would be expected to present a stable behaviour even 
over long periods. In addition, he measured tolerably accurate values for the solar 
orbital elements: his value for e is in error by about +4×10 - 4 (if R = 1) and his 

56. Kāshī, Zīj, IO: f. 157r, P: —, Q1: f. 132r, Q2: —, S: f. 117, C: p. 284. 
57. Kāshī, Zīj, IO: f. 127v, P: p. 107, Q1: f. 105r, Q2: —, S: f. 92v, C: p. 217.
58. Kāshī, Zīj, IO: f. 185r, P: —, Q1: f. 157r, Q2: f. 82r, S: f. 142r, C: p. 325. 
59. Kāshī, Sullam al-samāʼ, N: f. 8v, D: f. 12v, V: f. 5r; cf. Kennedy 1998, p. 39. 
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value for λA is only +0.4° off. Furthermore, Ibn Yūnus’ value for for the beginning 
of 980 ad is in error by about +1′.60

We have computed, by Benno van Dalen’s very useful software Historical 
Horoscopes, solar ephemerides on the basis of Ibn Yūnus’ theory for 13,000 days 
after 980.0 and 1280.0 ad and on the basis of its revised version adopted in the 
Īlkhānī zīj for 13,000 days after 1280.0 and 1400 ad The longitudinal errors dλ 
are plotted against time as well as against the modern longitudes λ′, respectively, 
in Figures 3 and 4, and their statistics are given in Table 5. They do not exceed ±6′ 
even after the passing of some 400 years. In Figure 5, we have plotted the errors 
in the solar declinations dδ (= the errors in the noon altitude of the Sun) that are 
pertinent to the errors dλ in the Īlkhānī solar theory for time intervals of 13,000 
days after 1280.0 and 1400.0 ad: they are below ±2.5′. It is very difficult to detect 
such small errors with naked-eye devices.

Table 5: The statistics for the errors in Ibn Yūnus’s solar theory and its 
revised version in the Īlkhānī zīj, which was used by Kāshī.

Epoch Mean (′) σ (′) MAE (′) Min (′) Max (′)

Ibn Yūnus   980.0 +1.2   2.1   2.1 –2.8 +4.7

Ibn Yūnus 1280.0 –0.3   2.7   2.5 –4.5 +4.7

Īlkhānī 1280.0 –0.3   3.5   3.1 –4.9 +5.9

Kāshī 1400.0 –0.8   4.0   3.7 –6.2 +6.0

In the prolegomenon to Rukn al-Dīn Āmulī’s Zīj-i Jāmiʽ Bū-saʽīdī (written ca. 
1438), there is a list of the corrections to the radices adopted in the Īlkhānī zīj. We 
are told that they were suggested by Quṭb al-Dīn al-Shīrāzī in the case of all plan-
ets, except for the Sun and Mercury (including a correction of +30′ in the mean 
lunar longitude), and by a team of Maragha astronomers in the case of the Sun, 
after Ṭūsī’s death. Although, as discussed elsewhere,61 a part of the story given in 
Rukn al-Dīn’s account is fanciful, it is interesting that the corrective quantities in 
this anecdotal history appear to have a basis in reality: for the Sun, the correction 
was to decrease the radix of its mean eccentric anomaly by 0;3°. We are told that 

60. Mozaffari 2018b, esp. pp. 212, 220, 226, 235. 
61. Āmulī, Zīj, T1: ff. 1v - 2r, P1: f. 1v, P2: f. 103r. See Mozaffari and Zotti 2013, pp. 57 - 59 (the 

text has been edited on the basis of MSS T1 and P1 on p. 146). 
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the reason was to keep the Persian solar calendar (beginning with the instant of 
the vernal equinox) in order, so that a reduction of 3′ was to compensate for a 
persistent error of about half an ecliptic sign in the horoscope of the year (equiv-
alent to an error of ~ 1 hour in the derivation of the time of the beginning of the 
year), and thus to prevent it from drifting further away from the time of the vernal 
equinox. As can be seen in Figures 4(a) - 4(c), the correction is in clear agreement 
with the errors in Ibn Yūnus’ solar theory used in the Īlkhānī zīj, reaching ~ 3′ – 4′ 
at the times of the vernal equinox. We do not know who was responsible for the 
correction in the Īlkhānī solar theory, but its examination and the discovery of an 
error of a few minutes of arc in the solar longitude and/or a few hours in the Sun’s 
arrival at such critical points/times as the Spring equinox was only possible with 
the aid of a large-size instrument, like the mural copper quadrant of the Maragha 
observatory (radius ~ 266 cm and graduated to subdivisions of 1′).62 Kāshī was 
apparently unaware of these corrections, since none of them were applied in his 
zīj (for the correction of the Moon’s mean longitude, see the remark at the end of 
Section 3.4).

3.3. The computation of the size of the lunar epicycle

The input data for deriving the radius of the lunar epicycle are the longitude of the 
Moon, λ☽, at the middle of each eclipse and its mean motions in longitude Δ ̄λ and 
anomaly Δα̅ between each pair of subsequent eclipses. The latter quantities can 
be computed from the reliable pre-existing values for the mean motions, which 
can be provisionally used without any undesirable consequences in short periods. 
In what follows, we will see how Kāshī obtained them.

The values of λ☽ are directly computed from the solar theory, with the exception 
that Kāshī does not take a point diametrically opposed to the solar true position 
(λ☉ + 180°) as the lunar longitude, but adjusts it with the «equation of shift» (or the 
«third lunar equation», as called in Kāshī’s table of this equation in his zīj) in order 
to derive the position angle of the Moon on its inclined orb with respect to the ver-
nal equinox point (not as projected onto the ecliptic). Kāshī sees this as an advan-
tage of his lunar measurement, as he emphasizes it in paragraph [I]. The equation 
of shift (or «reduction to the ecliptic» in modern terminology) is a function of the 

62. On this instrument, see Mozaffari 2018a, pp. 616 - 620. 
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(a)

(b)

(c)

Figure 3: The longitudinal errors in Ibn Yūnus’s solar theory for 13,000 days after 980.0 
ad (a) and in its revised version used in the Īlkhānī zīj for 13,000 days after 1280.0 ad 
(b) and 1400.0 ad (c).
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(a)

(b)
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(c)

Figure 4: The longitudinal errors in Ibn Yūnus’s solar theory for 13,000 days after 
980.0 ad (a) and in its revised version used in the Īlkhānī zīj for 13,000 days after 
1280.0 ad (b) and 1400.0 ad (c), plotted against the modern longitude values.

(a)
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inclination of the lunar orbit (i) and the argument of latitude, i.e., the difference 
between the lunar longitude (taken either on its inclined sphere or on the ecliptic) 
and the longitude of the lunar ascending/descending node (λβ = λ☽ – λ☊/☋): s = 
tan – 1(tan λβ cos i) – λβ (see Figure 6).63 The formula intrinsically gives the prop-
er sign for s; but if it is taken as always-positive (as it is in a medieval table), the 
rule is: s ≤ 0 if 0° ≤ λβ ≤ 90° or 180° ≤ λβ ≤ 270°, and s ≥ 0 if 90° ≤ λβ ≤ 180° or 270° 
≤ λβ ≤ 360°. With i = 5°, the equation reaches the extremal values ±0;6,33° for λβ 
= 44° – 46° + k · 90° (k = 0, 1, 2, ...). Ptolemy considers the effect of the equation 
in Almagest IV.6 and VI.7,64 but neglects it in his procedure for the computa-
tion of the lunar longitude, obviously because of its small size (about a quarter 
of the apparent angular diameter of the Moon). In medieval Islamic astronomy, 

63. It is simply because of the symmetry rule in the trigonometric function that it makes no diffe-
rence which node’s longitude is taken into account.

64. Toomer [1984] 1998, pp. 191, 297. 

(b)

Figure 5: The errors in the solar declination/noon altitude in the revised version of 
Ibn Yūnus’s solar theory as used in the Īlkhānī zīj for 13,000 days after 1280.0 ad (a) 
and 1400.0 ad (b), plotted against the modern longitude values.
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it was taken into account in nearly all astronomical tables composed from the 
ninth century onwards. Kāshī’s term, the «equation of shift», appears to have 
been borrowed from Muḥyī al-Dīn al-Maghribī,65 but his table, which correctly 
gives the abovementioned maximum values, is unprecedented.66 Bīrūnī’s al-Qānūn 
al-masʽūdī VII.8.2 gives the extremal values ±0;6,32° for λβ = 44° + k · 90°;67 and 
al-Khāzinī (fl. 1120 ad) in his Muʽtabar zīj and the astronomical tables belonging 
to the Maragha tradition, including Muḥyī al-Dīn’s works, the Īlkhānī zīj, and 
Wābkanawī’s Muḥaqqaq zīj, all have a table with greatest values ±0;6,40° for λβ 
= 44° – 46° + k · 90°. Kāshī’s table is repeated in Ulugh Beg’s Sulṭānī zīj.68 Kāshī 
first computes the distance in longitude between the Sun and the closest lunar 
node, λ☉ – λ☊/☋, at the middle of each eclipse ([Table 1], Col. [3]). This distance 
is equal to the distance between the centre of the Earth’s umbra, provisional-
ly taken as marking the longitude of the Moon with reference to the ecliptic, 
and the opposite node, i.e., λ☽* – λ☊/☋, = λ☉ ± 180° – λ☊/☋. With the result, he 
computes the equation of shift ([Table 1], Col. [4]). It is worth noting that he did 
not calculate his figures simply by interpolation in his table;69 he might have 
preferred to compute them accurately, or he might not have had the table when 
he carried out his lunar measurements. Then, the lunar longitude with reference 
to its inclined sphere is adjusted as λ☽= λ☽* + s ([Table 1], Col. [5]). Figure 
6 shows the situation for Kāshī’s first lunar eclipse: at the mid-eclipse, the centre 
of the Earth’s shadow (the highlighted circle) has a longitude of λ☽* = λ☉ + 180°, 
while the Moon is located at λ☽ on its inclined orb, which is marked by drawing 
an arc from the centre of the shadow perpendicular to the lunar orbit.

In paragraph [IV], Kāshī gives the lunar mean motion in longitude Δ ̄λ and 
in anomaly Δα̅ together with its longitudinal motions Δ λ in the time intervals Δt 
between each pair of consecutive eclipses:

65. Muḥyī al-Dīn also has «the equation of the inclined sphere of the Moon» (taʽdīl al-falak 
al-māʼil) as an alternative designation for this equation (al-Maghribī, Talkhīṣ, f. 83v; Adwār, M: ff. 
83v - 84r, CB: ff. 81v - 82r).

66. Kāshī, Zīj, IO: f. 133v, P: p. 133, Q1: f. 111r, Q2: —, S: f. 97v, C: p. 230. Kāshī counts it as 
his 21st improvement on his predecessors’ astronomical tables in the introduction of his zīj (IO: f. 
3v, P: p. 22, Q1: f. 1v, Q2: f. 3r, S: f. 3v, C: p. 5). 

67. Bīrūnī 1954 - 1956, Vol. 2, pp. 810, 814. 
68. For a review and details, see Mozaffari 2014, pp. 94 - 95. 
69. The interpolation in his table gives 0;1,28,57°, 0;0,52,57°, and 0;0,20,56° for the three eclipses. 
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Δt Δ λ̄ Δα̅ Δ λ

1 → 2 176d 21;52,17h 171;  3,13,26° 151;20,36,10 173;18,  6,35°

2 → 3 177d   3;10,  0h 173;57,39,20 154;13,33,34 175;59,11,27

The values Δ λ are derived from Col. [5] of [Table 1]. By dividing the values 
of Δ λ̄ and Δα̅ by those of Δt, we can extract the provisional values our author 
used for the lunar mean daily motion in longitude, ωλ, and in anomaly, ωα:

ωλ ≈
ωα ≈

13;10,35,  1,52,48° ± 2v°
13;  3,53,56,30,35° ± 5v°

The value of ωλ is very nearly equal to Muḥyī al-Dīn’s value of 13;10,35,1,52,46,45° 
measured at Maragha,70 which he used in his Adwār. Muḥyī al-Dīn presents all 
fundamental motional parameter values underlying the tables of this zīj;71 and it 
can readily be shown that Kāshī computed his values of Δ λ̄ directly by multi-
plying the values of Δt with Muḥyī al-Dīn’s value for ωλ, i.e., not by using the 

70. See Mozaffari 2014, esp. pp. 82 - 83. 
71. al-Maghribī, Adwār, M: f. 75v, CB: f. 73v. 

Figure 6: The relation between the Moon’s positions  
on its inclined sphere and on the ecliptic.
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mean lunar longitudinal motion table in the Adwār.72 The value of ωα is very 
close to the originally Babylonian value 13;3,53,56,29,38,38° in Almagest IV.3, 
which Ptolemy inherited from Hipparchus73 (see Section 4 for an explanation of 
what might have been Kāshī’s reason to use these values). The fact that the initial 
values for the mean lunar motions in longitude and in anomaly are adopted from 
Muḥyī al-Dīn and the Babylonians-Hipparchus respectively is the principal rea-
son why Kāshī’s final values for the mean lunar daily motions, computed later in 
paragraph [IX] (see below, Section 3.4), also remain very close to the values of 
his predecessors we have just mentioned.74

Figure 7 displays the lunar mean positions in the first (Hipparchian) lunar model 
in the Almagest, adopting a zero-eccentricity deferent, at the maximum phases of 
Kāshī’s trio of lunar eclipses (it is drawn to scale except for the size of the lunar 
epicycle, which is shown four times larger for the sake of clarity). Note that in 
eclipse no. 2 the Moon is very near the mean epicyclic perigee, and in eclipses 
nos. 1 and 3, it occupies very similar positions with reference to the Earth, T, 
which explains why its nocturnal apparent paths with respect to the local horizon 
were very close to each other (cf. Figure 2). The difference in the mean longitude 
of the Moon between the maximum points of each pair of consecutive eclipses is 
shown as Δ λ̄☽1,2 and Δ λ̄☽2,3, and the difference in the true longitude of the Moon 
between each pair of subsequent eclipses, as Δ λ☽1,2 and Δ λ☽2,3. If we transform 
the lines passing through the Earth, T, and the Moon in eclipses nos. 1 and 3 in 
such a way that each of them occupies its position with respect to the mean moon 
(i.e., the line drawn from the Earth pointing toward the epicycle centre), then 
Figure 1 is produced: points A, B, and C sequentially stand for the mean epicyclic 
positions of the Moon at the times of the mid-eclipse phases of the triple eclipses 
with respect to the Earth, D. Thus,

72. For the period from the first to the second eclipse, the mean motion table in the Adwār (M: 
f. 76v, CB: f. 74v) gives: 176;27,34° (until the end of Murdād, the fifth month in the Yazdigird cal-
endar, i.e., in five months of 30 days) + 342;35,11° (in 26 days) + 11;31,46° (in 21 hours) + 0;28,33° 
(in 52 minutes) + 0;0,9,21° (in 17 seconds, by interpolation between the entry for 52 minutes and 
that for 54 minutes, 0;29,39°) = 171; 3,13,21°. By a similar procedure for the time interval between 
the second and third eclipses, which does not need the interpolation for the seconds of time, the 
value of 173;57,38,0° is derived. 

73. Toomer 1980, esp. p. 98; [1984] 1998, p. 179; Neugebauer 1975, Vol. 1, p. 70. 
74. Kennedy (1998a, p. 5) mentions this point, without recognizing its main reason. 
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arc AB = Δα̅ 1,2,
arc BC = Δα̅ 2,3,
ÐADB = Δ λ1,2 – Δ λ̄1,2 = Δp1,2 = 2;14,53,9°, and
ÐBDC = Δ λ2,3 – Δ λ̄2,3 = Δp2,3 = 2;1,32,7°,

where p stands for the equation of anomaly (or epicyclic equation) of the Moon 
(ÐADL, ÐBDL, and ÐCDL). In paragraph [V], Kāshī states that his figure is the 
result of the combination of three figures from Almagest IV.6. This chapter has 
seven figures: figures 1, 3, and 4 are related to the trio of the ancient Babylonian 
lunar eclipses, while figures 5, 6, and 7 represent Ptolemy’s triple lunar eclipses 
observed at Alexandria; each set of three figures shows how Ptolemy gradually put 
his derivation in a pictorial form. In figure 2, Ptolemy demonstrates his method for 

Figure 7: The mean positions of the Moon in the first (Hippar-
chian) lunar model in the Almagest at the times of the maximum 

phases of the trio of lunar eclipses observed by Kāshī.
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determining the epicycle radius on the basis of the eccentric hypothesis.75 It is sur-
prising that the second figure does not exist in the surviving manuscripts of the two 
ninth-century Arabic translations of the Almagest by Ḥajjāj b. Yūsuf b. Maṭar in 
827 - 828 ad and Isḥāq b. Ḥunayn in 880 - 890 ad, which was later revised by Thābit 
b. Qurra (d. 901 ad),76,77 Kashī’s lettering in his figure is also identical to Ptolemy’s.

The problem is to find the radius of the lunar epicycle r = KS in terms of the 
units of which the radius of the deferent R = KD is taken as 60p, so that the direct 
distances between the epicyclic positions occupied by the Moon at the times of 
the maximum phases of the three lunar eclipses are subtended by ÐADB and 
ÐBDC as seen from the Earth. The procedure, as explained in paragraph [VI], 
is as follows. The recomputed values are given within square brackets, and the 
erroneous digits in Kāshī’s numbers are shown in bold-italics.

In [Figure 1], we have: arc CA = 360° – (Δα̅1,2 + Δα̅2,3) = 54;25,50,16°, corre-
sponding to the epicyclic equation ÐADC = Δp1,2 + Δp2,3 = 4;16,25,16°. Sin ÐADC 
= 4;28,16, 32 [...,29]. ÐAEC = 1/2 arc CA = 27;12,55,8°. According to Euclid I.32,78 
in ~+CED, ÐECD = ÐAEC – ÐADC = 22;56,29,52° (NB. ÐAEC = 180° – ÐCED). 
Sin ÐECD = 23;23,15,21 [...,19]. If we take DE = 60a, where «a» stands for a unit:

CE = DE · Sin ÐADC / Sin ÐECD = 11;28,15, 3 a  [...,14,55].

Similarly, ÐAEB = 1/2 (360° – arc AB) = 104;19,41,55°. So, in rEBD, ÐEBD 
= ÐAEB – ÐADB = 102;4,48,46°. Sin ÐADB = 2;21,12,56 [...,57]. Sin ÐEBD = 
58;40,16,48. Thus: 

75. See Toomer [1984] 1998, pp. 193, 194, 196, 197, 199, 202, and 203. 
76. Arabic Almagest: Isḥāq-Thabit: (1) Pa1: f. 74v, Pa2: f. 70r, TN: f. 60v, S: f. 47r; (3) Pa1: f. 

76r, Pa2: f. 71v, TN: f. 61r, S: f. 47v; (4) Pa1: f. 77r, Pa2: f. 72r, TN: f. 61r, S: f. 48r; (5) Pa1: f. 78v, 
Pa2: f. 74r, TN: f. 63r, S: f. 49r; (6) Pa1: f. 80r, Pa2: f. 74v, TN: f. 63r, S: f. 49v; (7) Pa1: f. 81v, 
Pa2: f. 75r, TN: f. 63v, S: f. 50v (the section is not extant in MSS. E1, E2, LO1, and PN). Ḥajjāj: (1) 
LO2: f. 91v, LE: f. 58r; (3) LO2: f. 92r, LE: f. 58v; (4) LO2: f. 92v, LE: f. 59r; (5) LO2: f. 95v, LE: 
f. 60r; (6) LO2: f. 96r, LE: f. 60v; (7) LO2: f. 96v, LE: f. 61r. 

77. The second figure is also absent from the other commentaries related to the Almagest, most 
notably, al-Ṭusī’s Taḥrīr al-majisṭi (Exposition of the Almagest), P1: pp. 130, 132, 133, 134, 135, 
P2: ff. 35r - 36r, P3: ff. 55r - 56r, to which Kāshī refers in the prologue of his zīj (IO: f. 2v, P: p. 21, 
Q1: f. 1r, Q2: f. 2v, S: f. 3r, C: p. 4).

78. Elements, pp. 19 - 20. 
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BE = DE · Sin ÐADB / Sin ÐEBD = 2;24,24,48 a  [...,50].

Also, ÐCEB = 1/2 arc BC = 77;6,46,47°. Sin ÐCEB = 58;29,19,22 [...,21], and 
Cos ÐCEB = 13;22,54,14 [...,16]. Thus, in rBET:  

BT = BE · Sin ÐCEB / R = 2;20,46,33 a   [...,35]
ET = BE · Cos ÐCEB / R = 0;32,12,30 a

Consequently, CT = CE – ET = 10;56,2, 33 [...,25]. Thus,

BC = √(CT)2 + (BT)2 = 11;10,58, 36 a    [...,28]

In addition:

BC = Crd(arc BC) = 116;58,38,44 b    [...,42]

in terms of the unit «b» of which the epicycle radius r = KS = 60b. Together, the 
last two equations provide us with a scale to transform all the lengths measured 
so far in terms of the unit «a» to «b». First of all:

DE = 627;37,13,55 b     [...,21,7]

And

BE = 25;10,36,46 b    [...,37,22],

from which arc BE = 24;13,19,42° [...,20,14]. Thus, arc AE = arc AB – arc BE = 
127;7,16,28 ° [...,15,55]. Hence,

AE = Crd(arc AE) = 107;26,55,18 b     [...,7]

Since AE < 120b, the centre of the epicycle, by assuming point K, should be lo-
cated outside the circular segment ANES. AD = AE + DE = 735;4,9,13b [...,16,14]. 
On the basis of Euclid III.36 (text: 35),79 we have:

79. Elements, pp. 63 - 66. 
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MD · LD = ED · AD = 2,8,9,4;32,22,14,49,15,55 b2 [...,7;13,58,33,48,47,38]

Further, from Euclid II.6:80 

DK2 = MD · LD + r2

in which r = 1;0,0b. Thus:

DK = 681;52,6,18 b     [...,13,25].

Therefore, if the radius of the orbit DK = 60 p, the length of the epicycle radius 
is derived from the last result as equal to

r = 60 · 60 / DK = 5;16,46,36 p   [...,33].

As can be seen, all the errors Kāshī committed in the process of calculation, 
some of which must have arisen from the sine table applied, led to a negligible total 
error in the final result of just +3iii. With the above value for r, he computes the max-
imum value of the lunar epicyclic equation at syzygies as 5;2,53° (opposite argu-
ment 95°) and at quadratures as 7;42,19° [7;42,27°] (= the sum of the tabular values 
of 5;2,26° and 2;39,53° for argument 98°). Note that Kāshī did not measure the lunar 
eccentricity, but adopts Ptolemy’s value of 10;19p (corresponding to the maximum 
value of 13;8° for the equation of centre tabulated opposite arguments 113° – 115°).81

3.4. The derivation of the mean motions in longitude and anomaly.

Kāshī first computes (in paragraph [VII]) the lunar mean positions in his second 
lunar eclipse according to his geometrical schema presented in Figure 1, as ex-
plained in what follows.

In the first step, we want to compute the mean anomaly of the Moon at the 
middle of the second lunar eclipse on the basis of the Hipparchian model with a 

80. Elements, p. 33.
81. The lunar equation tables: Kāshī, Zīj, IO: ff. 132v - 133v, P: pp. 132, 133, 135, Q1: ff. 

109v - 110r, 111r, Q2: —, S: ff. 96v - 97v, C: pp. 227 - 228, 230. 
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zero eccentricity deferent, i.e., α̅2* = arc LEB. We have drawn KNS ^ AE (in the 
text, we are told to join AK, which is unnecessary, as it was not drawn in any of the 
consulted MSS). On the basis of Euclid III.3,82 AN = EN. DN = DE + 1/2 AE = 
681;20,41, 34 b [...,48,41] = 59;57,14,10 p [...,9]. DN = Sin ÐSKM. So, ÐSKM = 
arc SEM = 87;45,17,2° [...,16,31]. Thus,

arc LS = 180° – arc SEM = 92;14,42,58°  [...,43,29].

Also, from the values we have already computed for arcs AE and BE, we have:

arc SB = 1/2 arc AE + arc EB = 87;46,57,56°  [...,58,12].

As a result,

α̅2* = arc LEB = arc LS + arc SB = 180;1,40,54° [...,41,41].

Next, we want to know the mean longitude of the Moon at the maximum point 
of the second lunar eclipse  λ̄☽2. To this end, we first need to calculate the epicyclic 
equation at the time, i.e., p2 = ÐLDB, and then subtract it from the longitude of 
the Moon at the time, λ☽2, already given in [Table 1], Col. [5]. We have calculated 
ÐSKD earlier. Hence, the epicyclic equation of the Moon at the middle of the first 
lunar eclipse is computed in rSKD as |p1| = ÐADK = 90° – ÐSKD = 2;14,42,58° 
[...,43,29] (we know that it is subtractive/negative). Also, Δp1,2 = p2 – p1 = ÐADB 
= 2;14,53,9°. Thus,

p2 = Δp1,2 – |p1| = +0;0,10,11    [...,9,40].

As a result,

 λ̄☽2 = λ☽2 – p2 = 72;14,36,7°    [...,38].         (1)

In the third, and final, stage, we want to adjust α̅2* with the equation of centre 
according to Ptolemy’s lunar model. To do so, we should first derive the mean lon-
gitude of the Sun at the time,  λ̄☉2, which Kāshī gives as 252;52,28,57°; we know 

82. Elements, p. 43. 
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that it has been derived from the Īlkhānī zīj. Consequently, the centrum, i.e., the 
mean double elongation, is computed as 2( λ̄☽2 –  λ̄☉2) = 358;44,14,20°. Kāshī gives 
the equation of centre for this value as q2 = +0;11,6,45°. Therefore, the mean anom-
aly of the Moon would amount to: 

α̅2 = α̅2* + q2 = 180;12,47, 39°   [...,48,26]        (2)

The date and time of his second lunar eclipse is equal to

t2 = 774 years 355 days 13;13,5 absolute hours or 12;48,46 equated hours

reckoned from the beginning of the Yazdigird era for the longitude of Kāshān, as 
already given in [II] (see Table 3).

Kāshī requires a set of trustworthy data for the lunar mean longitudinal and 
anomalistic positions at a time sufficiently far from his own to be compared with 
his derived quantities. To do so, he chooses Ptolemy’s second lunar eclipse pre-
sented in Almagest IV.6, which took place on 2/3 Choiak (the fourth month) 19 
Hadrian (= 882 Nabonassar) = 20/21 October 134 (JDN 1770294/5); Ptolemy 
gives the time as 1 equinoctial hour before midnight (actually, ~ 22:42 MLT), 
and correctly estimates the magnitude as 5/6 of the apparent diameter of the lunar 
disk (~ 0.8) from the north.83 The beginning of the Yazdigird era is 16 June 632 
(JDN 1952063). So, the date and time of the eclipse would be equal to 181769 
days minus 11 hours or

t1 = 497 years 363 days 13 absolute hours (at the longitude of Alexandria)

before the Yazdigird era, as Kāshī precisely calculates. He converts the time to 
the local meridian of Kāshān as

11;23,36 absolute hours,

by taking a longitudinal difference of 24;6° between the two cities (error ~ 
+2;35°), corresponding to a difference of 1;36,24 hours between their local times 

83. 5MCLE: #05156. Toomer [1984] 1998, p. 198. On this eclipse, see Steele 2000a, pp. 
102 - 103; 2000b, pp. 93, 103 - 104. 
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(the table of the geographical coordinates in the Khāqānī zīj gives L = 61;54° for 
Alexandria and L = 86;0° for Kāshān).84 Ptolemy’s data quoted by Kāshī are:

the mean longitude
the equated anomaly

 λ̄ = 29;30°, and
α = 64;38°.85

(3)

Ptolemy uses these data for comparison with the corresponding quantities he 
derived from the second of the three ancient Babylonian lunar eclipses mentioned 
at the beginning of IV.6 in order to correct the mean lunar motions in IV.7. Pto-
lemy never says that the latter quantity is the equated (not mean) anomaly. In 
Almagest IV.6, he works with the simple Hipparchian lunar model with a zero-ec-
centricity deferent, according to which the Moon is assumed to have only one 
inequality; the difference between the mean and true epicyclic apogee/perigee is in-
troduced later in V.5, but Ptolemy never returns to his derivation of the mean lunar 
motions in order to revise it on the basis of his completed lunar model. In contrast, 
Kāshī intends to compare the two values for the mean lunar epicyclic anomaly 
in order to derive the velocity of its mean anomalistic motion. To do so, he 
needs to compute the mean lunar anomaly at the time of the maximum phase of 
Ptolemy’s second lunar eclipse, just as he did for the maximum point of his second 
lunar eclipse earlier. He thus adds another quantity to Ptolemy’s data: the double 
mean elongation 2= 3;38°, from which he calculates the equation of anomaly 
q = –0;32,40°.85 Therefore,

84. Kāshī, Zīj, IO: f. 73r, P: p. 102, Q1: f. 67r, Q2: f. 28r, S: f. 55r, C: f. 131r.
85. Entering the double elongation = 3;38° in the table of the first lunar equation in the early 

version of the Khāqānī zīj (S: f. 96v; with q(3°) = 0;26° and q(4°) = 0;35°) gives q = 0;31,42° and 
that in the final edition (IO: f. 132v, P: p. 135, Q1: f. 109v, Q2: —, C: p. 227): 0;31,58° (NB. q(3°) = 
0;26,24° and q(4°) = 0;35,12°). From Ptolemy’s table of the lunar equations in Almagest V.8 (Toomer 
[1984] 1998, p. 238): 0;32,6°. None of these values agrees with the value of 0;32,40° given in the 
text. In the Īlkhānī zīj (C: p. 73, P: f. 25v, M: f. 44v, T: f. 34v, B: f. 38r, F: f. 33r, L: f. 40r, Fl: f. 36v, 
O: f. 37v, Ca: f. 41v), the tables of the lunar equations are drawn up at intervals of 0;12° and are 
asymmetrical and displaced. In the table of the lunar first equation, an additional value of 13;8° was 
added to all entries in order to make the table user-friendly and always-additive. The tabular entries 
for the arguments of 3;36° and 3;48° are respectively 13;40° (i.e., 0;32°) and 13;42° (i.e., 0;34°); thus, 
q(3;38°) = 0;32,20°, which is also incompatible with Kāshī’s value. However, the entries for the 
arguments of 3° and 4° are respectively 13;35° (read: 0;27°) and 13;44° (read: 0;36°), which yields 
q(3;38°) = 0;32,42°, very close to Kāshī’s result. 
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the mean anomaly α̅ = 64;5,20°. (4)

The mean lunar longitude of 29;30° with the double mean elongation of 3;38° 
clearly indicates that our author took the mean solar longitude at the time of the 
maximum phase of Ptolemy’s second lunar eclipse to be 207;41°. It is curious that 
the latter value exceeds by about a single degree the value of 206;42° that can be 
derived from Ptolemy’s mean solar motion tables, and from which he must have 
computed his value of 205;10° for the true longitude of the Sun at the time (modern 
value: 206;24°). All this may incidentally imply that Kāshī was aware of the error of 
~ –1° in Ptolemy’s solar theory. In all likelihood it seems that he found this error by 
making a simple comparison between the mean longitude of the Sun as computed 
from the Almagest and the value given by the solar theory used in the Īlkhāni zīj: 
computing backwards in time from the solar tables in the latter work a value of 
207;48° is obtained, which is not too far from the value of 207;41° that Kāshī used 
in practice.

The time interval between the maximum point of Ptolemy’s second lunar eclipse 
and that of Kāshī’s second lunar eclipse amounts to

Δt = 1272 years 354 days 0;36,41 absolute hours or 0;46,23 equated hours.

Kāshī does not give the time of Ptolemy’s second lunar eclipse in equated hours, 
but from the above value it is easy to deduce that he took the mean time of Ptol-
emy’s second lunar eclipse to be 11;57,37 hours, and thus, he must have adopted 
the equation of time E = +0;34,1 hours for this time.

The difference in the lunar mean longitude (Δ λ̄) is 42;44,36,7° in the period 
between Ptolemy’s and Kāshī’s lunar eclipses (the difference between (1) and (3)), 
during which the Moon also performed 17006 complete revolutions around the 
Earth. By dividing the accumulated lunar motion in longitude into the above time 
span in days, its daily rate ωλ is computed (to the seventh sexagesimal fractional 
place) as

ωλ = Δ λ̄ /Δt = 13;10,35,1,52,47,50,50°.

Analogously, the mean lunar motion in anomaly (Δ) in the course of the peri-
od since Ptolemy’s day is equal to 16862 complete revolutions plus 116;7,27,39° 
(the difference between (2) and (4)), and so the daily mean lunar anomalistic mo-
tion is derived as

18108_Suhayl18_2020.indd   10718108_Suhayl18_2020.indd   107 11/12/20   10:4011/12/20   10:40



S. Mohammad Mozaffari

108

ωα = Δα̅/Δt = 13;3,53,56,30,37,19,59° or ...37,20°,

as Kāshī rounds it to the sixth sexagesimal fractional place.
The value of ωλ is larger than Muḥyī al-Dīn’s corresponding value, which Kāshī 

has deployed as his provisional value, by the trivial amount of ~ 1v. Similarly, the 
value of ωα is more than Hipparchus’ corresponding value, which Kāshī uses as 
his initial estimation, again by the small value of ~ 1iv.

From the two values for ωλ and ωα, he computes in sequence the mean motions 
in one month (30 days), one Egyptian/Persian year (of 365 days), 100 years, and 
600 years, and also derives his radix positions for the beginning of 781 Y (= 4 De-
cember 1411, JDN 2236763). His base meridian is Shīrāz, which is located 2° 
(actually, ~ 1°) east of Kāshān. So the difference in local time between the two 
zones reaches about eight minutes. Therefore, the time span between the maximum 
point of lunar eclipse no. 2 and the epoch is 5 years + 9 days + 11;3,14 hours. 
From [Table 2] in [IX], the mean motion in longitude in this interval is derived as 
51;34,55,1,45,23,55,55° and the mean motion in anomaly as 207;11,52,9,56,13,14°. 
Kāshī made a minor mistake in the computation of the last fractional sexagesimal 
place of both. These quantities should be added to the corresponding mean posi-
tions at the time of the maximum phase of the second lunar eclipse (as given above, 
(1) and (2)) in order to yield the radices:86

the epoch mean longitude
the epoch mean anomaly

 λ̄0 = 123;49,31,  8,45,23,55,55° and
α̅0 =   27;24,39,48,56,13,14°. 

Remark: As already mentioned in Section 3.2, in the prologue to his zīj, Rukn 
al-Dīn al-Āmulī offers some improvements on the Īlkhānī zīj ascribed to Quṭb al-
Dīn al-Shīrāzī, and states that the latter wrote his corrections in the form of scattered 
notes in the margins of the Īlkhānī zīj. He also states that «in this era [...] before 
Ulugh Beg established the observatory at Samarqand», only the correction in the 
mean longitude of the Moon (+30′) was taken into account in the Īlkhānī zīj. This 
correction can also be found in a marginal gloss left in the upper right-hand cor-
ner of the table of the mean lunar yearly positions on folio 31v of an early four-
teenth-century manuscript of the Īlkhānī zīj, which is designated by the siglum T in 

86. The mean lunar motion tables: Kāshī, Zīj, IO: ff. 127v, 128v - 130r, P: pp. 107, 109 - 112, Q1: 
ff. 104v, 105v - 107r, Q2: —, S: ff. 92v, 93v, 94r - v, C: pp. 217, 219 - 222. 
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the bibliography. The table contains the lunar mean positions from 703 Y (1333 ad) 
to 803 Y (1433 ad) (see Figure 8), and is different from that in the original version, 
which was drawn for the period 601 - 701 Y (1232 - 1331 ad). In fact the correction 
was not applied to the table, because we can, indeed, find the values expected from 
the epoch positions and mean motions used in the Īlkhānī zīj in each entry without 
any addition. Thus, the comment appears to be an instruction for practitioners to 
take this correction into account, but since it is in the past tense, no one can recog-
nize it without additional effort or without having access to the original version of 
the Īlkhānī zīj. Further, there are two comments in the left margin, in which we are 
correctly told that the table is based on the radix and parameter values (uṣūl) of the 
Ḥākimī zīj.87 What is curious is that Kāshī’s radix value λ̄0 given above is nearly 
+30′ larger than the value extracted from the Īlkhānī zīj (123;19,8°). It seems that, 
by a mere coincidence, Kāshī’s lunar measurements confirmed an already known 
correction to the Īlkhānī zīj and then, perhaps, justified its continued use. However, 
neither value is better than the other (modern: 123;36°).

87. See Mozaffari 2014, pp. 110, 112. 

Figure 8: The table of the mean lunar annual positions in MS. T of the Īlkhānī zīj (f. 31v). The 
marginal comment in the upper right-hand corner reads: «we added thirty minutes [of arc] to the 
mean longitude of the Moon». The glosses in the left-hand margin read: upper: «this [table] was 
considered with caution; it is on the basis of the parameter values (uṣūl) of the Ḥākimī [zīj]»; lower: 
«this [table] is, indeed, [on the basis of] the parameter values of the Ḥākimī [zīj]».
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4. Discussion and Conclusion

We are now in a position to judge Kāshī’s abilities and practical skills as an obser-
vational astronomer. We know that the time of the maximum phase of his second 
lunar eclipse is the only evidence in this respect, because, as we have seen in 
Section 3.1, he could not have determined the corresponding times of his two 
other lunar eclipses without any recourse to theory, and so these cannot be taken 
as pure empirical data. He committed an error of only ~ –8 minutes in the time 
of the maximum phase of the second eclipse (see Table 3), which is of the same 
order of magnitude as those in Muḥyī al-Dīn’s eclipse times (≤ +5 minutes). This, 
indeed, demonstrates that he must have been competent in making tolerably pre-
cise observations, and that the simple timekeeping devices available to him at the 
time (the water and sand clocks mentioned in Section 3.1) had a high degree of 
accuracy. The errors in his two other eclipses compare favourably with those in 
Taqī al-Dīn’s eclipse timings (~ –1 hour).88

We have seen above that Kāshī measured the radius of the epicycle and mean 
motions of the Moon. His value for the first is only slightly larger than Ptolemy’s 
5;15p. The lunar inequality at syzygies amounts to about ±5;1°,89 which can be pro-
duced from Ptolemy’s value. It is significant that Kāshī’s value of ~ 5;17p is more 
precise than the Banū Mūsā’s 5;22p, Ibn al-Aʽlam’s 5;4p, Ibn Yūnus’ 5;1p, Jamāl 
al-Dīn Muḥammad b. Ṭāhir b. Muḥammad al-Zaydī’s 5;3p (a Persian astronomer 
from Bukhārā and the first director of the Islamic Astronomical Bureau founded 
at Beijing in 1271 ad by the Mongolian Yuan dynasty of China), Ibn al-Shāṭir’s 
5;10p, Taqī al-Dīn’s ~ 5;24p, and the values of ~ 5;12p obtained three times by 
Bīrūnī, Muḥyī al-Dīn, and Ulugh Beg and his team of astronomers at Samarqand 
(probably, with a contribution made by Kāshī himself).90

88. See Mozaffari and Steele 2015, p. 355. 
89. See Neugebauer 1975, Vol. 3, pp. 1106 - 1107. 
90. For the sources of the values quoted above, see Mozaffari 2014, pp. 105 - 106; Mozaffari and 

Steele 2015, p. 348. For Jamāl al-Dīn’s table of the lunar equation of anomaly, see Sanjufīnī, f. 37r 
(the maximum value in the table, 4;50°, is only by a single arc-minute less than Ibn al-Aʽlam’s cor-
responding value of 4;51°). Ibn al-Shāṭir constructed a lunar model consisting of a hypocycle (called 
«the rotator, al-mudīr» or «the carrier of the [Moon’s] body, ḥāmil al-jirm») of radius r1 = 1;25p, 
whose centre rotates on the circumference of an epicycle of radius r2 = 6;35p. The Moon is located 
in the perigee of the rotator at syzygies and in its apogee at quadratures, so that the linear distance 
between the Moon and the centre of the epicycle (which Ibn al-Shāṭir calls, in a general sense, «the 
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We present the values of ωλ and ωα measured by Ptolemy and the eminent 
Islamic astronomers91 in Figures 9 and 10 respectively (as the filled circles ⚫), 
along with the corresponding graphs drawn on the basis of modern theories.92 
The limited objectives of the present paper do not permit us to analyse them in 
depth. It suffices to say at this point that in the case of ωλ, all the values meas-
ured by the Islamic astronomers (mostly, with errors of the order of 10 - 6) are 
notably more accurate than Ptolemy’s (with an error of the order of 10 - 5). Also, 
Muḥyī al-Dīn’s value in the Tāj al-azyāj (Crown of the zījes, which he wrote 
in Syria before joining the Maragha team) has the highest degree of precision 
(with an error of the order of 10 - 7). Furthermore, and more importantly for the 
present study, it can clearly be seen that Kāshī’s preference for Muḥyī al-Dīn’s 
value in the Adwār rather than Ibn Yūnus’ value in the Īlkhānī zīj is wholly jus-
tified. In contrast, Muḥyī al-Dīn’s value of ωα in the Adwār is a clear outlier.93 
The other values of ωα are very nearly of the same degree of accuracy, and the 
Babylonian-Hipparchian value is slightly better than the others. It is very inter-
esting that Kāshī appears to have found the latter safer and more reliable for 
provisional use in his lunar measurements than all the other values available to 
him from Ptolemy and his Muslim predecessors.

Finally, a note concerning the relation between the astronomical observa-
tions and the development of theoretical astronomy in the late Islamic period 
is in order. As is well known, some members of the Maragha team, including 
al-Ṭūsī, Muʼayyad al-Dīn al-ʽUrḍī (1200 - 1266 ad) and Quṭb al-Dīn al-Shīrāzī 
(1236 - 1311 ad), devised non-Ptolemaic lunar models for the purpose of resolv-

apparent radius of the epicycle») varies between 5;10p (corresponding to the epicyclic equation of 
4;56,24°) and 8;0p (corresponding to the anomalistic equation of 7;39,45°). The first value is identical 
to the epicycle radius in the Ptolemaic model (see the references cited in notes 96 - 98 below). It is 
curious that the same value is found in some Indian and pre-Islamic Persian sources, was in use by the 
Iranian astronomers in the earliest stages of the rise of astronomy in Islam (see Pingree 1968, p. 104; 
1970, p. 112; Chabás and Goldstein 2003, pp. 252 - 253), and is deployed in both the Castilian and 
Parisian versions of the Alfonsine Tables (see Chabás and Goldstein 2003, p. 157; 2004, pp. 225 - 226).

91. Most of these values are due to the meticulous work of Dr. Benno van Dalen who derived 
them from the lunar mean motion tables in the various zījes. 

92. On the basis of the formulae given in Meeus 1998, p. 338.
93. In the case of Muḥyī al-Dīn’s value in his Adwār, the error is solely due to a serious error he 

made in the final step of calculation: the division of the accumulated mean anomalistic motion by 
the time interval (see Mozaffari 2014, p. 84). He has a precise value for ωα in his earlier work, the 
Tāj, as illustrated in Figure 10. 
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ing the serious difficulties in Ptolemy’s model arising from the latter’s negli-
gence of certain philosophical facts: the two blatant contradictions were the 
uniform motion of the lunar eccentric around the Earth, instead of its centre, and 
the prosneusis point. Nevertheless, none of these models replaced Ptolemy’s in 
the calculation of the lunar positions and eclipse predictions. The construction 
of alternative lunar models was continued and elaborated a century later by Ibn 
al-Shāṭir (1306 - 1375/1376 ad). He not only objects to Ptolemy’s lunar model, 
but is also critical of those of his Maragha predecessors in the second chapter 
of the prolegomenon to Book I of his Nihāyat al-suʼl fī taṣḥīḥ al-uṣūl (A final 
inquiry on the rectification of [astronomical] hypotheses);94 he afterwards puts 

94. Ibn al-Shāṭir, Nihāya, O1: ff. 3r - 5r, O2: ff. 3r - 5r, O: f. 22r - 23v. The whole text was edited 
and translated into French in Penchèvre 2017. 

Figure 9: A number of values measured for the mean motion of the Moon in longitude in 
the medieval Islamic period: Mt = Mumtaḥan team, Bt = al-Battānī, IA = Ibn al- Aʽlam, IY 
= Ibn Yūnus, Br = Bīrūnī, Kh = al-Khāzinī, M = Muḥyī al-Dīn al-Maghribī (the subscript «A» 
denotes his Adwār al-anwār, and the subscript «T» stands for his Tāj al-azyāj), J = Jamāl 
al-Dīn Muḥammad b. Ṭāhir b. Muḥammad al-Zaydī of Bukhārā, ISh = Ibn al-Shāṭir, Ka = 
Kāshī, UB = Ulugh Beg, and Ta = Taqī al-Dīn, together with Ptolemy’s (Pt), are shown as 
filled circles (⚫), along the graph of this parameter drawn on the basis of modern theories, 
with the smoothly descending curve in the middle.
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forward in I.9 - 1195 his double-epicyclic concentric model, one of whose char-
acteristic features was to resolve a serious empirical failure in Ptolemy’s model. 
Whereas Ptolemy’s variation in the Moon’s distance from the Earth entails that 
its apparent angular diameter at quadratures is almost twice as large as that at 
oppositions, Ibn al-Shāṭir reduced this ratio to a reasonable value less than 1.3.96 
What distinguishes Ibn al-Shāṭir from his Maragha precursors is the fact that 
he puts his model in practical use for positional astronomy in his Jadīd zīj.97 As 
we have seen in this study, Kāshī based his astronomical tables on Ptolemy’s 

95. Ibn al-Shāṭir, Nihāya, O1: ff. 13r - 19r, O2: ff. 14r - 21r, O3: ff. 29v - 34r.
96. For a survey of these models, see Saliba 1996, pp. 92 - 104 and, especially, for Ibn al-Shāṭir’s 

one, see Roberts 1957; Saliba 1987. 
97. Ibn al-Shāṭir, Zīj, Section 6 («On the knowledge of the longitude of the Moon»): K: ff. 18r - v, 

O: ff. 23v - 24r, L1: ff. 17r - v, L2: ff. 21v - 22r, PR: ff. 23r - v; Section 59 («On the knowledge of the 
Moon’s distance from the Earth»): K: ff. 37v - 38v, O: ff. 85v - 86v, L1: ff. 39r - 40r, L2: ff. 49r - 50r, 
PR: ff. 49v - 50r; Lunar equation tables: K: ff. 55v - 57v, 125r - v, O: ff. 35v - 40r, L1: ff. 55r - 57r, L2: 
ff. 71r - 73r, PR: — . 

Figure 10: A number of values measured for the mean motion of the Moon in anomaly in 
the medieval Islamic period, together with Ptolemy’s and the Babylonian-Hipparchian (B-
H) values (for the abbreviations, see the caption to Figure 9). The modern graph of this 
parameter is displayed as the smoothly ascending curve.
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models, which reinforces the opinion that he was not acquainted with Ibn al-
Shāṭir’s legacy. It is curious to note that the Samarqand observers some years 
later, and Taqī al-Dīn about two centuries afterwards, also adhered to Ptolemy’s 
lunar model in their lunar measurements.
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Appendix: Edition of the Persian Text

We have not noted minor and trivial variants. Most of them are:

(1) simple orthographical differences in writing Persian and Arabic words;

Examples: the conjunction kih/که («that») is written as kiy/کی in MS. S. 
|| māʼil/مائل and māyil/مایل («inclined») || siyum/سیم, siyuwm/سیوم, siwum/
گانه/sihgānih || («third») سوم /hamčunān || («triple») سگانه/sigānih ,سه 
 in :(«that») آنک/and ānk آنکه/ānkih || («also») همچنین/hamčunīn ,همچنان
only one place in the text; the latter form can be found in MSS. S and L 
as well as in MS. IO. || činānkih/چنانکه and činānk/چنانک («as»): the latter 
form only occurs in MS. S and in a single place in MS. IO. || etc.

(2) due to the confusion over writing the Persian words in their original or 
Arabicized forms;

Example: the date of the third eclipse, for which MS. IO has hiždahum/
.هجدهم/while the other MSS have hijdahum ,هژدهم

and so on. Dropped words are noted only if they are absent from more than 
one manuscript.
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سخن در تصحیح اوساط قمر از رصد خسوفات

ســه خســوف رصد کردیم در بلدۀ کاشان و اوساط قمر از آن اســتخراج کردیم، چنانکه 
بطلمیوس کرده است، الّـا آنکه او مرکز تدویر را در خسوفات در سطح فلک البروج فرض 
کرده اســت و نظیر تقویم آفتاب در وســط خسوف تقویم قمر گرفته است. و ما موضع 
تقاطع منطقۀ مائل با عظیمۀ که بمرکز ظلّ گذرد و بر ســطح مائل بر زوایای قائمه باشــد 
موضع قمر گرفته ایم، چه عبارت از1  »وسط خسوف« آن وقت است که قمر بر آن نقطه 
باشــد }وسط خســوف دائماً به عقده اقرب بود از موضع اجتماع حقیقی{.2 و بطلیموس3 
این معنی را در شــکل دوم از فصل ششم از مقالۀ ششم مجسطی اثبات کرده است، امّا 

بجهت سهولت بعمل نیاورده است.4
و خســوف اوّل در شب سی ام شهریورماه قدیم ســنۀ خمس و سبعین و سبعمائه 
یزدجردی بود؛ از نصف اللّیل مذکور تا وســط خسوف ج ید ل ساعات مطلقه }، یعنی 
حقیقیّه،{5 گذشــته بود و ب نو کط ساعات معدّله، }یعنی وسطیۀّ معدّله بتعدیل الأیاّم،{6  

یعنی بحسب مبدأ مفروض که ذکر آن در مقالۀ ثالثه کرده شود.7
امّا خسوف دوم در شب بیست و هفتم اسفندارمذ ماه قدیم سنۀ مذکوره بود؛ ساعات 

ماضیّۀ وسط خسوف از نصف اللّیل: مطلقه ا یج ہ، معدّله 0 مح مو.
امّا وســط8 خسوف سوم در شب هجدهم شــهریور ماه قدیم سنۀ ستّ و سبعین و 
ســبعمائه یزدجردی9 بود؛ ساعات ماضیّه از نصف اللّیل تا وسط خسوف:10 بالاطلاق د یح 

ل، بالتعّدیل ج نح مو.
تقویم آفتاب و وسط جوزهر را11 در اوساط خسوفات ثلثه بحساب حاصل کردیم؛12 بود:13

ف
سو

ط خ
ب در وس

تقویم آفتا

ب یح نه ی مااوّل

ط جوزهر
وس

ب از عقدهط د لب مو
بعد آفتا

باشد:و لب ج )3
تعدیل نقل)

}]زا[ید{)4(

ا کط ب

ف
سو

ط خ
تقویم قمر در وس

ک مایل باشد:
  بفل

ح یح نو لط مج

ج نا یهط یج ند ناح یب یج نج لحدوم)1(
}]زا[ید{)4(

0 نب م
ب یب ید مو یح

ا لا نطط کج یز مب ح ید یح مجسوم)2(
}]نا[قصه{)4(

0 ک نح
ح ح یج نز مه

(1) L and P: (2) .ثانی L and P: (3) .ثالث L and P: (4) .بعد Additions to MSS. IO, Q2, and C.
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و حرکت }تقویمی{14 قمر از وســط خســوف اوّل تا وســط خسوف دوم  قعج یح و له 
است. و مدّت مابین الخسوفین قعو روز و کا نح له ساعت مطلقه، }یعنی حقیقیّه،{15 و کا 
نب یز معدّله }، یعنی وسطیّه{.16 و حرکت وسط درین مدّت }، یعنی مدّت معدّله،{17 قعا 
ج یج کو باشــد، و حرکت خاصّه: قنا ک لو ی. و ظاهر اســت که این قوس ب ید نج ط در 
تعدیل افزوده اســت }، چه وسط کمتر از تقویم است{.18 و همچنین حرکت }تقویمی{19 
قمر از وســط خســوف دوم تا وســط خسوف ســوم قعه نط یا کز اســت و مدّت مابین 
الخسوفین: قعز روز و ج ە که ساعت مطلقه و ج ی 0 معدّله. و حرکت وسط درین مدّت 
قعج نز لط ک باشــد، و حرکت خاصّه: قند یج لج لد. و ظاهر اســت که این قوس ب ا لب 

ز در تعدیل افزوده است.
پس، اینجا شــکل ســوم و چهارم و پنجم از فصل پنجم از مقالۀ چهارم کتاب مجسطی 
بِیِــک شــکل بیاریم.20 وفرض کنیــم که دایرۀ ا ب ج فلک تدویر اســت و نقطهای ا ب ج 
مواضع قمراند در اوســاط خســوفات سِــگانه بر ترتیب. و قوسهای سِــگانه که میان این 
نقطهاســت معلوم اند، چه قوس ا ب حرکت خاصّه اســت در مابین خسوف اوّل و دوم و 
زاید اســت در تعدیل، و قوس ب ج حرکت خاصّه اســت در مابین خســوف دوم و سوم 
و همچنان21 زاید اســت در تعدیل. پس، قوس ج ا باقی ماند: ند که ن یو. و نقصان تعدیل 
بحســب آن قوس د یو که یو اســت }که مجموع هر دو تعدیل مذکور است{.22 و پوشیده 
نماند که بعد ابَعد بر دو قوس ا ب ب ج واقع نشــده، چه هر یک اقلّ از نصف دوراند و 
زایداند در تعدیل. پس بر قوس ج ا واقع باشــد. و فرض کنیم که د مرکز بروج اســت. و 
خطوط دا د ب دج وصل کنیم. و دا قاطع تدویر است بر نقطۀ ہ. و خطوط ب ج ه ج ه ب 
وصــل کنیــم. و از نقطۀ ہ دو عمود ه ز ه ح بر خطّ د ج د ب قائم گردانیم و از نقطۀ ب 

عمود ب ط بر خطّ ج ه.
و جیب زاویۀ ا د ج }– که مقدار مجموع هر دو تفاوت تعدیل مذکور است –{23 د کح 
یو لب است و آن مقدار خطّ ه ز است باجزائی که د ە شصت جزء باشد. و چون زاویۀ 
ا  ه ج بر مرکز ند که ن یو اســت و بر محیط کز یب نه ح باشــد و زاویۀ ا د ج د یو که یو 
بود، پس زاویۀ  ه ج د24 باقی ماند بشکل سی و دوم از مقالۀ اوّل کتاب اصول: کب نو کط 
نب؛ جیبش: کج کج یه کا. و این مقدار ه ز اســت باجزائی که ه ج شــصت جزء باشد. پس 
مقدار ه ج باجزائی که د ه شصت جزء باشد یا کح یه ج بود.25 و نیز جیب زاویۀ ا د ب }– که 
زاویۀ تفاوت تعدیل اســت در مابین خســوف اوّل و دوم –{26 ب کا یب نو اســت، و آن 
مقدار ه ح است باجزائی که د ه شصت جزء باشد. و چون زاویۀ ا ه ب بر مرکز  ٢٠٨ لط 
کج ن اســت و بر محیط قد یط ما نه، و زاویۀ ا د ب: ب ید نج ط، پس زاویۀ ە ب د باقی 
قب د مح مو باشــد و تمام آن تا قائمتین، یعنی زاویۀ ہ ب ح، عز نه یا ید باشــد؛ جیبش: نح 
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م یو مح. و این مقدار ه  ح اســت باجزائی که ه ب شــصت جزء باشد. پس ه ب باجزائی 
که د ه شــصت جزء گیرند ب کد کد مح باشــد. و نیز زاویۀ ج ه ب }– و این ]قوس ب ج[ 
قوس خاصّه است مابین خسوف دوم و سوم –{27 بر مرکز قند یج لج لد است و بر محیط 
عــز و مــو مز؛ جیبش: نح کط یط کب؛ جیب تمامش: یج کب ند ید. و این هر دو مقدار دو 
خطّ ب ط ه ط اند باجزائی که ه ب شصت جزء باشد. پس باجزائی که ه ب ب کد کد مح 
باشد، یعنی باجزائی که د ه شصت جزء باشد، مقدار ب ط ب ک مو لج باشد و مقدار ه ط 
0 لب یب ل و ه ج بآن اجزاء یا کح یه ج بود. پس ج ط باقی ی نو ب لج باشد؛ مربعّش: ا 
نط لج یا مه مب ل ط سادســه. و مربعّ ب ط ە ل یز ن و ند ط سادســه. مجموع المربعّین: 
ب ە ج کط له مط کد یح. و این مربعّ  ب ج است؛ جذرش: یا ی نح لو. و این مقدار ب ج 
است باجزائی که د ه شصت باشد و ه ب28 بآن اجزاء ب کد کد مح بود. ولیکن وتر ب ج 
باجزائی که نصف قطر تدویر شصت باشد قیو29 نح لح مد است. پس، د ه بآن اجزاء ٦٢٧ 
لز یج30 نه باشد. و وتر ب ه بآن اجزاء که ی لو مو باشد. پس، قوس ه ب کد یج یط مب باشد 
و قــوس ا ه ب قنــا ک لو ی بود. پس قوس ا ه قکز ز یو کح باشــد. وتر او،31 یعنی خطّ ا ه، 
قز کو نه یح باشــد؛ و این از قطر اقصر اســت. پس، مرکز تدویر خارج از قطعۀ ا ه باشــد. 
و فرض کنیم که آن نقطه ک اســت. و از نقطۀ د خطیّ اخراج کنیم که بنقطۀ ک گذرد و 
تدویر را بر ل م قطع کند. پس، آن هر دو بعد ابَعد و اقَرب باشــد. پس، مســطحّ ه د32 که 
آن ٦٢٧ لز یج نه است در جمیع ا د که آن ٧٣٥ د ط یج است ب ح ط د33 لب کب ید مط 
یه نه سادسه باشد. و این مساوی مسطحّ م د است در ل د، چنانکه از شکل سی و پنجم 
از مقالۀ ســوم کتاب اصول معلوم می شــود. پس، چون مربعّ م ک، که آن ا 0 0 اســت، بر 
آن زیادت کنیم مربعّ د ک حاصل شــود بشکل ششم از مقالۀ  دوم34 اصول و آن ب ط ط 
د لب کب ید مط یه نه سادســه شود؛ جذرش ٦٨١ نب و یح باشد؛ و این مقدار د ک است 
باجزائی که ک م شــصت باشــد. پس، مقدار ک م، نصف قطر تدویر، باجزائی که د ک 

شصت باشد ە یو مو لو باشد.
پس، از نقطۀ ک عمود ک ن س بر ا ه اخراج کنیم و ا ک وصل کنیم. پس، بشــکل ســوم از 
مقالۀ سوم اصول ا ن ه ن متساویین باشند. پس، چون نصف ا ه، که آن نج مج کز لط باشد، 
بر د ه، که آن ٦٢٧ لز یج نه اســت، افزاییم، حاصل شــود: ٦٨١ ک ما لد، و این مقدار د ن 
اســت باجزائی که د ک ٦٨١ نب و یح باشــد، یعنی باجزائی که ک م شــصت باشد. پس،  
د ن باجزائی که د ک شــصت گیرند نط نز ید ی باشــد. و این جیب زاویۀ س ک م بود.35 
قوسش:36 فز مه یز ب؛ و این قوس س ه م است. تمامش تا قائمتینصب ید مب نح بود؛37 و 
این قوس ل س  بود.38 و مجموع هر دو قوس س ه، که نصف ا س ه است، و ه ب مذکور 
فز مو نز نو باشد. پس، قوس ل ه ب، بعُد قمر از ذروۀ مرئی، قف ا م ند باشد؛ و این خاصّۀ 
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معدّله اســت39 در منتصف زمان خسوف اوسط. و زاویۀ ن د ک، یعنی تمام زاویۀ ن ک د 
تا ربع دور، ب ید مب نح باشد. و زاویۀ ا د ب ب ید نج ط بود. پس، زاویۀ ک د ب باقی 
0 0 ی یا باشــد؛ و این40 تعدیل جزئی اســت که بآن موضع وســطی قمر از حقیقی ناقص 
می شود. آن را از تقویم قمر بفلک مائل در وسط خسوف اوسط، که آن ب یب ید مو یح 
اســت، نقصان کردیم؛ باقی ماند ب یب ید لو ز. و این حاصل وســط قمر اســت در وسط 
خسوف اوسط. و وسط آفتاب در این وقت ح یب نب کح نز است. بعد مضاعف یا کح مد 
ید ک باشــد. تعدیل خاصّه }بازاء مرکز{:41 0 یا و مه. خاصّۀ معدّله: و 0 ا م ند بود.42 پس، 

خاصّۀ وسطی و 0 یب مز لط باشد.
و وســط قمر در منتصف اوســط خســوفاتی که بطلمیوس در اســکندریه رصد کرده 
است – چنانکه در مجسطی مذکور است – 0 کط ل است. و خاصّۀ معدّله: ب د لح. بعد 
مضاعف: 0 ج لح. تعدیل خاصّه: 0 لب م. خاصّۀ وســطی: ب د ە ک. و آن پیشــتر از تاریخ 
یزدجردی بوده اســت بچهار صد و نود و هفت ســال و ٣٦٣ روز و ســیزده ساعت مطلقه 

بطول اسکندریه که یا کج لو ساعت باشد بطول کاشان.
پــس، مابیــن الرصّدین ١٢٧٢ ســال و ٣٥٤ روز و 0 لو ما ]ســاعت[ مطلقه و 0 مو کج 
]ساعت[ معدّله باشد. و حرکت وسط در مابین الرصّدین بعد ازهفده هزار و ششدور ا یب 
مد لو ز اســت و حرکت خاصّه بعد از ١٦٨٦٢ دور ج کو ز کز لط.43 پس هر یک از حرکت 
وســط و خاصّه مذکور مع الأدوار بر مجموع ایاّم و کســور مدّت مابین الرصّدین قسمت 
کردیم تا حرکت یک روزه از هر یک از آن حاصل شد. از تضاعیف آن حرکت ایاّم و شهور 
و ســنین حاصل کردیم. پس از وســط خســوف اوســط تا نصف نهار روز اوّل44 سال ذ فا 
یزدجردی پنج ســال و نهُ روز اســت و یا یا45 ید ساعت بنصف نهار زیج بطول کاشان، که 
یا ج ید ساعت باشد هم بنصف نهار زیج بطول شیراز.46 هر یک از حرکت خاصّه و وسط 
درین مدّت حاصل کردیم و بر حاصل هر یک در وسط خسوف اوسط افزودیم تا حاصل 
خاصّه و وســط در نصف نهار روز اوّل47 ســال ذ فا بنصف نهار زیج بطول فح حاصل شد. 
و از وســط آفتاب و وســط قمر حاصل بعد مضاعف و حرکت آن در سنین و شهور و ایاّم 

حاصل کردیم.
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خاصّــــــــــــــه

ج
بر

درجه

دقیـقه

ثانیه

ثالثه

رابعه

سه
خام

سادسه

کلزلنونججیج0در یک روز

0میحیهنحنواادر یکماه

مویزموحمجکحبدر یکسال

مولاحلزندکازدر صد سال

0مونامبکزیایدر ششصد سال

یبیجنومحلطکدکز0در اوّل ذ فا

وســــــــــــــط

ج
بر

درجه

دقیـقه

ثانیه

ثالثه

رابعه

سه
خام

سادسه

سابعه

ننمزنبالهییج0در یک روز

0کهنهکجنولیزهادر یکماه

ییددیاکووکجطددر یکسال

ملوجکزلحمجلحیادر صد سال

0مکامبنکادکازدر ششصد سال

لد]ند؟[نهکجمهحلامطجددر اوّل ذ فا

این اســت حاصل رصد خســوفات که ذکر کردیم.48 اگر در عمر مَهلی باشــد و دولت 
پادشاه جهان یاور گردد،49 رصد باقی کواکب بکنیم و بر آن زیجی50 وضع کنیم. حالیا بقدر 

وُسع این مقدار ایراد کردیم.
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Notes

  1. MSS. S and L:  — .
  2. A marginal gloss in MSS. P and C.
  3. MSS. IO, Q1, Q2, P, and C:  — .
  4. The underlined sentences read a bit differently in MSS. S and L:

و بطلیموس این معنی را در فصل ششــم از مقالۀ ششــم مجســطی ذکر کرده اســت، امّا بعمل 
نیاورده است تساهلًا.

  5. A marginal comment in MSS. IO, Q2, and P.
  6. A marginal addition in MSS. IO, Q2, and P.
  7. The phrase «یعنی بحسب مبدأ مفروض که ذکر آن در مقالۀ ثالثه کرده شود» can be found 
in MSS. Q1, S, and L (in MS. Q1: «كرده خواهد شد [...]»).
  8. The term «وسط» is found in MSS. IO, Q1, Q2, P, and C, is crossed out in MS. S, and 
is not extant in MS. L (in the latter two MSS, it is added in the end of the sentence; see 
below, note 10).
  9. MSS .S and L. —  :
10. The phrase «تـا وسط خـسوف» is not extant in MSS. IO, Q1, Q2, and P, because the 
term «وسط» is already given in the beginning of the sentence.
11. MSS. S and L:  — .
12. MS. P: + بـرین دستور.
13. MS. Q2: اینست; MS. IO: + این.
14. A marginal comment in MSS. IO, Q2, and C.
15. A marginal note in MSS. IO, Q2, and P.
16. A marginal gloss in MSS. IO, Q2, and P.
17. A marginal comment in MSS. IO, Q2, P, and C.
18. A marginal gloss in MSS. IO, Q2, P, and C.
19. A marginal note in MSS. IO, Q2, and P.
20. MSS. IO and Q2: بیاوریم. MS. C: سازیم.

21. MSS. S, L: همچنین.

22. A marginal comment in MSS. IO, Q2, and C.
23. A marginal note in MSS. IO, Q2, P, and C.
24. MSS. IO and Q2:
25. MSS. S and L: باشد.
26. A marginal addition in MSS. IO and Q2.
27. A marginal gloss in MSS. IO, Q2, and C.
28. MSS. S and L: ب ه.
29. MSS. IO and Q2: قنو. 
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30. MSS. IO and Q2: لج. 
31. MSS. S and L: آن.

32. MSS. IO and Q2: د ه.
33. Only in MS. S, a vertical thick line «|» separates the integral part of the sexagesimal 
number from its fractions.
34. MSS. S, L, and Q1: سوم.

35. MSS. S and L: بـاشد.
36. MSS. S and L: قوس او.
37. MSS. S and L:  — .
38. MSS. S and L: بـاشد.
39. MS: Q1: بـاشد.
40. MSS. IO and Q2:  — .
41. An addition in MSS. IO and Q2.
42. MSS. Q1, S, and L:  — .
43. In MSS. IO and Q2, the motion in anomaly is added in the margin. In MS. S, both 
motions are given in the margin. In MS. Q1, the motions in longitude and anomaly have 
erroneously been replaced by each other, maybe, because of reading the numbers from 
the margin in the prototype.
44. MS. S: + از.
45. MSS: IO and Q2: ج.

46. MS. S has given only the longitude value 88°/فح without mentioning which city it 
refers to. 
47. MS. S: + از.
48. End of the passage in MS. L.
49. MS. S: – بدولت پادشاه جهان – خلدّ الله ملکه
50. MS. S: + دیگر (inserted above the line). 
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