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On generalized Gower distance for mixed-type
data: extensive simulation study and
new software tools

Aurea Grané and Fabio Scielzo-Ortiz

Abstract

Data scientists address real-world problems using multivariate and heterogeneous data-
sets, characterized by multiple variables of different natures. Selecting a suitable dis-
tance function between units is crucial, as many statistical techniques and machine
learning algorithms depend on this concept. Traditional distances, such as Euclidean
or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
designed to handle this kind of data, it may lead to suboptimal results in the presence
of outlying units or underlying correlation structure. In this work robust distances for
mixed-type data are defined and explored, namely robust generalized Gower and robust
related metric scaling. A new Python package is developed, which enables to compute
these robust proposals as well as classical ones.

MSC: 62H30, 62-04.
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1. Introduction

Data scientists often face the challenge of clustering datasets of mixed-type, that is,
datasets containing both numeric and categorical variables. A common approach is to
start by computing classical Gower distance (Gower, 1971) between units, next to ob-
tain a Euclidean configuration, for instance via metric multidimensional scaling (that
is, Gower’s 1966 principal coordinates, Borg and Groenen, 2005), and finally to apply
partitioning algorithms like k-means or k-medians onto the principal coordinates of the
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units. Other possibilities skip the Euclidean configuration by directly applying clustering
algorithms to classical Gower distance between units. This is the case for k-medoids
(Kaufman and Rousseeuw, 1990) or hierarchical methods when the sample size allows it.

In such strategies, a key point is the selection of the metric, which should be able to
incorporate the statistical characteristics of the data. For instance, the underlying cor-
relation structure or outlying observations are issues that can distort the true proximity
between units and that few metrics are able to consider. This may happen when using
Gower distance, which is defined from Gower’s similarity coefficient as the simple mean
of three partial similarity indices computed from each variable type: a similarity asso-
ciated with range-normalized Manhattan distance for numerical variables, Jaccard for
binary variables and the simple matching coefficient for multiclass ones. Manhattan dis-
tance, like all Minkowski distances, implicitly assumes that variables are uncorrelated,
and so does the Gower coefficient. Another problem is that the Manhattan distance is
not robust to outlying units.

To overcome these drawbacks and inspired by Gower’s work, the generalized Gower
(G-Gower) distance was defined as the combination of three measures, conveniently
standardized and fulfilling the Euclidean requirement (Gower and Legendre, 1986), for
numerical, binary and multiclass variables (Grané, Salini and Verdolini, 2021). Indeed,
G-Gower appears as a particular case when a more general technique, called related met-
ric scaling (ReIMS) (Cuadras and Fortiana, 1995; 1998), is used to tailor a metric. This
technique allows combining several distance matrices computed on the same set of indi-
viduals into a single one. It has the additional property of discarding redundant informa-
tion coming from different sources. When all distance matrices to be combined satisfy
the Euclidean requirement, so does the final distance matrix (see Albarrdn, Alonso and
Grané, 2015; Grané and Romera, 2018 for the mathematical proofs).

In this paper, RelMS is used as a strategy to obtain flexible and robust distances for
mixed-type data. Several proposals from the least to the greatest complexity are explored
and evaluated in the context of clustering. They include three robust Mahalanobis pro-
posals for numerical data, distances associated with Jaccard and Sokal-Michener sim-
ilarity coefficients for binary data, and for multiclass variables Hamming distance is
considered (which is the distance associated to the simple matching coefficient).

The performance of the new robust proposals is evaluated in six mixed-type datasets,
four synthetic and two real, with underlying correlation structure and outlier contamina-
tion. In each case, k-medoids algorithm is applied to find the clusters, and comparisons
with the performance of other classical metrics are provided in terms of classification
rate and adjusted Rand index. A total of 34 distances are evaluated. Since some of the
datasets are rather complex, metric multidimensional scaling is used to visualize and
illustrate the difference between the true and assigned class of the units. A sensitiv-
ity analysis on the parameters involved in the robust estimation of the new proposals is
provided for each dataset. A study of their computational cost for large and very large
datasets can be found in Appendix B. Additionally, in Appendix A a Python package
called robust_mixed_dist is presented.
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The paper proceeds as follows. In Section 2 we revisit related metric scaling and
present the generalized Gower distance as well as several robust proposals. Their perfor-
mance in the context of clustering and the sensitivity analysis can be found in Section 3.
Section 4 contains the main conclusions, and some guidelines on robust_mixed_dist and
the study on computational cost can be found in the appendices.

2. Distance proposals for mixed-type data

In this section, a general procedure for combining distance matrices computed on the
same set of units is revisited. It was used to obtain distance measures for mixed-type
data in Albarran et al. (2015), Grané and Romera (2018), Grané et al. (2021) and Boj and
Grané (2024) in the context of metric multidimensional scaling and distance-based pre-
dictive models, where a robust Mahalanobis distance was used for numerical variables
and for binary and multiclass data Jaccard and Hamming distances were considered, re-
spectively. In this paper, we explore other robust proposals and provide an extensive
simulation study of their performance in the context of clustering.

The strategy to construct a joint distance begins by splitting the dataset according to
each variable type (numerical, binary and multiclass), next to compute different distance
matrices for each variable type, and finally combine them via related metric scaling
(Cuadras and Fortiana, 1995; 1998).

Let X be an n X p a data matrix corresponding to the measurements of p mixed-type
variables X1, ..., X}, on a sample of n units, and consider sub-matrices Xj of size n X py,
k=1,2,3, corresponding to each variable type, i.e., numeric, binary and multiclass, with
Yi_, px = p. The distance measures considered are:

« Distances for numerical data: Euclidean (¢? distance), Manhattan (¢! distance),
Canberra, Pearson (standardized 02 distance), Mahalanobis, robust Mahalanobis
(with three variance estimators median absolute deviation, trimmed, winsorized),

* Distances for binary data: Associated with Jaccard coefficient (Jaccard, 1901) and
with simple matching Sokal-Michener coefficient (Sokal and Michener, 1958).

 Distances for multiclass data: Hamming (associated to simple matching coeffi-
cient).

Most of the above distances are well-known to data scientists and their formulas are
considered here. The previous list is not exhaustive, and other distances may be more
appropriate depending on the context.

Regarding binary data, two similarity coefficients are considered, Jaccard and Sokal-
Michener. It is worth noting that the Jaccard coefficient excludes double-zeros from the
similarity assessment, whereas the Sokal-Michener coefficient takes them into account.
Thus, the use of Jaccard coefficient is recommended when double-zeros are not informa-
tive. Otherwise, the Sokal-Michener coefficient is preferred (see Gower and Legendre,
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1986 and Legendre and De Caceres, 2013 for details and discussion). In any case, the
general transformation given in Gower (1966) is considered to obtain a distance from a
similarity coefficient. That is, consider the sub-matrix X; corresponding to the measure-
ments of p, binary variables on the sample of n units. The (squared) distance between
units £, 7 is obtained as

8%(x0.i,%0,,) = s(X2.4,X0) + (X2, X2,) — 25(X2., X2, ), )]

where Xx;;, Xp, are p, x 1 vectors containing the binary measurements for units i,7,
respectively, and s(X2 ;,X2 ) is a given similarity coefficient between them.

Regarding numerical data, combinations including Euclidean, Manhattan, Pearson
or Canberra distances are not recommended in the presence of an underlying correlation
structure or outlying observations. In such cases, robust Mahalanobis proposals are pre-
ferred. A robust Mahalanobis distance is obtained by using a robust estimator for the
covariance matrix in Mahalanobis distance formula.

In what follows, we focus on a procedure to obtain such a robust estimation, which
consists of three steps: estimation of variances, estimation of Pearson’s correlation co-
efficients, and estimation of covariances (see Gnanadesikan, 1997 for the details).

Consider the sub-matrix X; corresponding to the measurements of p; numerical
variables on the sample of n units. The (squared) robust Mahalanobis distance between
units 7, 7 is defined as:

Sitana(X1,5,X1.r) = (X1 —x1,,)' S (x1 —x1,,) 2)

where x; ; and Xx; , are p; X 1 vectors containing the measurements for units i, r, respec-
tively, and S* = (sjk)lg jk<p; 18 a robust estimation of the sample covariance matrix of
Xj.

In this paper we consider three methods for computing the s;‘.k’s, namely median
absolute deviation (MAD), trimmed and winsorized. In any case, the first step of the
procedure consists in selecting one of these three methods to estimate the variances of
the numerical variables (that is, the diagonal elements of S*):

(1) MAD: A*Z(X) MAD(X) = [Me(|x;j —Me(X;)| :i= 1,...,n)]2, where Me(+)
stands for the median.

(2) Trimmed: 6*2(X;) = 6%(X ), where X7 is an a-trimmed version of X, that is,
Xja = {xij e {1,...,1’1}, Xij € [Q(a/27Xj)>Q(1 - a/27Xj)] )
where Q(z,X;) is the z x 100 quantile of X;, z € [0, 1].

(3) Winsorized: 6*2(X ) ( %), where X7 is an o-winsorized version of X, that
is, X' = ={h(x):xe where function h is defined as

ala), ifxeA(a),

h(x)=<¢ b(a), ifxeB(a),
X, ifreX;jandx ¢ A(o),x ¢ B(),
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where a(a) is the value of X; that is immediately greater than Q(ot/2,X;), b(a)
is the value of X; that is immediately lower than Q(1 — & /2,X;) and A(a) = {x;; :
xij < Q(0t/2,X))}, B(a) = {xij : xij > O(1 — /2, X;) }.

In the second step of the procedure, a robust estimator of Pearson’s correlation coef-
ficient between two numerical variables is given. For each pair of variables X; and X, a
robust estimation of their Pearson’s correlation coefficient is computed as follows:

612 _ 6*2

A*2 | A2
62+ 6"

where 612 and 672 are robust estimators of the variances of Z i +Zy and Z; — Z, respec-
tively, with Z; = X;/\/6*2(X;) and Z; = X;/\/6*?(Xk). Note that the same method to
estimate the variances selected in the first step must be used for 672 and 6*2.

In the final step of the procedure, the off-diagonal elements in S* are obtained. For
each pair of variables X; and X;, a robust estimation of their covariance is obtained as:

=i/ 62(X)) 672 (Xe).

In the simulation study, parameter & in trimmed and winsorized methods was set
equal to the true proportion of outlying units. Additionally, a sensitivity study on the
effect of this parameter on the classification rate is given for each dataset.

Note that formula (2) relies on the fact that S* is positive definite. In case S* > 0, then
the inverse in formula (2) is substituted by the corresponding Moore-Penrose pseudo-
inverse. In case S* is not positive semi-definite, that is, in case negative eigenvalues
exist, a shrinkage scheme can be applied to its elements to ensure positive definiteness.
Some proposals can be found in Devlin et al. (1975). For instance, the Devlin algorithm
to obtain positive definite S* is based on the following transformation:

5(8%) = (8(s)) {jk=1,....p}

where _
0, if |57 | < z(e),
alsi) +e), if sy < —2(e),

8(s7) = j
Ha(sy) —2), ifsj > z(e),

<
Z
where € is a small positive number, for example, £ = 0.05, z(x) = arctanh(x) = 1 log
(1), 27! (x) = tanh(x) and z(€) = z(0.05) ~ 0.05. The algorithm is applied recursively
until §(S*) is positive definite.

In what follows we proceed to describe related metric scaling (RelMS), a multi-
variate technique introduced by (Cuadras and Fortiana, 1995, 1998), with the aim of
combining several distance matrices computed on the same set of individuals in a sin-
gle one. The method is based on the construction of a joint metric that satisfies several

axioms related to the property of identifying and discarding redundant information (see
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Albarrén et al., 2015; Grané and Romera, 2018). It is a very general method that al-
lows to combine several sources of information, whenever a distance function can be
measured between units. Although in Section 3 we explore it for the combination of
numerical, binary and multiclass variables, it can also be applied to combine other kinds
of data, such as functional data, time series, images, manifolds, compositional data, etc.
Another possibility is to group variables according to different sources of information
and combine the resulting distance matrices (Grané et al., 2022). Here we give the gen-
eral description of the method.

Let X be an n X p data matrix corresponding to the measurements of p variables
X1,...,X, on a sample of n units, and consider that the p variables can be grouped in m
different types or sources of information.

1. Split matrix X into m sub-matrices Xy, of size n X py, k =1,...,m, regarding each
variable type or source of information.

2. For each sub-matrix X; consider a proper distance measure between units, accord-
ing to the characteristics of the data, &, and compute the corresponding matrix of
squared pairwise distances conveniently standardized by its geometric variability
(Cuadras and Fortiana, 1995), so that all matrices to be combined are commensu-

rate, that is:

1

2
A= TM (67 (i X)) {1<ir<n}> v

where X ;, X, denote the i-th and r-th rows of matrix Xy, respectively, and

1 n n
Vao= 53 Y Y 67 (xeixer)-

i=1r=1
3. For each matrix Ay compute the corresponding Gram matrix:
1
Gk - — E HAk H7

where H =1- %1 1’ is the centering matrix, I is the identity matrix of size n X n
and 1is an x 1 vector of ones.

4. Check for Euclideanarity': Each G, must be positive definite. If this is not the
case, several transformations can be applied to Ay so that this requirement is ful-
filled. In this paper the additive transformation is applied, but other possibilities
may serve for this purpose (see Borg and Groenen, 1986; Gower and Legendre,
2005). For simplicity, we keep the same notation for Gy’s, assuming that they
satisfy the Euclidean requirement.

IThe word “Euclideanarity” was coined by John Gower in Gower and Legendre (1986).
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5. Combine all Gram matrices to get the Gram matrix of the joint metric as follows:

UL 1
G=Y G --YG/"G" )
k=1 m iz

where G,lc/ % is the square root of G, which can be obtained through the singular
value decomposition of Gy.

6. The matrix of squared distances of the joint metric is obtained from G as follows:
A=gl'+1g —2G = (8" (X0, X)) (1<jr<n) » 5)

where g = diag(G) is a n x 1 vector containing the diagonal elements of G, and
X;, X, denote the i-th and r-th rows of the data matrix X, respectively.

7. Finally, the distance matrix of the joint metric is D = (& (Xi,X,)){1<; < that
contains the square root of the elements of A.

The first addend of formula (4) mimics classical Gower distance by adding the three
metrics, although here the addition is done through the matrices of square distances. The
second addend is responsible of discarding redundant information coming from different
sources. Note that ReIMS can be computationally expensive for large sample sizes (see
Appendix B). This is the reason why a simplified version of the above procedure was
proposed, called generalized Gower distance (G-Gower).

Inspired by Gower’s works, G-Gower (square) distance is defined as the linear com-
bination of the matrices of squared pairwise distances, conveniently standardized by
their corresponding geometric variability. That is,

Ace =Y Ay, (0)
k=1

where each Ay is defined as in (3) and fulfills the Euclidean requirement. Equivalently,
(square) G-Gower can be obtained from the first addend of formula (4).

3. Empirical evaluation

In this section the performance of the distances presented in Section 2 is evaluated in the
context of clustering and compared to those of classical Gower and Euclidean distance.
The aim of the simulation study is to analyze their performance in the presence of un-
derlying correlation structure and outlier contamination. The simulation involves four
synthetic and two real datasets and k-medoids algorithm is used to obtain the partition-
ing.

In all cases, the true class is known for each unit. Thus, classification rate (pro-
portion of units out of the total that are correctly classified) and adjusted Rand index
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(ARI) (Hubert and Arabie, 1985; Rand, 1971) are used to evaluate the goodness of the
clustering.

The Rand index was proposed by Rand (1971) as a clustering validation measure.
However, as noted by Hubert and Arabie (1985) and Nguyen and Bailey (2009), in
practice the Rand index frequently takes values in the [0.5, 1] interval, its reference value
(baseline value) can be high and not take a constant value. For these reasons the Rand in-
dex is most used in its adjusted version, known as the adjusted Rand index. Considering
that there are n units and two partitions of them C; = {Cyy,...,C},}, Co = {Ca1,...,Cas}
with r and s clusters, respectively, the adjusted Rand index is defined as

2(ab—cd)

AR = b+ o+ ar )b+ d)’

where a is the number of pairs of units belonging to the same cluster in both partitions
Cy and C,. Thatis, i,j € Cip, and i,j € Gy, forsome h=1,...,randu=1,...,s; b is
the number of pairs of units belonging to different clusters in partitions €; and C;. That
is, i € Cyp, and j € Cyy, for hy # hy, hy,hpy =1,...,r, and also i € Cy,, and j € Cy,,, for
uy # up, uy,up = 1,...,s; ¢ is the number of pairs of units belonging to the same cluster
in partition C; but to different clusters in partition C,. Thatis, i,j € Cy, forh=1,...,r,
buti € Cyy, and j € Cyy,, for uy # u, uy,ur = 1,...,s; d is the number of pairs of units
belonging to different clusters in partition C; but to the same cluster in partition C,. That
is,i € Cyp, and j € Cyp, for hy # ho, hy,ho =1,...,r,buti,j € Cy, foru=1,...,s.

The adjusted Rand index takes values in [—0.5,1] and the closer to one, the more
similar the compared rankings are. In contrast, the closer to —0.5, the more different
the compared rankings. In practice, one of the two cluster configurations (or two clas-
sifications) that the Rand index requires (adjusted or not), will be the one defined by a
variable that is taken as a grouping response, and the other will be the one defined by
a classification algorithm, such as k-medoids. Therefore, in practice it is necessary to
have information about a categorical response variable to be able to implement the Rand
index as a validation measure for clustering algorithms. In this scenario, the interpreta-
tion of the ARI is the following: the closer it is to 1, the more similar the classification
made by the algorithm is to the real classification, and the closer it is to —0.5 , the less
similar. In fact, in this context, an ARI close to zero indicates that the classification
performed by the algorithm is similar to the one that would be obtained with a purely
random classification procedure, and when it is negative it indicates that it is even worse.

A total of 34 distances are under study. In the case of G-Gower or RelMS, they
are obtained as a combination of three distances, one for each type of data, following
formulas (6) or (5), respectively. The distances considered are:

1. Generalized Gower composed by

* Euclidean (/2 distance), Manhattan (¢! distance), Canberra, Pearson (stan-
dardized Euclidean), Mahalanobis, robust Mahalanobis (MAD, trimmed, win-
sozired) for numerical variables,
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* Jaccard, Sokal-Michener similarity coefficients for binary variables, trans-
formed to distances according to formula (1),

¢ Hamming for multiclass variables.
2. Related metric scaling composed by

* Euclidean (¢? distance), Manhattan (¢! distance), Canberra, Pearson (stan-
dardized Euclidean), Mahalanobis, robust Mahalanobis (MAD, trimmed, win-
sozired) for numerical variables,

* Jaccard, Sokal-Michener similarity coefficients for binary variables, trans-
formed to distances according to formula (1),

* Hamming for multiclass variables.

Additionally, Euclidean (¢% distance) and classical Gower distance are considered for
comparison of results. Note that applying the Euclidean distance on raw mixed-type data
is not recommended at all. The reason why we keep it is because it usually appears as the
default distance in many software packages and we want to emphasize the consequences
of using such a distance in a wrong context.

Tables 1-4 contain the classification rate and ARI mean values, computed on 100
runs for each scenario and distance considered. Additionally, Figures 1-4 contain met-
ric MDS configurations corresponding to one of the 100 runs that help to illustrate the
differences between the true and assigned class of the units. In the simulation study,
results concerning the Euclidean distance are shown to illustrate the odd performance
when using such a distance in mixed-type data.

3.1. Simulation study

Synthetic datasets of mixed-type data were generated with the make blobs function
from the scikit-1learn Python library. Each dataset is composed by p; =4 numerical,
p2 = 2 binary, p3 = 2 multiclass variables measured on # units divided in k true classes.
Different outlier patterns were added to each dataset.

1. Sample size: n = 500,
Variables: Only 2 of them are informative and 6 with redundant information; Un-
derlying correlation structure: Three pairs of numerical variables are highly cor-
related; Outliers: 10-12% contamination in three numerical variables.
True classes: k = 3 (balanced).

2. Sample size: n = 650,
Variables: 3 of them are informative and 5 with redundant information; Underly-
ing correlation structure: Two pairs of numerical variables are highly correlated;
Outliers: 10% contamination in two numerical variables,
True classes: kK = 4 (balanced).
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Table 1. Classification results for synthetic dataset 1.

Distance Classification rate| ARI

RelMS: Mahalanobis-Jaccard-Hamming 0.630 0.273666
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.628 0.278432
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.628 0.277728
G-Gower: Mahalanobis-Jaccard-Hamming 0.628 0.268592
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.628 0.278432
RelMS: Canberra-Jaccard-Hamming 0.622 0.238612
G-Gower: Canberra-Jaccard-Hamming 0.620 0.230389
G-Gower: Canberra-Sokal-Hamming 0.620 0.218362
RelMS: Canberra-Sokal-Hamming 0.612 0.212984
G-Gower: Mahalanobis-Sokal-Hamming 0.608 0.222972
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.598 0.255065
RelMS: Mahalanobis-Sokal-Hamming 0.590 0.195316
RelMS: Pearson-Jaccard-Hamming 0.588 0.190902
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.586 0.188601
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.584 0.185916
classical Gower 0.562 0.192146
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.554 0.190833
G-Gower: Pearson-Jaccard-Hamming 0.552 0.190902
G-Gower: Pearson-Sokal-Hamming 0.540 0.220737
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.540 0.220737
RelMS: Pearson-Sokal-Hamming 0.538 0.202318
G-Gower: Euclidean-Sokal-Hamming 0.538 0.219598
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.538 0.202318
G-Gower: Manhattan-Sokal-Hamming 0.534 0.216939
RelMS: Euclidean-Jaccard-Hamming 0.532 0.175767
G-Gower: Euclidean-Jaccard-Hamming 0.532 0.175767
ReIMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.530 0.170310
RelMS: Manhattan-Jaccard-Hamming 0.528 0.168527
G-Gower: Manhattan-Jaccard-Hamming 0.528 0.168527
RelMS: Manhattan-Sokal-Hamming 0.520 0.176607
RelMS: Euclidean-Sokal-Hamming 0.516 0.164035
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.508 0.159580
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.506 0.157313
Euclidean 0.350 0.000090

3. Sample size: n = 600,
Variables: 6 of them are informative and 2 with redundant information; Underly-
ing correlation structure: Three pairs of numerical variables are highly correlated;
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Outliers: 7-8% contamination in three numerical variables.
True classes: kK = 4 (unbalanced).

Sample size: n = 600,
Variables: All informative; Uncorrelated and uncontaminated;
True classes: kK = 4 (balanced).

G-Gower: Robust Mahalanobis (trimmed), Jaccard and Hamming
True class Assigned class by k-medoids

cluster labels
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Figure 1. Clustering visualization. Synthetic dataset 1.
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Table 2. Classification results for synthetic dataset 2.

Distance Classification rate| ARI

G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.621538 0.329944
G-Gower: Mahalanobis-Sokal-Hamming 0.592308 0.324297
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.590769 0.260597
ReIMS: Robust Mahalanobis MAD-Sokal-Hamming 0.567692 0.297498
RelMS: Mahalanobis-Sokal-Hamming 0.567692 0.228790
G-Gower: Canberra-Sokal-Hamming 0.561538 0.221440
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.558462 0.216499
ReIMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.558462 0.216499
ReIMS: Pearson-Sokal-Hamming 0.552308 0.202442
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.552308 0.214666
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.552308 0.214415
G-Gower: Pearson-Sokal-Hamming 0.550769 0.215299
RelMS: Euclidean-Sokal-Hamming 0.547692 0.244515
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.546154 0.205740
G-Gower: Mahalanobis-Jaccard-Hamming 0.543077 0.226489
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.540000 0.222812
G-Gower: Manhattan-Sokal-Hamming 0.540000 0.232898
G-Gower: Euclidean-Sokal-Hamming 0.540000 0.232898
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.540000 0.222812
RelMS: Pearson-Jaccard-Hamming 0.533846 0.199402
RelMS: Mahalanobis-Jaccard-Hamming 0.526154 0.195419
G-Gower: Pearson-Jaccard-Hamming 0.524615 0.198994
G-Gower: Canberra-Jaccard-Hamming 0.524615 0.194698
RelMS: Euclidean-Jaccard-Hamming 0.503077 0.203928
G-Gower: Manhattan-Jaccard-Hamming 0.500000 0.193327
G-Gower: Euclidean-Jaccard-Hamming 0.500000 0.193327
RelMS: Canberra-Sokal-Hamming 0.496923 0.223695
RelMS: Manhattan-Jaccard-Hamming 0.495385 0.189415
RelMS: Manhattan-Sokal-Hamming 0.492308 0.191534
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.481538 0.155862
ReIMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.478462 0.153906
RelMS: Canberra-Jaccard-Hamming 0.460000 0.159691
classical Gower 0.423077 0.125406
Euclidean 0.263077 0.000138

Table 1 contains the classification rate and ARI values for k-medoids algorithm with
k = 3, concerning synthetic dataset 1. We observe that G-Gower with robust Maha-
lanobis (trimmed), Jaccard and Hamming reaches a classification rate of 62.3% and an
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ARI value of 0.27. Similar values are reached by RelMS with robust Mahalanobis (win-
sorized), Jaccard and Hamming. These classification rates (and ARI values) are higher
than those obtained by classical Gower or Euclidean distance, for which values of 56.2%
(ARI 0.19) and 35.0% (ARI < 10~%) are attained, respectively.

In Figure 1 metric MDS maps are used to illustrate the k-medoids classification (k =
3), for synthetic dataset 1, using G-Gower with robust Mahalanobis (trimmed), Jaccard
and Hamming, ReIMS with robust Mahalanobis (winsorized), Jaccard and Hamming
and Euclidean distance. Units in left panels are colored according to their true class
and in right panels, according to their assigned class. The clustering in G-Gower and
ReIMS panels can be considered rather acceptable, since around half of the units in
class 0 are not well identified. On the other hand, the clustering with Euclidean distance
is disappointing, where the configuration appears completely distorted due to outlying
observations and the underlying correlation structure that this distance is not able to
incorporate.

Table 2 contains the classification rate and ARI values for k-medoids algorithm with
k = 4, regarding synthetic dataset 2. In this case, G-Gower with robust Mahalanobis
(MAD), Jaccard and Hamming reaches a classification rate of 62.2% and an ARI value
of 0.33, and a 59.1% rate and 0.26 ARI are attained by ReIMS with robust Mahalanobis
(MAD), Jaccard and Hamming. These classification rates (and ARI values) are higher
than those obtained by classical Gower or Euclidean distance, whose values are located
at the end of the ranking.

In Figure 2 metric MDS maps are used to illustrate the k-medoids classification
(k=4), for synthetic dataset 2, using G-Gower with robust Mahalanobis (MAD), Jaccard
and Hamming, RelMS with robust Mahalanobis (MAD), Jaccard and Hamming and
classical Gower. Units in left panels are colored according to their true class and in
right panels, according to their assigned class. The clustering in G-Gower panels can be
considered rather acceptable, since most of the units in classes 0 and 1 are well identified.
On the other hand, the clustering with classical Gower is not good since this distance is
not able to incorporate the underlying correlation structure as well as the presence of
outlying units. Once more, the clustering with Euclidean distance is disappointing.

Table 3 contains the classification rate and ARI values for k-medoids algorithm with
k = 4, concerning synthetic dataset 3. We observe that G-Gower with robust Maha-
lanobis (MAD), Sokal and Hamming reaches a classification rate of 88.3% and an ARI
value of 0.73. On the other hand, classification rates for Euclidean and classical Gower
are of 44.17% (ARI 0.29) and 73.50% (ARI 0.26), respectively.

In Figure 3 metric MDS maps are used to illustrate the k-medoids classification
(k =4), for synthetic dataset 3, using G-Gower with robust Mahalanobis MAD, Sokal
and Hamming and classical Gower. Units in left panels are colored according to their
true class and in right panels, according to their assigned class. In G-Gower panels we
can observe that the four clusters are very similar to the true ones. However, this is not
the case for classical Gower, where most of the units in class 0 and half of the units in
class 3 are not well identified.
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Figure 2. Clustering visualization. Synthetic dataset 2.
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Table 3. Classification results for synthetic dataset 3.

Distance Classification rate| ARI

G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.883333 0.726101
G-Gower: Pearson-Sokal-Hamming 0.881667 0.723303
G-Gower: Canberra-Jaccard-Hamming 0.880000 0.704662
G-Gower: Canberra-Sokal-Hamming 0.880000 0.703744
RelMS: Canberra-Sokal-Hamming 0.866667 0.683853
RelMS: Canberra-Jaccard-Hamming 0.850000 0.657553
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.731667 0.613787
RelMS: Pearson-Sokal-Hamming 0.730000 0.611196
RelMS: Euclidean-Sokal-Hamming 0.728333 0.615708
RelMS: Manhattan-Sokal-Hamming 0.728333 0.615395
G-Gower: Manhattan-Sokal-Hamming 0.723333 0.597885
G-Gower: Euclidean-Sokal-Hamming 0.710000 0.564313
G-Gower: Manhattan-Jaccard-Hamming 0.708333 0.559781
G-Gower: Euclidean-Jaccard-Hamming 0.708333 0.558163
ReIMS: Manhattan-Jaccard-Hamming 0.705000 0.556431
RelMS: Euclidean-Jaccard-Hamming 0.700000 0.541697
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690000 0.587217
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.686667 0.589241
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.686667 0.589241
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.686667 0.587224
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.686667 0.587224
ReIMS: Mahalanobis-Jaccard-Hamming 0.686667 0.587224
G-Gower: Mahalanobis-Jaccard-Hamming 0.685000 0.576739
G-Gower: Pearson-Jaccard-Hamming 0.685000 0.582427
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.683333 0.578341
ReIMS: Pearson-Jaccard-Hamming 0.671667 0.547123
classical Gower 0.651667 0.292456
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.605000 0.490818
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.605000 0.491105
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.591667 0.486762
ReIMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.586667 0.484619
RelMS: Mahalanobis-Sokal-Hamming 0.583333 0.484672
G-Gower: Mahalanobis-Sokal-Hamming 0.581667 0.486274
Euclidean 0.533333 0.255522
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Table 4 contains the classification rate and ARI values for k-medoids algorithm with

k = 4, concerning synthetic dataset 4, where variables are uncorrelated and uncontam-
inated. As expected, classification rates are rather low and most ARI values are close
to zero, since data in the four groups lack underlying correlation structure (all variables
are uncorrelated and either normally or uniformly distributed). In this case, the best
performance is achieved by Euclidean distance, with a classification rate of 55.33% and
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an ARI value of 0.1852, followed by G-Gower with Canberra distance for numerical
variables. The performance of these methods is illustrated in Figure 4 with metric MDS

maps.
Table 4. Classification results for synthetic dataset 4.

Distance Classification rate | ARI

Euclidean 0.5533 0.1852
G-Gower: Canberra-Sokal-Hamming 0.4900 0.1652
ReIMS: Canberra-Jaccard-Hamming 0.4750 0.1278
classical Gower 0.4683 0.1415
RelMS: Pearson-Jaccard-Hamming 0.4300 0.0905
RelMS: Euclidean-Sokal-Hamming 0.4300 0.1140
ReIMS: Euclidean-Jaccard-Hamming 0.4283 0.0896
G-Gower: Manhattan-Jaccard-Hamming 0.4283 0.0918
G-Gower: Pearson-Jaccard-Hamming 0.4283 0.0898
G-Gower: Euclidean-Jaccard-Hamming 0.4267 0.0901
ReIMS: Canberra-Sokal-Hamming 0.4267 0.1213
RelMS: Pearson-Sokal-Hamming 0.4217 0.1077
ReIMS: Robust Mahalanobis mad-Sokal-Hamming 0.4200 0.1039
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.4200 0.0841
RelMS: Manhattan-Jaccard-Hamming 0.4200 0.0826
ReIMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.4200 0.0841
RelMS: Mahalanobis-Jaccard-Hamming 0.4200 0.0837
G-Gower: Mahalanobis-Jaccard-Hamming 0.4200 0.0845
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.4183 0.0844
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.4183 0.0845
RelMS: Mahalanobis-Sokal-Hamming 0.4150 0.1022
ReIMS: Robust Mahalanobis mad-Jaccard-Hamming 0.4150 0.0808
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.4150 0.1022
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.4150 0.1022
G-Gower: Robust Mahalanobis mad-Jaccard-Hamming 0.4133 0.0816
G-Gower: Euclidean-Sokal-Hamming 0.3967 0.0841
G-Gower: Pearson-Sokal-Hamming 0.3917 0.0807
RelMS: Manhattan-Sokal-Hamming 0.3883 0.0928
G-Gower: Canberra-Jaccard-Hamming 0.3867 0.0528
G-Gower: Manhattan-Sokal-Hamming 0.3817 0.0874
G-Gower: Mahalanobis-Sokal-Hamming 0.3800 0.0882
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.3800 0.0906
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.3783 0.0887
G-Gower: Robust Mahalanobis mad-Sokal-Hamming 0.3783 0.0921
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Figure 4. Clustering visualization. Synthetic dataset 4.

3.2. Real datasets
3.2.1. Dubai properties dataset

This dataset contains 1905 properties for which 38 characteristics were measured. It
is available at https://www.kaggle.com/datasets/dataregress/dubai-pro
perties—dataset?resource=download.

The variables considered as predictors are: Latitude and longitude, market price
and size (in m?) as numerical; number of bedrooms (0,1,2,3,4,5) and number of bath-
rooms (0,1,2,3,4,5,6) as multiclass, and balcony (1=true, O=false), barbecue are (1=true,
O=false) and private pool (1=true, O=false) are taken as binary. We decided to con-
sider house quality (1=Low, 0=Medium/High/UltraHigh) as response variable with k =2
classes.

Table 5 contains the classification rate and ARI values for k-medoids algorithm with
k = 2, where we observe classification rates higher than 85% for some of the robust
proposals. In particular, G-Gower with robust Mahalanobis (trimmed, winsorized and
MAD), Jaccard and Hamming attain a classification rate of 86.14%, RelMS with robust
Mahalanobis (MAD), Jaccard and Hamming reaches the 86.09%, ReIMS with robust
Mahalanobis (trimmed and winsorized), Jaccard and Hamming reach 85.98% and for
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https://www.kaggle.com/datasets/dataregress/dubai-properties-dataset?resource=download

Aurea Grané and Fabio Scielzo-Ortiz 231

robust Mahalanobis (trimmed, winsorized and MAD), Sokal and Hamming a 85.83% is
attained. On the other hand, the classification rate for Euclidean and Gower are 60.58%
and 50.97%, respectively.

Table 5. Classification results for Dubai properties dataset.

Distance Classification rate| ARI

G-Gower: Mahalanobis-Jaccard-Hamming 0.861942 0.505161
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.861417 0.503672
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.861417 0.503672
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.861417 0.503672
ReIMS: Mahalanobis-Jaccard-Hamming 0.860892 0.502544
G-Gower: Canberra-Jaccard-Hamming 0.860892 0.502365
RelMS: Canberra-Jaccard-Hamming 0.860892 0.502365
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.860892 0.502365
RelMS: Pearson-Jaccard-Hamming 0.860892 0.502365
G-Gower: Pearson-Jaccard-Hamming 0.860367 0.500702
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.859843 0.499400
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.859318 0.497922
RelMS: Mahalanobis-Sokal-Hamming 0.858268 0.495329
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.858268 0.495329
ReIMS: Pearson-Sokal-Hamming 0.858268 0.495329
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.858268 0.495329
RelMS: Canberra-Sokal-Hamming 0.858268 0.495329
ReIMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.858268 0.495329
RelMS: Robust Mahalanobis MAD-Sokal -Hamming 0.858268 0.495329
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming b 0.858268 0.495329
G-Gower: Mahalanobis-Sokal-Hamming 0.858268 0.495329
G-Gower: Pearson-Sokal-Hamming 0.858268 0.495329
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.858268 0.495329
RelMS: Euclidean-Jaccard-Hamming 0.819948 0.394762
RelMS: Manhattan-Jaccard-Hamming 0.819948 0.394762
G-Gower: Manhattan-Jaccard-Hamming 0.817848 0.389618
G-Gower: Euclidean-Jaccard-Hamming 0.817848 0.389618
Euclidean 0.605774 0.000912
G-Gower: Canberra-Sokal-Hamming 0.516010 -0.002348
RelMS: Manhattan-Sokal-Hamming 0.510761 -0.000050
RelMS: Euclidean-Sokal-Hamming 0.510761 -0.000050
classical Gower 0.509711 -0.000083
G-Gower: Euclidean-Sokal-Hamming 0.506562 -0.000263
G-Gower: Manhattan-Sokal-Hamming 0.506562 -0.000263
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Similar conclusions can be derived regarding ARI. For example, G-Gower with ro-
bust Mahalanobis (trimmed, winsorized and MAD), Jaccard and Hamming reach one of
the highest ARIs, as well as ReIMS with robust Mahalanobis (MAD), Jaccard and Ham-
ming. On the other hand, values around 0O are obtained by classical Gower and Euclidean
distance.
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Figure 5. Clustering visualization. Dubai properties dataset.
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In Figure 5 we use metric MDS maps to visualize the classification found by k-
medoids for different metrics (k = 2). In particular, we illustrate the results obtained
by G-Gower with robust Mahalanobis trimmed, Jaccard and Hamming, ReIMS with
the same combination of metrics and classical Gower. Units in left panels are colored
according to their true class and in right panels, according to their assigned class.

Looking at G-Gower and RelMS panels, we can see that k-medoids is able to identify
the class of most of the units, which is coherent with the classification rates obtained,
higher than 80%. Focusing on Gower panels, we can see that many units are not well
identified, and this is reflected in a classification rate of 51%. Considering that there
are only two classes, this means that the classification is practically the same as what
would be obtained if the units were classified randomly, following a uniform probability
distribution. The ARI value is 0, which is consistent with the low classification rate
obtained.

3.2.2. World development indicators dataset

This dataset contains 18 indicators measured 97 countries. It is available at https://
www.kaggle.com/datasets/hndever/world-development-indicators—by-
countries. Source: World Bank.

We consider the following predictors. Numerical variables: Access to electricity (%
of the population with access to electricity in 2017), life expectancy (number of years
a newborn in 2019 would live if the mortality patterns existing at the time of his/her
birth remained the same throughout his/her life),insufficient nutrition (% of the popu-
lation in 2019 whose habitual food consumption is insufficient to provide the levels of
dietary energy necessary to maintain a normal active and healthy life), arable land (%
of the country’s land that is arable in 2014-16), population with less than 3.20$ per
day (% of population with less than 3.20$ per day in PPP); Binary variables: Quality
of the health system (O=Suitable 1=Inappropriate), Investment in education and health
(O=High, 1=Low); multiclass variables: Pollution (0=High, 1=Medium, 2=Low), Inse-
curity (O=High, 1=Medium, 2=Low). Variable Poverty (0O=High, 1=Medium, 2=Low) is
taken as response variable with k = 3 classes.

Table 6 contains the classification rate and ARI values for k-medoids algorithm with
k = 3, where we observe classification rates around 65% for some of the robust propos-
als. In particular, G-Gower with robust Mahalanobis (trimmed and winsorized), Sokal
or Jaccard and Hamming attains a 64.95%, RelMS with robust Mahalanobis (trimmed
and winsorized), Jaccard and Hamming reaches a 63.92%, as well as G-Gower with
robust Mahalanobis (MAD), Sokal or Jaccard and Hamming. On the other hand, the
classification rate with Euclidean distance is 46.39% and 60.82% with classical Gower.

Similar results can be observed concerning ARI, where the robust proposals tend to
attain ARI values around 0.35-0.37. On the other hand, classical Gower and Euclidean
distance obtain values of 0.26 and 0.04, respectively.
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Table 6. Classification results for World development indicators dataset.

Distance Classification rate | ARI

G-Gower: Canberra-Jaccard-Hamming 0.659794 0.405188
G-Gower: Manhattan-Jaccard-Hamming 0.649485 0.315937
RelMS: Canberra-Jaccard-Hamming 0.649485 0.397914
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.649485 0.354318
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.649485 0.375463
G-Gower: Mahalanobis-Sokal-Hamming 0.649485 0.354318
G-Gower: Pearson-Jaccard-Hamming 0.649485 0.315937
G-Gower: Canberra-Sokal-Hamming 0.649485 0.382536
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649485 0.334477
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649485 0.315937
RelMS: Mahalanobis-Jaccard-Hamming 0.649485 0.334477
G-Gower: Euclidean-Jaccard-Hamming 0.639175 0.353248
RelMS: Pearson-Jaccard-Hamming 0.639175 0.313709
G-Gower: Pearson-Sokal-Hamming 0.639175 0.375701
RelMS: Euclidean-Jaccard-Hamming 0.639175 0.353248
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.639175 0.334477
ReIMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.639175 0.334477
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.639175 0.307562
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.639175 0.326646
RelMS: Mahalanobis-Sokal-Hamming 0.628866 0.347343
RelMS: Robust Mahalanobis trimmed-Sokal- Hamming 0.628866 0.325988
ReIMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.628866 0.325988
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.628866 0.288271
G-Gower: Mahalanobis-Jaccard-Hamming 0.628866 0.319983
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.618557 0.305616
RelMS: Canberra-Sokal-Hamming 0.608247 0.255497
classical Gower 0.608247 0.258923
G-Gower: Euclidean-Sokal-Hamming 0.577320 0.208742
G-Gower: Manhattan-Sokal-Hamming 0.577320 0.208742
RelMS: Manhattan-Sokal-Hamming 0.556701 0.170696
RelMS: Pearson-Sokal-Hamming 0.556701 0.170696
ReIMS: Euclidean-Sokal-Hamming 0.556701 0.170696
ReIMS: Manhattan-Jaccard-Hamming 0.525773 0.096234
Euclidean 0.463918 0.040735

In Figure 6 we illustrate the results of the k-medoids classification for different met-
rics (k = 3) through metric MDS maps. In particular, the results obtained by ReIMS with
robust Mahalanobis trimmed, Jaccard and Hamming, and Euclidean distance are shown.
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Units in left panels are colored according to their true class and in right panels, according
to their assigned class. Looking at ReIMS panels, we can see that the classification is
rather acceptable, since most of the units in class 0 and half of the units in class 1 are
well classified. Note that the classification rate obtained is 64.9%, which is around twice
a expected classification rate of 33% that would be attained if the units were classified
through a uniform random mechanism. Regarding the Euclidean distance panels, we ob-
serve that k-medoids algorithm is not able to identify the units’ class, which is coherent
with an ARI of 0.04 and a classification rate of 46%.
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Figure 6. Clustering visualization. World development indicators dataset.

3.3. Sensitivity study on the trimming and winsorizing parameter

In this section the sensitivity of parameter & used in trimmed and winsorized versions
of the covariance matrix in Mahalanobis distance is studied. Classification rate is used
to analyze the performance of the distance for each dataset. Table 7 contains the mean
values computed on 100 runs.

Concerning synthetic datasets, we observe that in dataset 1 (10-12% outlier con-
tamination in three numerical variables) G-Gower with robust Mahalanobis (trimmed),
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Table 7. Classification rates for G-Gower and RelMS for several values of trimming and win-
soring parameter O.

Distance ‘ 5% 10% 15% 20% 25%
Synthetic dataset 1
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.630 0.628 0.554 0.558 0.556
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.630 0.628 0.604 0.548 0.544
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.626 0.598 0.538 0.546 0.546
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.604 0.628 0.628 0.556 0.554
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.586 0.584 0.580 0.596 0.594
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.582 0.586 0.580 0.592 0.592
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.508 0.506 0.508 0.602 0.604
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.506 0.508 0.504 0.602 0.604
Synthetic dataset 2
ReIMS Robust Mahalanobis trimmed-Jaccard-Hamming 0.491 0.500 0.500 0.502 0.505
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.558 0.558 0.558 0.554 0.555
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.558 0.558 0.558 0.483 0.554
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.552 0.552 0.552 0.548 0.549
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.552 0.552 0.552 0.522 0.548
G-Gower -Robust Mahalanobis trimmed-Jaccard-Hamming 0.540 0.540 0.540 0.522 0.525
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.540 0.540 0.540 0.449 0.522
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.480 0.482 0.480 0.554 0.560
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.477 0.478 0.480 0.442 0.554

Synthetic dataset 3

G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690 0.687 0.822 0.840 0.840

RelIMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690 0.683 0.792 0.817 0.817
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.688 0.833 0.837 0.843 0.685
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.687 0.815 0.812 0.685 0.687
RelIMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.593 0.868 0.878 0.877 0.878
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.592 0.853 0.885 0.883 0.885
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.588 0.590 0.865 0.885 0.883
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.585 0.600 0.857 0.878 0.875
Dubai properties dataset
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.861 0.861 0.861 0.862 0.861
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.861 0.861 0.861 0.861 0.861
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.860 0.859 0.860 0.861 0.862
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.859 0.860 0.860 0.860 0.860
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858
ReIMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858
World development indicators dataset
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649 0.649 0.649 0.649 0.649
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649 0.649 0.649 0.649 0.649
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649 0.649 0.639 0.639 0.639
RelIMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649 0.649 0.639 0.639 0.649
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.649 0.649 0.649 0.639 0.639
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.649 0.649 0.649 0.649 0.649
RelIMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.629 0.629 0.629 0.629 0.629

RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.629 0.629 0.629 0.629 0.629
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Jaccard and Hamming and RelMS with robust Mahalanobis (winsorized), Jaccard and
Hamming present the highest classification rate (63.0%), which is attained for oc = 0.05.
The second best rate (62.8%) is attained by the same metrics for a = 0.10. In dataset
2 (10% outlier contamination in two numerical variables), the best result (55.8%) is ob-
tained for ReIMS with robust Mahalanobis (trimmed and winsorized), Sokal and Ham-
ming for oo = 0.05,0.10,0.15. In dataset 3 (7-8% outlier contamination in three numer-
ical variables), G-Gower with robust Mahalanobis (trimmed and winsorized), Sokal and
Hamming reach the best results (88.3%-88.5%) for oo = 0.20,0.25.

No general conclusions can be derived from the analysis of the synthetic datasets.
Although for datasets 1 and 2 the best results are obtained for & values close to the real
proportion of outlying units, this is not the case for dataset 3 where hard trimming/win-
sorizing is needed. Some explanations may be found in the complexity degree of dataset
3, with unbalanced classes and less redundant information than in datasets 1 and 2.

To better analyze the sensitivity of parameter « classification rates are depicted in
Figure 7, where we observe that for dataset 1 the classification rate tends to decrease

RelMS: Robust Mahalanobis winsorized-Sokal-Hamming

RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming

RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming

G-Gower's: Robust Mahalanobis winsorized-Sokal-Hamming

G-Gower's: Robust Mahalanobis trimmed-Sokal-Hamming

Synthetic dataset 3

G-Gower's: Robust Mahalanobis trimmed-Jaccard-Hamming

G-Gower's: Robust Mahalanobis winsorized-Jaccard-Hamming

RelMS: Robust Mahalanobis winsorized-Sokal-Hamming

RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming

RelMS: Robust Mahalanobis trimmed-Sokal-Hamming

RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming

RelMS Robust Mahalanobis trimmed - Jaccard - Hamming

G-Gower's: Robust Mahalanobis winsorized-Sokal-Hamming

Synthetic dataset 2

G-Gower's: Robust Mahalanobis winsorized-Jaccard-Hamming

G-Gower's: Robust Mahalanobis trimmed-Sokal-Hamming

G-Gower's -Robust Mahalanobis trimmed-Jaccard-Hamming

RelMS: Robust Mahalanobis winsorized-Sokal-Hamming

RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming

RelMS: Robust Mahalanobis trimmed-Sokal-Hamming

RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming

G-Gower's: Robust Mahalanobis winsorized-Sokal-Hamming
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Figure 7. Classification rates for G-Gower and RelMS for several values of trimming and win-
soring parameter o, in synthetic datasets.
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with a when Jaccard distance is considered (either in G-Gower or in ReIMS), while
the opposite happens for Sokal-Michener’s. There is not a clear pattern for dataset 2,
although the classification rate in G-Gower seems to decrease with ¢, whereas it stands
still or slightly increases when using RelMS. Finally, for dataset 3, the classification rate
tends to increase with & in most of the cases considered.

Regarding real datasets, the fluctuation in the classification rate for different values
of o is lower than 1072, In general, for Dubai properties data, the best situation (86.1%)
is produced with G-Gower metric with robust Mahalanobis (trimmed and winsorized),
Jaccard and Hamming, at any value of «. In the case of World development indicators
data, the best results (64.9%) are attained for G-Gower metric with robust Mahalanobis
(trimmed and winsorized), Jaccard and Hamming, as well as G-Gower’s with robust
Mahalanobis (winsorized), Sokal and Hamming at any value of o. The same classifica-
tion rates are reached for several trimming/winsorizing values of the remaining metrics,
except for ReIMS with robust Mahalanobis (trimmed and winsorized), Sokal and Ham-
ming, whose classification rate is always equal to 62.9%.

4. Conclusions

In this work, new robust distances for mixed-type data were proposed and studied in the
context of clustering. They were obtained as combination of three distances, one for
each type of data (numerical, binary and multiclass). As a result, a total of 34 distances
were analyzed.

Their performance was evaluated in rather complex synthetic datasets, with underly-
ing correlation structure and outlying units, as well as in two real datasets. Classification
rate and adjusted Rand index were used to evaluate the goodness of the clustering ob-
tained with the k-medoids algorithm. Metric multidimensional scaling was used to visu-
alize and illustrate the difference between the true and assigned class of the units. In all
scenarios with underlying correlation structure and outlying units, new robust propos-
als outperformed the classical Gower distance. In the absence of correlation or outlying
units, Euclidean distance achieved the best results. However, this is not the usual context
in real-world applications, where outliers are highly probable and redundant information
is often present in multivariate data. In addition, a sensitivity analysis on the parameters
involved in the robust estimation of the new proposals was provided. Some of the robust
proposals became computationally unfeasible for sample sizes larger than 30000, with
an i7-1365U 1.80 GHz processor, 32.0 GB RAM, where no parallelization was used.
The study of their feasibility in larger sample sizes is left for further research.

5. Software availabily

All the distances presented in this paper are implemented in a Python package, called
robust_mixed_dist, hosted in https://pypi.org/project/robust mixed. dist/.
The package is described in Appendix A and a tutorial is available at https://fabios
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cielzoortiz.github.io/robust mixed.dist-docu/intro.html. The robust_
mixed_dist package relies on Scipy for an efficient computation of distances. Thus, all
distance functions available therein can be easily included in our package. However, the
handling of missing data is not considered in Scipy and we leave it for further research.
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A. The Python package

The robust_mixed_dist package is a new Python tool for computing classical statistical
distances between units. The distance functions implemented are: Euclidean (¢* dis-
tance), Minkowski (family of ¢” distances), Canberra, Pearson (standardized Euclidean),
Mahalanobis, robust Mahalanobis, Gower, generalized Gower (G-Gower) and related
metric scaling (RelMS). A total of 41 statistical distances can be calculated, includ-
ing those proposed in this paper. Additionally, since robust_mixed_dist relies on Scipy
Python library, all distances included there can be easily included. Forn example, this is
the case for Chi-square distance, Chebyschev distance, Jensen-Shannon distance, among
others, as well as many similarity coefficients available at Scipy.

The package is hosted in PyPI (Python Packages Index), the official repository of
Python packages. More information about robust_mixed_dist can be found in https://
pypi.org/project/robustmixed_dist/.

In what follows we provide a small demonstration of how to use robust_mixed_dist.
For more details, a more extensive tutorial is available at https://fabioscielzo
ortiz.github.io/robust mixed.dist-docu/intro.html.
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Example of use

Installing:

pip install robust-mixed-dist

Loading modules:

from robust_mixed_dist.mixed import GGowerDistMatrix
from robust_mixed_dist.mixed import RelMSDistMatrix

from robust_mixed_dist.quantitative import robust_maha_dist_matrix, S_robust

Computing some distances for a real Madrid houses dataset, which can be found at
https://www.kaggle.com/datasets/mirbektoktogaraev/madrid-real-estate-market. In this
brief tutorial only the following variables of that dataset were considered:

e Quantitative: sq mt built, number of rooms, number of bathrooms, number of
floors, buy price.

* Binary: is renewal needed, has lift, is exterior, has parking.

» multiclass: energy certificate, house type.

Robust Mahalanobis (MAD):

S_robust_ = S_robust (X=madrid_houses_df, method=’MAD’,
epsilon=0.05, n_iters=20)

robust_maha_dist_matrix (madrid_houses_df, S_robust=S_robust_)

array([[ . , 6.47092419, 7.01983235, ..., 4.96377088,
5.69177645, 3.68021705],

[ 6.47092419, . , 3.03471006, ..., 10.43356417,
10.12781147, 5.95613137],

[ 7.01983235, 3.03471006, ©. , ..., 11.35024985,
10.9171085 , 6.21243845],

[ 4.96377088, 10.43356417, 11.35024985, ..., O. B

65216542, 7.11373136],

.69177645, 10.12781147, 10.9171085 , ..., 3.65216542,
.86440327],

95613137, 6.21243845, ..., 7.11373136,
1

.6802178@5,

4
3
5
]
3
7.86440327,

@ W~

G-Gower: Robust Mahalanobis (trimmed), jaccard, Hamming (matching):

GG_init = GGowerDistMatrix (pl=5, p2=4, p3=2,
dl=’ robust_mahalanobis’, d2=’jaccard’, d3=’hamming’,
method=’trimmed’, alpha=0.05, epsilon=0.05, n_iters=20,
fast_VG=False)

D_GG = GG_init.compute (X=madrid_houses_df)

D_GG
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array([[0. , 2.21885363, 1.93318704, ..., 1.93891555, 3.12986955,
2.26834878],
[2.21885363, @. , 1.22309875, ..., 2.38689136, 2.63841547,
2.01262089],
[1.93318704, 1.22309875, ©. , ..., 2.3585878 , 2.50580448,
1.63422771],
[1.93891555, 2.38689136, 2.3585878 , ..., O. |, 2.89514966,
1.7665964 1,
[3.12986955, 2.63841547, 2.50589448, ..., 2.89514966, 0. B

3.02408907],
[2.26834878, 2.01262089, 1.63422771, ..., 1.7665964 , 3.82408907,

a. 1D

RelMS: Robust Mahalanobis (winsorized), Jaccard, Hamming (matching):

RelMS_init = RelMSDistMatrix (pl=5, p2=4, p3=2,
dl=’robust_mahalanobis’, d2=’"jaccard’, d3=’hamming’,
method="winsorized’, epsilon=0.05, alpha=0.05,
n_iters=20)

D_RelMS = RelMS_init.compute (X=madrid_houses_df.head(1000),

Gs_PSD_trans=True)

D_RelMS
array([[ ©. , 18.29131982, 10.20148541, ..., 18.25180831,
10.1963865 , 18.23458336],
[10.29131994, @. , 10.13419898, ..., 10.10288394,
10.08333674, 10.0731428 ],
[16.20148539, 10.134199 , 6. , ..., 10.14619431,

10.03394396, 1©.11537897],

[10.25180831, 10.10288394, 10.14619431, ..., 0. )
10.85982432, 10.00909222],

[10.1963865 , 10.08333674, 10.03394396, ..., 10.05982432,
0. , 10.03008924],

[10.23458336, 10.0731428 , 10.11537897, ..., 10.00909221,
10.03008923, O. m

B. Computational cost

In this section a computational experiment is derived to illustrate the computational cost
of G-Gower and RelMS metrics.

For such purpose eight synthetic datasets were generated using make blobs func-
tion from scikit-learn Python library. The datasets have increasing sample size,
going from n = 3,000 to n = 70,000, and same characteristics like p; = 4 numerical,
p> =2 binary and p3 = 2 multiclass variables and number of true classes k = 3.
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For each dataset the computation time for G-Gower (robust Mahalanobis trimmed-
Jaccard-Hamming), ReIMS (robust Mahalanobis trimmed-Jaccard-Hamming) and ro-
bust Mahalanobis (trimmed) distances was collected. The experiment was carried out
with a DESKTOP-I11Q2RCC device, 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz
processor, with Installed RAM of 32.0 GB (31.6 GB usable) and 64-bit operating system,
x64-based processor. Results are shown in Figure 8.
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Figure 8. Computational time (in minutes) for G-Gower and robust Mahalanobis.

The computationally cheapest distance is robust Mahalanobis, since it takes less than
one minute for n = 30,000 and below, between one and four minutes for sizes between
n = 30,000 and n = 50,000, and for the largest size (n = 70,000) it takes seven minutes,
approx. Its calculation is feasible for all sample sizes tested, and reasonably practical for
all of them as well. G-Gower takes few seconds for sample sizes up to n = 10,000, no
more than two minutes for sample sizes between n = 10,000 and n = 20,000, between
2 and 7 minutes for sizes between n = 20,000 and n = 30,000, and becomes unfeasible
for larger sample sizes. Computational time for ReIMS goes from 2.37 minutes for
n = 3,000 to 534.07 minutes for n = 20,000, this is the reason why they are not included
in Figure 8. Sample sizes n > 30,000 are unfeasible for ReIMS.
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