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Abstract 

Data scientists address real-world problems using multivariate and heterogeneous data-
sets, characterized by multiple variables of different natures. Selecting a suitable dis-
tance function between units is crucial, as many statistical techniques and machine 
learning algorithms depend on this concept. Traditional distances, such as Euclidean 
or Manhattan, are unsuitable for mixed-type data, and although Gower distance was 
designed to handle this kind of data, it may lead to suboptimal results in the presence 
of outlying units or underlying correlation structure. In this work robust distances for 
mixed-type data are defned and explored, namely robust generalized Gower and robust 
related metric scaling. A new Python package is developed, which enables to compute 
these robust proposals as well as classical ones. 

MSC: 62H30, 62-04. 
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1. Introduction 

Data scientists often face the challenge of clustering datasets of mixed-type, that is, 
datasets containing both numeric and categorical variables. A common approach is to 
start by computing classical Gower distance (Gower, 1971) between units, next to ob-
tain a Euclidean confguration, for instance via metric multidimensional scaling (that 
is, Gower’s 1966 principal coordinates, Borg and Groenen, 2005), and fnally to apply 
partitioning algorithms like k-means or k-medians onto the principal coordinates of the 
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units. Other possibilities skip the Euclidean confguration by directly applying clustering 
algorithms to classical Gower distance between units. This is the case for k-medoids 
(Kaufman and Rousseeuw, 1990) or hierarchical methods when the sample size allows it. 

In such strategies, a key point is the selection of the metric, which should be able to 
incorporate the statistical characteristics of the data. For instance, the underlying cor-
relation structure or outlying observations are issues that can distort the true proximity 
between units and that few metrics are able to consider. This may happen when using 
Gower distance, which is defned from Gower’s similarity coeffcient as the simple mean 
of three partial similarity indices computed from each variable type: a similarity asso-
ciated with range-normalized Manhattan distance for numerical variables, Jaccard for 
binary variables and the simple matching coeffcient for multiclass ones. Manhattan dis-
tance, like all Minkowski distances, implicitly assumes that variables are uncorrelated, 
and so does the Gower coeffcient. Another problem is that the Manhattan distance is 
not robust to outlying units. 

To overcome these drawbacks and inspired by Gower’s work, the generalized Gower 
(G-Gower) distance was defned as the combination of three measures, conveniently 
standardized and fulflling the Euclidean requirement (Gower and Legendre, 1986), for 
numerical, binary and multiclass variables (Grané, Salini and Verdolini, 2021). Indeed, 
G-Gower appears as a particular case when a more general technique, called related met-
ric scaling (RelMS) (Cuadras and Fortiana, 1995; 1998), is used to tailor a metric. This 
technique allows combining several distance matrices computed on the same set of indi-
viduals into a single one. It has the additional property of discarding redundant informa-
tion coming from different sources. When all distance matrices to be combined satisfy 
the Euclidean requirement, so does the fnal distance matrix (see Albarrán, Alonso and 
Gran´ e and Romera, 2018 for the mathematical proofs). e, 2015; Gran´ 

In this paper, RelMS is used as a strategy to obtain fexible and robust distances for 
mixed-type data. Several proposals from the least to the greatest complexity are explored 
and evaluated in the context of clustering. They include three robust Mahalanobis pro-
posals for numerical data, distances associated with Jaccard and Sokal-Michener sim-
ilarity coeffcients for binary data, and for multiclass variables Hamming distance is 
considered (which is the distance associated to the simple matching coeffcient). 

The performance of the new robust proposals is evaluated in six mixed-type datasets, 
four synthetic and two real, with underlying correlation structure and outlier contamina-
tion. In each case, k-medoids algorithm is applied to fnd the clusters, and comparisons 
with the performance of other classical metrics are provided in terms of classifcation 
rate and adjusted Rand index. A total of 34 distances are evaluated. Since some of the 
datasets are rather complex, metric multidimensional scaling is used to visualize and 
illustrate the difference between the true and assigned class of the units. A sensitiv-
ity analysis on the parameters involved in the robust estimation of the new proposals is 
provided for each dataset. A study of their computational cost for large and very large 
datasets can be found in Appendix B. Additionally, in Appendix A a Python package 
called robust mixed dist is presented. 
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The paper proceeds as follows. In Section 2 we revisit related metric scaling and 
present the generalized Gower distance as well as several robust proposals. Their perfor-
mance in the context of clustering and the sensitivity analysis can be found in Section 3. 
Section 4 contains the main conclusions, and some guidelines on robust mixed dist and 
the study on computational cost can be found in the appendices. 

2. Distance proposals for mixed-type data 

In this section, a general procedure for combining distance matrices computed on the 
same set of units is revisited. It was used to obtain distance measures for mixed-type 
data in Albarr´ e and Romera (2018), Gran´an et al. (2015), Gran´ e et al. (2021) and Boj and 
Grané (2024) in the context of metric multidimensional scaling and distance-based pre-
dictive models, where a robust Mahalanobis distance was used for numerical variables 
and for binary and multiclass data Jaccard and Hamming distances were considered, re-
spectively. In this paper, we explore other robust proposals and provide an extensive 
simulation study of their performance in the context of clustering. 

The strategy to construct a joint distance begins by splitting the dataset according to 
each variable type (numerical, binary and multiclass), next to compute different distance 
matrices for each variable type, and fnally combine them via related metric scaling 
(Cuadras and Fortiana, 1995; 1998). 

Let X be an n× p a data matrix corresponding to the measurements of p mixed-type 
variables X1, . . . ,Xp on a sample of n units, and consider sub-matrices Xk of size n × pk, 
k = 1,2,3, corresponding to each variable type, i.e., numeric, binary and multiclass, with 
∑

3 
k=1 pk = p. The distance measures considered are: 

• Distances for numerical data: Euclidean (ℓ2 distance), Manhattan (ℓ1 distance), 
Canberra, Pearson (standardized ℓ2 distance), Mahalanobis, robust Mahalanobis 
(with three variance estimators median absolute deviation, trimmed, winsorized), 

• Distances for binary data: Associated with Jaccard coeffcient (Jaccard, 1901) and 
with simple matching Sokal-Michener coeffcient (Sokal and Michener, 1958). 

• Distances for multiclass data: Hamming (associated to simple matching coeff-
cient). 

Most of the above distances are well-known to data scientists and their formulas are 
considered here. The previous list is not exhaustive, and other distances may be more 
appropriate depending on the context. 

Regarding binary data, two similarity coeffcients are considered, Jaccard and Sokal-
Michener. It is worth noting that the Jaccard coeffcient excludes double-zeros from the 
similarity assessment, whereas the Sokal-Michener coeffcient takes them into account. 
Thus, the use of Jaccard coeffcient is recommended when double-zeros are not informa-
tive. Otherwise, the Sokal-Michener coeffcient is preferred (see Gower and Legendre, 
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1986 and Legendre and De Cáceres, 2013 for details and discussion). In any case, the 
general transformation given in Gower (1966) is considered to obtain a distance from a 
similarity coeffcient. That is, consider the sub-matrix X2 corresponding to the measure-
ments of p2 binary variables on the sample of n units. The (squared) distance between 
units i,r is obtained as 

δ 2(x2,i,x2,r) = s(x2,i,x2,i)+ s(x2,r,x2,r) − 2s(x2,i,x2,r), (1) 

where x2,i, x2,r are p2 × 1 vectors containing the binary measurements for units i,r, 
respectively, and s(x2,i,x2,r) is a given similarity coeffcient between them. 

Regarding numerical data, combinations including Euclidean, Manhattan, Pearson 
or Canberra distances are not recommended in the presence of an underlying correlation 
structure or outlying observations. In such cases, robust Mahalanobis proposals are pre-
ferred. A robust Mahalanobis distance is obtained by using a robust estimator for the 
covariance matrix in Mahalanobis distance formula. 

In what follows, we focus on a procedure to obtain such a robust estimation, which 
consists of three steps: estimation of variances, estimation of Pearson’s correlation co-
effcients, and estimation of covariances (see Gnanadesikan, 1997 for the details). 

Consider the sub-matrix X1 corresponding to the measurements of p1 numerical 
variables on the sample of n units. The (squared) robust Mahalanobis distance between 
units i,r is defned as: 

δ 2 (2)Maha(x1,i,x1,r) = (x1,i − x1,r) 
′ S∗−1 (x1,i − x1,r) 

where x1,i and x1,r are p1 × 1 vectors containing the measurements for units i,r, respec-
tively, and S∗ = (s ∗ is a robust estimation of the sample covariance matrix of jk)1≤ j,k≤p1 

X1. 
In this paper we consider three methods for computing the s ∗ jk’s, namely median 

absolute deviation (MAD), trimmed and winsorized. In any case, the frst step of the 
procedure consists in selecting one of these three methods to estimate the variances of 
the numerical variables (that is, the diagonal elements of S∗): 

2(1) MAD: σ̂ ∗2(Xj) = MAD(Xj)
2 = [Me(|xi j − Me(Xj)| : i = 1, ...,n)] , where Me(·) 

stands for the median. 

(2) Trimmed: σ̂ ∗2(Xj) = σ̂ 2(Xj 
α ), where Xα 

j is an α-trimmed version of Xj, that is, � 
Xα = xi j : i ∈ {1, . . . ,n}, xi j ∈ [Q(α/2,Xj),Q(1 − α/2,Xj)] ,j 

where Q(z,Xj) is the z × 100 quantile of Xj, z ∈ [0,1]. 

(3) Winsorized: σ̂ ∗2(Xj) = σ̂ 2(Xj 
α ), where Xj 

α is an α-winsorized version of Xj, that 
is, Xj 

α = 
� 

h(x) : x ∈ Xj , where function h is defned as   a(α), if x ∈ A(α), 
h(x) = b(α), if x ∈ B(α), x, if x ∈ Xj and x ∈/ A(α),x ∈/ B(α), 
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where a(α) is the value of Xj that is immediately greater than Q(α/2,Xj), b(α) 
is the value of Xj that is immediately lower than Q(1− α/2,Xj) and A(α) = {xi j : 
xi j ≤ Q(α/2,Xj)}, B(α) = {xi j : xi j ≥ Q(1 − α/2,Xj)}. 

In the second step of the procedure, a robust estimator of Pearson’s correlation coef-
fcient between two numerical variables is given. For each pair of variables Xj and Xk, a 
robust estimation of their Pearson’s correlation coeffcient is computed as follows: 

σ̂ ∗2 − σ̂−
∗2 

∗ +r ,jk = 
σ̂ ∗2 + σ̂ ∗2 
+ − 

where σ̂ ∗2 and σ̂ ∗2 are robust estimators of the variances of Z j + Zk and Z j − Zk, respec-+ − p p
tively, with Z j = Xj/ σ̂ ∗2(Xj) and Zk = Xk/ σ̂ ∗2(Xk). Note that the same method to 
estimate the variances selected in the frst step must be used for σ̂+ 

∗2 and σ̂−
∗2. 

In the fnal step of the procedure, the off-diagonal elements in S∗ are obtained. For 
each pair of variables Xj and Xk, a robust estimation of their covariance is obtained as: q

∗ ∗ s jk = r jk σ̂ ∗2(Xj) σ̂ ∗2(Xk). 

In the simulation study, parameter α in trimmed and winsorized methods was set 
equal to the true proportion of outlying units. Additionally, a sensitivity study on the 
effect of this parameter on the classifcation rate is given for each dataset. 

Note that formula (2) relies on the fact that S∗ is positive defnite. In case S∗ ≥ 0, then 
the inverse in formula (2) is substituted by the corresponding Moore-Penrose pseudo-
inverse. In case S∗ is not positive semi-defnite, that is, in case negative eigenvalues 
exist, a shrinkage scheme can be applied to its elements to ensure positive defniteness. 
Some proposals can be found in Devlin et al. (1975). For instance, the Devlin algorithm 
to obtain positive defnite S∗ is based on the following transformation: 

∗ G(S∗ ) = (g(s jk)){ j,k=1,...,p}, 

where  
0, if |s ∗ jk| ≤ z(ε), 

∗ g(s jk) = z−1(z(s ∗ jk)+ ε), if s ∗ jk < −z(ε), 
z−1(z(s ∗ jk) − ε), if s ∗ jk > z(ε), 

where ε is a small positive number, for example, ε = 0.05, z(x) = arctanh(x) = 2 log� �1+x , z−1(x) = tanh(x) and z(ε) = z(0.05) ≈ 0.05. The algorithm is applied recursively 1−x 
until G(S∗) is positive defnite. 

In what follows we proceed to describe related metric scaling (RelMS), a multi-
variate technique introduced by (Cuadras and Fortiana, 1995, 1998), with the aim of 
combining several distance matrices computed on the same set of individuals in a sin-
gle one. The method is based on the construction of a joint metric that satisfes several 
axioms related to the property of identifying and discarding redundant information (see 

1 



∆∆
∆∆

∆∆

∆∆

∆∆

∆∆

218 On generalized Gower distance for mixed-type data... 

Albarrán et al., 2015; Grané and Romera, 2018). It is a very general method that al-
lows to combine several sources of information, whenever a distance function can be 
measured between units. Although in Section 3 we explore it for the combination of 
numerical, binary and multiclass variables, it can also be applied to combine other kinds 
of data, such as functional data, time series, images, manifolds, compositional data, etc. 
Another possibility is to group variables according to different sources of information 
and combine the resulting distance matrices (Grané et al., 2022). Here we give the gen-
eral description of the method. 

Let X be an n × p data matrix corresponding to the measurements of p variables 
X1, . . . ,Xp on a sample of n units, and consider that the p variables can be grouped in m 
different types or sources of information. 

1. Split matrix X into m sub-matrices Xk of size n× pk, k = 1, . . . ,m, regarding each 
variable type or source of information. 

2. For each sub-matrix Xk consider a proper distance measure between units, accord-
ing to the characteristics of the data, δk, and compute the corresponding matrix of 
squared pairwise distances conveniently standardized by its geometric variability 
(Cuadras and Fortiana, 1995), so that all matrices to be combined are commensu-
rate, that is: 

1 � � 
∆k = δk 

2(xk,i,xk,r) , (3){1≤i,r≤n}V∆k 

where xk,i,xk,r denote the i-th and r-th rows of matrix Xk, respectively, and 

n n 
V∆k = 

1 
∑ ∑ δk 

2(xk,i,xk,r).2n2 
i=1 r=1 

3. For each matrix ∆k compute the corresponding Gram matrix: 

1
Gk = − H∆k H,

2 

where H = I − 1 11′ is the centering matrix, I is the identity matrix of size n × nn 
and 1 is a n × 1 vector of ones. 

4. Check for Euclideanarity1: Each Gk must be positive defnite. If this is not the 
case, several transformations can be applied to ∆k so that this requirement is ful-
flled. In this paper the additive transformation is applied, but other possibilities 
may serve for this purpose (see Borg and Groenen, 1986; Gower and Legendre, 
2005). For simplicity, we keep the same notation for Gk’s, assuming that they 
satisfy the Euclidean requirement. 

1The word “Euclideanarity” was coined by John Gower in Gower and Legendre (1986). 
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5. Combine all Gram matrices to get the Gram matrix of the joint metric as follows: 

m 
G1/2 G1/2G = ∑ Gk − 

1 
∑ , (4)k lmk=1 k≠ l 

where G1/2 is the square root of Gk, which can be obtained through the singulark 
value decomposition of Gk. 

6. The matrix of squared distances of the joint metric is obtained from G as follows: 

∆ = g1′ + 1g′ − 2G = (δ 2 (xi,xr)){1≤i,r≤n} , (5) 

where g = diag(G) is a n × 1 vector containing the diagonal elements of G, and 
xi,xr denote the i-th and r-th rows of the data matrix X, respectively. 

7. Finally, the distance matrix of the joint metric is D = (δ (xi,xr)){1≤i,r≤n}, that 
contains the square root of the elements of ∆. 

The frst addend of formula (4) mimics classical Gower distance by adding the three 
metrics, although here the addition is done through the matrices of square distances. The 
second addend is responsible of discarding redundant information coming from different 
sources. Note that RelMS can be computationally expensive for large sample sizes (see 
Appendix B). This is the reason why a simplifed version of the above procedure was 
proposed, called generalized Gower distance (G-Gower). 

Inspired by Gower’s works, G-Gower (square) distance is defned as the linear com-
bination of the matrices of squared pairwise distances, conveniently standardized by 
their corresponding geometric variability. That is, 

m 
∆GG = ∑ ∆k, (6) 

k=1 

where each ∆k is defned as in (3) and fulflls the Euclidean requirement. Equivalently, 
(square) G-Gower can be obtained from the frst addend of formula (4). 

3. Empirical evaluation 

In this section the performance of the distances presented in Section 2 is evaluated in the 
context of clustering and compared to those of classical Gower and Euclidean distance. 
The aim of the simulation study is to analyze their performance in the presence of un-
derlying correlation structure and outlier contamination. The simulation involves four 
synthetic and two real datasets and k-medoids algorithm is used to obtain the partition-
ing. 

In all cases, the true class is known for each unit. Thus, classifcation rate (pro-
portion of units out of the total that are correctly classifed) and adjusted Rand index 
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(ARI) (Hubert and Arabie, 1985; Rand, 1971) are used to evaluate the goodness of the 
clustering. 

The Rand index was proposed by Rand (1971) as a clustering validation measure. 
However, as noted by Hubert and Arabie (1985) and Nguyen and Bailey (2009), in 
practice the Rand index frequently takes values in the [0.5,1] interval, its reference value 
(baseline value) can be high and not take a constant value. For these reasons the Rand in-
dex is most used in its adjusted version, known as the adjusted Rand index. Considering 
that there are n units and two partitions of them C1 = {C11, . . . ,C1r}, C2 = {C21, . . . ,C2s}
with r and s clusters, respectively, the adjusted Rand index is defned as 

2(ab − cd)
ARI = ,

(a+ c)(b+ c)+(a + d)(b + d) 

where a is the number of pairs of units belonging to the same cluster in both partitions 
C1 and C2. That is, i, j ∈ C1h and i, j ∈ C2u, for some h = 1, . . . ,r and u = 1, . . . ,s; b is 
the number of pairs of units belonging to different clusters in partitions C1 and C2. That 
is, i ∈ C1h1 and j ∈ C1h2 for h1 ̸= h2, h1,h2 = 1, . . . ,r, and also i ∈ C2u1 and j ∈ C2u2 , for 
u1 ̸= u2, u1,u2 = 1, . . . ,s; c is the number of pairs of units belonging to the same cluster 
in partition C1 but to different clusters in partition C2. That is, i, j ∈ C1h for h = 1, . . . ,r, 
but i ∈ C2u1 and j ∈ C2u2 , for u1 ≠ u2, u1,u2 = 1, . . . ,s; d is the number of pairs of units 
belonging to different clusters in partition C1 but to the same cluster in partition C2. That 
is, i ∈ C1h1 and j ∈ C1h2 for h1 ̸= h2, h1,h2 = 1, . . . ,r , but i, j ∈ C2u, for u = 1, . . . ,s. 

The adjusted Rand index takes values in [−0.5,1] and the closer to one, the more 
similar the compared rankings are. In contrast, the closer to −0.5, the more different 
the compared rankings. In practice, one of the two cluster confgurations (or two clas-
sifcations) that the Rand index requires (adjusted or not), will be the one defned by a 
variable that is taken as a grouping response, and the other will be the one defned by 
a classifcation algorithm, such as k-medoids. Therefore, in practice it is necessary to 
have information about a categorical response variable to be able to implement the Rand 
index as a validation measure for clustering algorithms. In this scenario, the interpreta-
tion of the ARI is the following: the closer it is to 1, the more similar the classifcation 
made by the algorithm is to the real classifcation, and the closer it is to −0.5 , the less 
similar. In fact, in this context, an ARI close to zero indicates that the classifcation 
performed by the algorithm is similar to the one that would be obtained with a purely 
random classifcation procedure, and when it is negative it indicates that it is even worse. 

A total of 34 distances are under study. In the case of G-Gower or RelMS, they 
are obtained as a combination of three distances, one for each type of data, following 
formulas (6) or (5), respectively. The distances considered are: 

1. Generalized Gower composed by 

• Euclidean (ℓ2 distance), Manhattan (ℓ1 distance), Canberra, Pearson (stan-
dardized Euclidean), Mahalanobis, robust Mahalanobis (MAD, trimmed, win-
sozired) for numerical variables, 
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• Jaccard, Sokal-Michener similarity coeffcients for binary variables, trans-
formed to distances according to formula (1), 

• Hamming for multiclass variables. 

2. Related metric scaling composed by 

• Euclidean (ℓ2 distance), Manhattan (ℓ1 distance), Canberra, Pearson (stan-
dardized Euclidean), Mahalanobis, robust Mahalanobis (MAD, trimmed, win-
sozired) for numerical variables, 

• Jaccard, Sokal-Michener similarity coeffcients for binary variables, trans-
formed to distances according to formula (1), 

• Hamming for multiclass variables. 

Additionally, Euclidean (ℓ2 distance) and classical Gower distance are considered for 
comparison of results. Note that applying the Euclidean distance on raw mixed-type data 
is not recommended at all. The reason why we keep it is because it usually appears as the 
default distance in many software packages and we want to emphasize the consequences 
of using such a distance in a wrong context. 

Tables 1–4 contain the classifcation rate and ARI mean values, computed on 100 
runs for each scenario and distance considered. Additionally, Figures 1–4 contain met-
ric MDS confgurations corresponding to one of the 100 runs that help to illustrate the 
differences between the true and assigned class of the units. In the simulation study, 
results concerning the Euclidean distance are shown to illustrate the odd performance 
when using such a distance in mixed-type data. 

3.1. Simulation study 

Synthetic datasets of mixed-type data were generated with the make blobs function 
from the scikit-learn Python library. Each dataset is composed by p1 = 4 numerical, 
p2 = 2 binary, p3 = 2 multiclass variables measured on n units divided in k true classes. 
Different outlier patterns were added to each dataset. 

1. Sample size: n = 500, 
Variables: Only 2 of them are informative and 6 with redundant information; Un-
derlying correlation structure: Three pairs of numerical variables are highly cor-
related; Outliers: 10-12% contamination in three numerical variables. 
True classes: k = 3 (balanced). 

2. Sample size: n = 650, 
Variables: 3 of them are informative and 5 with redundant information; Underly-
ing correlation structure: Two pairs of numerical variables are highly correlated; 
Outliers: 10% contamination in two numerical variables, 
True classes: k = 4 (balanced). 
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Table 1. Classifcation results for synthetic dataset 1. 

Distance Classifcation rate ARI 
RelMS: Mahalanobis-Jaccard-Hamming 0.630 0.273666 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.628 0.278432 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.628 0.277728 
G-Gower: Mahalanobis-Jaccard-Hamming 0.628 0.268592 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.628 0.278432 
RelMS: Canberra-Jaccard-Hamming 0.622 0.238612 
G-Gower: Canberra-Jaccard-Hamming 0.620 0.230389 
G-Gower: Canberra-Sokal-Hamming 0.620 0.218362 
RelMS: Canberra-Sokal-Hamming 0.612 0.212984 
G-Gower: Mahalanobis-Sokal-Hamming 0.608 0.222972 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.598 0.255065 
RelMS: Mahalanobis-Sokal-Hamming 0.590 0.195316 
RelMS: Pearson-Jaccard-Hamming 0.588 0.190902 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.586 0.188601 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.584 0.185916 
classical Gower 0.562 0.192146 
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.554 0.190833 
G-Gower: Pearson-Jaccard-Hamming 0.552 0.190902 
G-Gower: Pearson-Sokal-Hamming 0.540 0.220737 
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.540 0.220737 
RelMS: Pearson-Sokal-Hamming 0.538 0.202318 
G-Gower: Euclidean-Sokal-Hamming 0.538 0.219598 
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.538 0.202318 
G-Gower: Manhattan-Sokal-Hamming 0.534 0.216939 
RelMS: Euclidean-Jaccard-Hamming 0.532 0.175767 
G-Gower: Euclidean-Jaccard-Hamming 0.532 0.175767 
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.530 0.170310 
RelMS: Manhattan-Jaccard-Hamming 0.528 0.168527 
G-Gower: Manhattan-Jaccard-Hamming 0.528 0.168527 
RelMS: Manhattan-Sokal-Hamming 0.520 0.176607 
RelMS: Euclidean-Sokal-Hamming 0.516 0.164035 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.508 0.159580 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.506 0.157313 
Euclidean 0.350 0.000090 

3. Sample size: n = 600, 
Variables: 6 of them are informative and 2 with redundant information; Underly-
ing correlation structure: Three pairs of numerical variables are highly correlated; 



. ' . ' 

' ' . ' . ' . ' 

_, 
" 

... -. .... . .,. ..... . , ... :. , ..... 

. . . ' . ' 

. ' . ' 

.. ~­. ' . ' . ' 

.. -. . -. . .... . .,. ..... . :••· :. :~ 

-­. . ' 
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Outliers: 7-8% contamination in three numerical variables. 
True classes: k = 4 (unbalanced). 

4. Sample size: n = 600, 
Variables: All informative; Uncorrelated and uncontaminated; 
True classes: k = 4 (balanced). 

G-Gower: Robust Mahalanobis (trimmed), Jaccard and Hamming 
True class Assigned class by k-medoids 

RelMS: Robust Mahalanobis (winsorized), Jaccard and Hamming 
True class Assigned class by k-medoids 

Euclidean 
True class Assigned class by k-medoids 

Figure 1. Clustering visualization. Synthetic dataset 1. 
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Table 2. Classifcation results for synthetic dataset 2. 

Distance Classifcation rate ARI 
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.621538 0.329944 
G-Gower: Mahalanobis-Sokal-Hamming 0.592308 0.324297 
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.590769 0.260597 
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.567692 0.297498 
RelMS: Mahalanobis-Sokal-Hamming 0.567692 0.228790 
G-Gower: Canberra-Sokal-Hamming 0.561538 0.221440 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.558462 0.216499 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.558462 0.216499 
RelMS: Pearson-Sokal-Hamming 0.552308 0.202442 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.552308 0.214666 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.552308 0.214415 
G-Gower: Pearson-Sokal-Hamming 0.550769 0.215299 
RelMS: Euclidean-Sokal-Hamming 0.547692 0.244515 
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.546154 0.205740 
G-Gower: Mahalanobis-Jaccard-Hamming 0.543077 0.226489 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.540000 0.222812 
G-Gower: Manhattan-Sokal-Hamming 0.540000 0.232898 
G-Gower: Euclidean-Sokal-Hamming 0.540000 0.232898 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.540000 0.222812 
RelMS: Pearson-Jaccard-Hamming 0.533846 0.199402 
RelMS: Mahalanobis-Jaccard-Hamming 0.526154 0.195419 
G-Gower: Pearson-Jaccard-Hamming 0.524615 0.198994 
G-Gower: Canberra-Jaccard-Hamming 0.524615 0.194698 
RelMS: Euclidean-Jaccard-Hamming 0.503077 0.203928 
G-Gower: Manhattan-Jaccard-Hamming 0.500000 0.193327 
G-Gower: Euclidean-Jaccard-Hamming 0.500000 0.193327 
RelMS: Canberra-Sokal-Hamming 0.496923 0.223695 
RelMS: Manhattan-Jaccard-Hamming 0.495385 0.189415 
RelMS: Manhattan-Sokal-Hamming 0.492308 0.191534 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.481538 0.155862 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.478462 0.153906 
RelMS: Canberra-Jaccard-Hamming 0.460000 0.159691 
classical Gower 0.423077 0.125406 
Euclidean 0.263077 0.000138 

Table 1 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 3, concerning synthetic dataset 1. We observe that G-Gower with robust Maha-
lanobis (trimmed), Jaccard and Hamming reaches a classifcation rate of 62.3% and an 
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ARI value of 0.27. Similar values are reached by RelMS with robust Mahalanobis (win-
sorized), Jaccard and Hamming. These classifcation rates (and ARI values) are higher 
than those obtained by classical Gower or Euclidean distance, for which values of 56.2% 
(ARI 0.19) and 35.0% (ARI < 10−4) are attained, respectively. 

In Figure 1 metric MDS maps are used to illustrate the k-medoids classifcation (k = 
3), for synthetic dataset 1, using G-Gower with robust Mahalanobis (trimmed), Jaccard 
and Hamming, RelMS with robust Mahalanobis (winsorized), Jaccard and Hamming 
and Euclidean distance. Units in left panels are colored according to their true class 
and in right panels, according to their assigned class. The clustering in G-Gower and 
RelMS panels can be considered rather acceptable, since around half of the units in 
class 0 are not well identifed. On the other hand, the clustering with Euclidean distance 
is disappointing, where the confguration appears completely distorted due to outlying 
observations and the underlying correlation structure that this distance is not able to 
incorporate. 

Table 2 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 4, regarding synthetic dataset 2. In this case, G-Gower with robust Mahalanobis 
(MAD), Jaccard and Hamming reaches a classifcation rate of 62.2% and an ARI value 
of 0.33, and a 59.1% rate and 0.26 ARI are attained by RelMS with robust Mahalanobis 
(MAD), Jaccard and Hamming. These classifcation rates (and ARI values) are higher 
than those obtained by classical Gower or Euclidean distance, whose values are located 
at the end of the ranking. 

In Figure 2 metric MDS maps are used to illustrate the k-medoids classifcation 
(k = 4), for synthetic dataset 2, using G-Gower with robust Mahalanobis (MAD), Jaccard 
and Hamming, RelMS with robust Mahalanobis (MAD), Jaccard and Hamming and 
classical Gower. Units in left panels are colored according to their true class and in 
right panels, according to their assigned class. The clustering in G-Gower panels can be 
considered rather acceptable, since most of the units in classes 0 and 1 are well identifed. 
On the other hand, the clustering with classical Gower is not good since this distance is 
not able to incorporate the underlying correlation structure as well as the presence of 
outlying units. Once more, the clustering with Euclidean distance is disappointing. 

Table 3 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 4, concerning synthetic dataset 3. We observe that G-Gower with robust Maha-
lanobis (MAD), Sokal and Hamming reaches a classifcation rate of 88.3% and an ARI 
value of 0.73. On the other hand, classifcation rates for Euclidean and classical Gower 
are of 44.17% (ARI 0.29) and 73.50% (ARI 0.26), respectively. 

In Figure 3 metric MDS maps are used to illustrate the k-medoids classifcation 
(k = 4), for synthetic dataset 3, using G-Gower with robust Mahalanobis MAD, Sokal 
and Hamming and classical Gower. Units in left panels are colored according to their 
true class and in right panels, according to their assigned class. In G-Gower panels we 
can observe that the four clusters are very similar to the true ones. However, this is not 
the case for classical Gower, where most of the units in class 0 and half of the units in 
class 3 are not well identifed. 
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G-Gower: Robust Mahalanobis (MAD), Jaccard and Hamming 
True class Assigned class by k-medoids 

classical Gower 
True class Assigned class by k-medoids 

Euclidean 
True class Assigned class by k-medoids 

Figure 2. Clustering visualization. Synthetic dataset 2. 
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Table 3. Classifcation results for synthetic dataset 3. 

Distance Classifcation rate ARI 
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.883333 0.726101 
G-Gower: Pearson-Sokal-Hamming 0.881667 0.723303 
G-Gower: Canberra-Jaccard-Hamming 0.880000 0.704662 
G-Gower: Canberra-Sokal-Hamming 0.880000 0.703744 
RelMS: Canberra-Sokal-Hamming 0.866667 0.683853 
RelMS: Canberra-Jaccard-Hamming 0.850000 0.657553 
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.731667 0.613787 
RelMS: Pearson-Sokal-Hamming 0.730000 0.611196 
RelMS: Euclidean-Sokal-Hamming 0.728333 0.615708 
RelMS: Manhattan-Sokal-Hamming 0.728333 0.615395 
G-Gower: Manhattan-Sokal-Hamming 0.723333 0.597885 
G-Gower: Euclidean-Sokal-Hamming 0.710000 0.564313 
G-Gower: Manhattan-Jaccard-Hamming 0.708333 0.559781 
G-Gower: Euclidean-Jaccard-Hamming 0.708333 0.558163 
RelMS: Manhattan-Jaccard-Hamming 0.705000 0.556431 
RelMS: Euclidean-Jaccard-Hamming 0.700000 0.541697 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690000 0.587217 
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.686667 0.589241 
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.686667 0.589241 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.686667 0.587224 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.686667 0.587224 
RelMS: Mahalanobis-Jaccard-Hamming 0.686667 0.587224 
G-Gower: Mahalanobis-Jaccard-Hamming 0.685000 0.576739 
G-Gower: Pearson-Jaccard-Hamming 0.685000 0.582427 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.683333 0.578341 
RelMS: Pearson-Jaccard-Hamming 0.671667 0.547123 
classical Gower 0.651667 0.292456 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.605000 0.490818 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.605000 0.491105 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.591667 0.486762 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.586667 0.484619 
RelMS: Mahalanobis-Sokal-Hamming 0.583333 0.484672 
G-Gower: Mahalanobis-Sokal-Hamming 0.581667 0.486274 
Euclidean 0.533333 0.255522 
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G-Gower: Robust Mahalanobis (MAD), Sokal and Hamming 
True class Assigned class by k-medoids 

classical Gower 
True class Assigned class by k-medoids 

Euclidean 
True class Assigned class by k-medoids 

Figure 3. Clustering visualization. Synthetic dataset 3. 

Table 4 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 4, concerning synthetic dataset 4, where variables are uncorrelated and uncontam-
inated. As expected, classifcation rates are rather low and most ARI values are close 
to zero, since data in the four groups lack underlying correlation structure (all variables 
are uncorrelated and either normally or uniformly distributed). In this case, the best 
performance is achieved by Euclidean distance, with a classifcation rate of 55.33% and 
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an ARI value of 0.1852, followed by G-Gower with Canberra distance for numerical 
variables. The performance of these methods is illustrated in Figure 4 with metric MDS 
maps. 

Table 4. Classifcation results for synthetic dataset 4. 

Distance Classifcation rate ARI 
Euclidean 0.5533 0.1852 
G-Gower: Canberra-Sokal-Hamming 0.4900 0.1652 
RelMS: Canberra-Jaccard-Hamming 0.4750 0.1278 
classical Gower 0.4683 0.1415 
RelMS: Pearson-Jaccard-Hamming 0.4300 0.0905 
RelMS: Euclidean-Sokal-Hamming 0.4300 0.1140 
RelMS: Euclidean-Jaccard-Hamming 0.4283 0.0896 
G-Gower: Manhattan-Jaccard-Hamming 0.4283 0.0918 
G-Gower: Pearson-Jaccard-Hamming 0.4283 0.0898 
G-Gower: Euclidean-Jaccard-Hamming 0.4267 0.0901 
RelMS: Canberra-Sokal-Hamming 0.4267 0.1213 
RelMS: Pearson-Sokal-Hamming 0.4217 0.1077 
RelMS: Robust Mahalanobis mad-Sokal-Hamming 0.4200 0.1039 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.4200 0.0841 
RelMS: Manhattan-Jaccard-Hamming 0.4200 0.0826 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.4200 0.0841 
RelMS: Mahalanobis-Jaccard-Hamming 0.4200 0.0837 
G-Gower: Mahalanobis-Jaccard-Hamming 0.4200 0.0845 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.4183 0.0844 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.4183 0.0845 
RelMS: Mahalanobis-Sokal-Hamming 0.4150 0.1022 
RelMS: Robust Mahalanobis mad-Jaccard-Hamming 0.4150 0.0808 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.4150 0.1022 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.4150 0.1022 
G-Gower: Robust Mahalanobis mad-Jaccard-Hamming 0.4133 0.0816 
G-Gower: Euclidean-Sokal-Hamming 0.3967 0.0841 
G-Gower: Pearson-Sokal-Hamming 0.3917 0.0807 
RelMS: Manhattan-Sokal-Hamming 0.3883 0.0928 
G-Gower: Canberra-Jaccard-Hamming 0.3867 0.0528 
G-Gower: Manhattan-Sokal-Hamming 0.3817 0.0874 
G-Gower: Mahalanobis-Sokal-Hamming 0.3800 0.0882 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.3800 0.0906 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.3783 0.0887 
G-Gower: Robust Mahalanobis mad-Sokal-Hamming 0.3783 0.0921 
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Euclidean 
True class Assigned class by k-medoids 

G-Gower: Canberra, Sokal and Hamming 
True class Assigned class by k-medoids 

Figure 4. Clustering visualization. Synthetic dataset 4. 

3.2. Real datasets 

3.2.1. Dubai properties dataset 

This dataset contains 1905 properties for which 38 characteristics were measured. It 
is available at https://www.kaggle.com/datasets/dataregress/dubai-pro 
perties-dataset?resource=download. 

The variables considered as predictors are: Latitude and longitude, market price 
and size (in m2) as numerical; number of bedrooms (0,1,2,3,4,5) and number of bath-
rooms (0,1,2,3,4,5,6) as multiclass, and balcony (1=true, 0=false), barbecue are (1=true, 
0=false) and private pool (1=true, 0=false) are taken as binary. We decided to con-
sider house quality (1=Low, 0=Medium/High/UltraHigh) as response variable with k = 2 
classes. 

Table 5 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 2, where we observe classifcation rates higher than 85% for some of the robust 
proposals. In particular, G-Gower with robust Mahalanobis (trimmed, winsorized and 
MAD), Jaccard and Hamming attain a classifcation rate of 86.14%, RelMS with robust 
Mahalanobis (MAD), Jaccard and Hamming reaches the 86.09%, RelMS with robust 
Mahalanobis (trimmed and winsorized), Jaccard and Hamming reach 85.98% and for 

https://www.kaggle.com/datasets/dataregress/dubai-properties-dataset?resource=download
https://www.kaggle.com/datasets/dataregress/dubai-properties-dataset?resource=download
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robust Mahalanobis (trimmed, winsorized and MAD), Sokal and Hamming a 85.83% is 
attained. On the other hand, the classifcation rate for Euclidean and Gower are 60.58% 
and 50.97%, respectively. 

Table 5. Classifcation results for Dubai properties dataset. 

Distance Classifcation rate ARI 
G-Gower: Mahalanobis-Jaccard-Hamming 0.861942 0.505161 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.861417 0.503672 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.861417 0.503672 
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.861417 0.503672 
RelMS: Mahalanobis-Jaccard-Hamming 0.860892 0.502544 
G-Gower: Canberra-Jaccard-Hamming 0.860892 0.502365 
RelMS: Canberra-Jaccard-Hamming 0.860892 0.502365 
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.860892 0.502365 
RelMS: Pearson-Jaccard-Hamming 0.860892 0.502365 
G-Gower: Pearson-Jaccard-Hamming 0.860367 0.500702 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.859843 0.499400 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.859318 0.497922 
RelMS: Mahalanobis-Sokal-Hamming 0.858268 0.495329 
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.858268 0.495329 
RelMS: Pearson-Sokal-Hamming 0.858268 0.495329 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.858268 0.495329 
RelMS: Canberra-Sokal-Hamming 0.858268 0.495329 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.858268 0.495329 
RelMS: Robust Mahalanobis MAD-Sokal -Hamming 0.858268 0.495329 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming b 0.858268 0.495329 
G-Gower: Mahalanobis-Sokal-Hamming 0.858268 0.495329 
G-Gower: Pearson-Sokal-Hamming 0.858268 0.495329 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.858268 0.495329 
RelMS: Euclidean-Jaccard-Hamming 0.819948 0.394762 
RelMS: Manhattan-Jaccard-Hamming 0.819948 0.394762 
G-Gower: Manhattan-Jaccard-Hamming 0.817848 0.389618 
G-Gower: Euclidean-Jaccard-Hamming 0.817848 0.389618 
Euclidean 0.605774 0.000912 
G-Gower: Canberra-Sokal-Hamming 0.516010 -0.002348 
RelMS: Manhattan-Sokal-Hamming 0.510761 -0.000050 
RelMS: Euclidean-Sokal-Hamming 0.510761 -0.000050 
classical Gower 0.509711 -0.000083 
G-Gower: Euclidean-Sokal-Hamming 0.506562 -0.000263 
G-Gower: Manhattan-Sokal-Hamming 0.506562 -0.000263 
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Similar conclusions can be derived regarding ARI. For example, G-Gower with ro-
bust Mahalanobis (trimmed, winsorized and MAD), Jaccard and Hamming reach one of 
the highest ARIs, as well as RelMS with robust Mahalanobis (MAD), Jaccard and Ham-
ming. On the other hand, values around 0 are obtained by classical Gower and Euclidean 
distance. 

G-Gower: Robust Mahalanobis (trimmed), Jaccard and Hamming 
True class Assigned class by k-medoids 

RelMS: Robust Mahalanobis (trimmed), Jaccard and Hamming 
True class Assigned class by k-medoids 

classical Gower 
True class Assigned class by k-medoids 

Figure 5. Clustering visualization. Dubai properties dataset. 
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In Figure 5 we use metric MDS maps to visualize the classifcation found by k-
medoids for different metrics (k = 2). In particular, we illustrate the results obtained 
by G-Gower with robust Mahalanobis trimmed, Jaccard and Hamming, RelMS with 
the same combination of metrics and classical Gower. Units in left panels are colored 
according to their true class and in right panels, according to their assigned class. 

Looking at G-Gower and RelMS panels, we can see that k-medoids is able to identify 
the class of most of the units, which is coherent with the classifcation rates obtained, 
higher than 80%. Focusing on Gower panels, we can see that many units are not well 
identifed, and this is refected in a classifcation rate of 51%. Considering that there 
are only two classes, this means that the classifcation is practically the same as what 
would be obtained if the units were classifed randomly, following a uniform probability 
distribution. The ARI value is 0, which is consistent with the low classifcation rate 
obtained. 

3.2.2. World development indicators dataset 

This dataset contains 18 indicators measured 97 countries. It is available at https:// 
www.kaggle.com/datasets/hn4ever/world-development-indicators-by-

countries. Source: World Bank. 
We consider the following predictors. Numerical variables: Access to electricity (% 

of the population with access to electricity in 2017), life expectancy (number of years 
a newborn in 2019 would live if the mortality patterns existing at the time of his/her 
birth remained the same throughout his/her life),insuffcient nutrition (% of the popu-
lation in 2019 whose habitual food consumption is insuffcient to provide the levels of 
dietary energy necessary to maintain a normal active and healthy life), arable land (% 
of the country’s land that is arable in 2014-16), population with less than 3.20$ per 
day (% of population with less than 3.20$ per day in PPP); Binary variables: Quality 
of the health system (0=Suitable 1=Inappropriate), Investment in education and health 
(0=High, 1=Low); multiclass variables: Pollution (0=High, 1=Medium, 2=Low), Inse-
curity (0=High, 1=Medium, 2=Low). Variable Poverty (0=High, 1=Medium, 2=Low) is 
taken as response variable with k = 3 classes. 

Table 6 contains the classifcation rate and ARI values for k-medoids algorithm with 
k = 3, where we observe classifcation rates around 65% for some of the robust propos-
als. In particular, G-Gower with robust Mahalanobis (trimmed and winsorized), Sokal 
or Jaccard and Hamming attains a 64.95%, RelMS with robust Mahalanobis (trimmed 
and winsorized), Jaccard and Hamming reaches a 63.92%, as well as G-Gower with 
robust Mahalanobis (MAD), Sokal or Jaccard and Hamming. On the other hand, the 
classifcation rate with Euclidean distance is 46.39% and 60.82% with classical Gower. 

Similar results can be observed concerning ARI, where the robust proposals tend to 
attain ARI values around 0.35-0.37. On the other hand, classical Gower and Euclidean 
distance obtain values of 0.26 and 0.04, respectively. 

https://www.kaggle.com/datasets/hn4ever/world-development-indicators-by-countries
https://www.kaggle.com/datasets/hn4ever/world-development-indicators-by-countries
https://www.kaggle.com/datasets/hn4ever/world-development-indicators-by-countries
https://0.35-0.37
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Table 6. Classifcation results for World development indicators dataset. 

Distance Classifcation rate ARI 
G-Gower: Canberra-Jaccard-Hamming 0.659794 0.405188 
G-Gower: Manhattan-Jaccard-Hamming 0.649485 0.315937 
RelMS: Canberra-Jaccard-Hamming 0.649485 0.397914 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.649485 0.354318 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.649485 0.375463 
G-Gower: Mahalanobis-Sokal-Hamming 0.649485 0.354318 
G-Gower: Pearson-Jaccard-Hamming 0.649485 0.315937 
G-Gower: Canberra-Sokal-Hamming 0.649485 0.382536 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649485 0.334477 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649485 0.315937 
RelMS: Mahalanobis-Jaccard-Hamming 0.649485 0.334477 
G-Gower: Euclidean-Jaccard-Hamming 0.639175 0.353248 
RelMS: Pearson-Jaccard-Hamming 0.639175 0.313709 
G-Gower: Pearson-Sokal-Hamming 0.639175 0.375701 
RelMS: Euclidean-Jaccard-Hamming 0.639175 0.353248 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.639175 0.334477 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.639175 0.334477 
G-Gower: Robust Mahalanobis MAD-Jaccard-Hamming 0.639175 0.307562 
G-Gower: Robust Mahalanobis MAD-Sokal-Hamming 0.639175 0.326646 
RelMS: Mahalanobis-Sokal-Hamming 0.628866 0.347343 
RelMS: Robust Mahalanobis trimmed-Sokal- Hamming 0.628866 0.325988 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.628866 0.325988 
RelMS: Robust Mahalanobis MAD-Jaccard-Hamming 0.628866 0.288271 
G-Gower: Mahalanobis-Jaccard-Hamming 0.628866 0.319983 
RelMS: Robust Mahalanobis MAD-Sokal-Hamming 0.618557 0.305616 
RelMS: Canberra-Sokal-Hamming 0.608247 0.255497 
classical Gower 0.608247 0.258923 
G-Gower: Euclidean-Sokal-Hamming 0.577320 0.208742 
G-Gower: Manhattan-Sokal-Hamming 0.577320 0.208742 
RelMS: Manhattan-Sokal-Hamming 0.556701 0.170696 
RelMS: Pearson-Sokal-Hamming 0.556701 0.170696 
RelMS: Euclidean-Sokal-Hamming 0.556701 0.170696 
RelMS: Manhattan-Jaccard-Hamming 0.525773 0.096234 
Euclidean 0.463918 0.040735 

In Figure 6 we illustrate the results of the k-medoids classifcation for different met-
rics (k = 3) through metric MDS maps. In particular, the results obtained by RelMS with 
robust Mahalanobis trimmed, Jaccard and Hamming, and Euclidean distance are shown. 
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Units in left panels are colored according to their true class and in right panels, according 
to their assigned class. Looking at RelMS panels, we can see that the classifcation is 
rather acceptable, since most of the units in class 0 and half of the units in class 1 are 
well classifed. Note that the classifcation rate obtained is 64.9%, which is around twice 
a expected classifcation rate of 33% that would be attained if the units were classifed 
through a uniform random mechanism. Regarding the Euclidean distance panels, we ob-
serve that k-medoids algorithm is not able to identify the units’ class, which is coherent 
with an ARI of 0.04 and a classifcation rate of 46%. 

RelMS: Robust Mahalanobis (trimmed), Jaccard and Hamming 
True class Assigned class by k-medoids 

Euclidean 
True class Assigned class by k-medoids 

Figure 6. Clustering visualization. World development indicators dataset. 

3.3. Sensitivity study on the trimming and winsorizing parameter 

In this section the sensitivity of parameter α used in trimmed and winsorized versions 
of the covariance matrix in Mahalanobis distance is studied. Classifcation rate is used 
to analyze the performance of the distance for each dataset. Table 7 contains the mean 
values computed on 100 runs. 

Concerning synthetic datasets, we observe that in dataset 1 (10-12% outlier con-
tamination in three numerical variables) G-Gower with robust Mahalanobis (trimmed), 
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Table 7. Classifcation rates for G-Gower and RelMS for several values of trimming and win-
soring parameter α . 

Distance 5% 10% 15% 20% 25% 
Synthetic dataset 1 

G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.630 0.628 0.554 0.558 0.556 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.630 0.628 0.604 0.548 0.544 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.626 0.598 0.538 0.546 0.546 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.604 0.628 0.628 0.556 0.554 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.586 0.584 0.580 0.596 0.594 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.582 0.586 0.580 0.592 0.592 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.508 0.506 0.508 0.602 0.604 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.506 0.508 0.504 0.602 0.604 

Synthetic dataset 2 
RelMS Robust Mahalanobis trimmed-Jaccard-Hamming 0.491 0.500 0.500 0.502 0.505 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.558 0.558 0.558 0.554 0.555 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.558 0.558 0.558 0.483 0.554 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.552 0.552 0.552 0.548 0.549 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.552 0.552 0.552 0.522 0.548 
G-Gower -Robust Mahalanobis trimmed-Jaccard-Hamming 0.540 0.540 0.540 0.522 0.525 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.540 0.540 0.540 0.449 0.522 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.480 0.482 0.480 0.554 0.560 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.477 0.478 0.480 0.442 0.554 

Synthetic dataset 3 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690 0.687 0.822 0.840 0.840 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.690 0.683 0.792 0.817 0.817 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.688 0.833 0.837 0.843 0.685 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.687 0.815 0.812 0.685 0.687 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.593 0.868 0.878 0.877 0.878 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.592 0.853 0.885 0.883 0.885 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.588 0.590 0.865 0.885 0.883 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.585 0.600 0.857 0.878 0.875 

Dubai properties dataset 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.861 0.861 0.861 0.862 0.861 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.861 0.861 0.861 0.861 0.861 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.860 0.859 0.860 0.861 0.862 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.859 0.860 0.860 0.860 0.860 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.858 0.858 0.858 0.858 0.858 

World development indicators dataset 
G-Gower: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649 0.649 0.649 0.649 0.649 
G-Gower: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649 0.649 0.649 0.649 0.649 
RelMS: Robust Mahalanobis trimmed-Jaccard-Hamming 0.649 0.649 0.639 0.639 0.639 
RelMS: Robust Mahalanobis winsorized-Jaccard-Hamming 0.649 0.649 0.639 0.639 0.649 
G-Gower: Robust Mahalanobis trimmed-Sokal-Hamming 0.649 0.649 0.649 0.639 0.639 
G-Gower: Robust Mahalanobis winsorized-Sokal-Hamming 0.649 0.649 0.649 0.649 0.649 
RelMS: Robust Mahalanobis trimmed-Sokal-Hamming 0.629 0.629 0.629 0.629 0.629 
RelMS: Robust Mahalanobis winsorized-Sokal-Hamming 0.629 0.629 0.629 0.629 0.629 
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Jaccard and Hamming and RelMS with robust Mahalanobis (winsorized), Jaccard and 
Hamming present the highest classifcation rate (63.0%), which is attained for α = 0.05. 
The second best rate (62.8%) is attained by the same metrics for α = 0.10. In dataset 
2 (10% outlier contamination in two numerical variables), the best result (55.8%) is ob-
tained for RelMS with robust Mahalanobis (trimmed and winsorized), Sokal and Ham-
ming for α = 0.05,0.10,0.15. In dataset 3 (7-8% outlier contamination in three numer-
ical variables), G-Gower with robust Mahalanobis (trimmed and winsorized), Sokal and 
Hamming reach the best results (88.3%-88.5%) for α = 0.20,0.25. 

No general conclusions can be derived from the analysis of the synthetic datasets. 
Although for datasets 1 and 2 the best results are obtained for α values close to the real 
proportion of outlying units, this is not the case for dataset 3 where hard trimming/win-
sorizing is needed. Some explanations may be found in the complexity degree of dataset 
3, with unbalanced classes and less redundant information than in datasets 1 and 2. 

To better analyze the sensitivity of parameter α classifcation rates are depicted in 
Figure 7, where we observe that for dataset 1 the classifcation rate tends to decrease 

Figure 7. Classifcation rates for G-Gower and RelMS for several values of trimming and win-
soring parameter α in synthetic datasets. 

https://0.20,0.25
https://0.05,0.10,0.15
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with α when Jaccard distance is considered (either in G-Gower or in RelMS), while 
the opposite happens for Sokal-Michener’s. There is not a clear pattern for dataset 2, 
although the classifcation rate in G-Gower seems to decrease with α , whereas it stands 
still or slightly increases when using RelMS. Finally, for dataset 3, the classifcation rate 
tends to increase with α in most of the cases considered. 

Regarding real datasets, the fuctuation in the classifcation rate for different values 
of α is lower than 10−2. In general, for Dubai properties data, the best situation (86.1%) 
is produced with G-Gower metric with robust Mahalanobis (trimmed and winsorized), 
Jaccard and Hamming, at any value of α . In the case of World development indicators 
data, the best results (64.9%) are attained for G-Gower metric with robust Mahalanobis 
(trimmed and winsorized), Jaccard and Hamming, as well as G-Gower’s with robust 
Mahalanobis (winsorized), Sokal and Hamming at any value of α . The same classifca-
tion rates are reached for several trimming/winsorizing values of the remaining metrics, 
except for RelMS with robust Mahalanobis (trimmed and winsorized), Sokal and Ham-
ming, whose classifcation rate is always equal to 62.9%. 

4. Conclusions 

In this work, new robust distances for mixed-type data were proposed and studied in the 
context of clustering. They were obtained as combination of three distances, one for 
each type of data (numerical, binary and multiclass). As a result, a total of 34 distances 
were analyzed. 

Their performance was evaluated in rather complex synthetic datasets, with underly-
ing correlation structure and outlying units, as well as in two real datasets. Classifcation 
rate and adjusted Rand index were used to evaluate the goodness of the clustering ob-
tained with the k-medoids algorithm. Metric multidimensional scaling was used to visu-
alize and illustrate the difference between the true and assigned class of the units. In all 
scenarios with underlying correlation structure and outlying units, new robust propos-
als outperformed the classical Gower distance. In the absence of correlation or outlying 
units, Euclidean distance achieved the best results. However, this is not the usual context 
in real-world applications, where outliers are highly probable and redundant information 
is often present in multivariate data. In addition, a sensitivity analysis on the parameters 
involved in the robust estimation of the new proposals was provided. Some of the robust 
proposals became computationally unfeasible for sample sizes larger than 30000, with 
an i7-1365U 1.80 GHz processor, 32.0 GB RAM, where no parallelization was used. 
The study of their feasibility in larger sample sizes is left for further research. 

5. Software availabily 

All the distances presented in this paper are implemented in a Python package, called 
robust mixed dist, hosted in https://pypi.org/project/robust mixed dist/. 
The package is described in Appendix A and a tutorial is available at https://fabios 

https://pypi.org/project/robust_mixed_dist/
https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
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cielzoortiz.github.io/robust mixed dist-docu/intro.html. The robust 
mixed dist package relies on Scipy for an effcient computation of distances. Thus, all 
distance functions available therein can be easily included in our package. However, the 
handling of missing data is not considered in Scipy and we leave it for further research. 
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A. The Python package 

The robust mixed dist package is a new Python tool for computing classical statistical 
distances between units. The distance functions implemented are: Euclidean (ℓ2 dis-
tance), Minkowski (family of ℓp distances), Canberra, Pearson (standardized Euclidean), 
Mahalanobis, robust Mahalanobis, Gower, generalized Gower (G-Gower) and related 
metric scaling (RelMS). A total of 41 statistical distances can be calculated, includ-
ing those proposed in this paper. Additionally, since robust mixed dist relies on Scipy 
Python library, all distances included there can be easily included. Forn example, this is 
the case for Chi-square distance, Chebyschev distance, Jensen-Shannon distance, among 
others, as well as many similarity coeffcients available at Scipy. 

The package is hosted in PyPI (Python Packages Index), the offcial repository of 
Python packages. More information about robust mixed dist can be found in https:// 
pypi.org/project/robust mixed dist/. 

In what follows we provide a small demonstration of how to use robust mixed dist. 
For more details, a more extensive tutorial is available at https://fabioscielzo 
ortiz.github.io/robust mixed dist-docu/intro.html. 

https://pypi.org/project/robust_mixed_dist/
https://pypi.org/project/robust_mixed_dist/
https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html


ar ray( [ [ 0. , 6 .47092419, 7.01983 235, 
5 . 69177645, 3 . 68021705 ] , 
6.47092419, 0 . , 3.03471006, 

10 . 12781147, 5 . 95613137 ] , 
[ 7.01983235, 3 . 03471006, 0. 
10 . 9171085, 6 . 21243845 ] , 

4 . 96377088, 10 .43356417, 11 . 35024985, 
3.65216 542 , 7 .11373136 ] , 
5 . 69177645, 10.12781147, 10 . 9171085, 
0. , 7 . 864403 27 ] , 
3 . 68021705, 5.9 5613137, 6 . 21243845, 
7.86440327, 0 . ] ] ) 

4. 96377088, 

10.43356417, 

11. 35024985 , 

0 . 

3.65216542, 

7 . 11373136, 
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Example of use 

Installing: 

pip install robust-mixed-dist 

Loading modules: 

from robust_mixed_dist.mixed import GGowerDistMatrix 

from robust_mixed_dist.mixed import RelMSDistMatrix 

from robust_mixed_dist.quantitative import robust_maha_dist_matrix, S_robust 

Computing some distances for a real Madrid houses dataset, which can be found at 
https://www.kaggle.com/datasets/mirbektoktogaraev/madrid-real-estate-market. In this 
brief tutorial only the following variables of that dataset were considered: 

• Quantitative: sq mt built, number of rooms, number of bathrooms, number of 
foors, buy price. 

• Binary: is renewal needed, has lift, is exterior, has parking. 

• multiclass: energy certifcate, house type. 

Robust Mahalanobis (MAD): 

S_robust_ = S_robust(X=madrid_houses_df, method=’MAD’, 

epsilon=0.05, n_iters=20) 

robust_maha_dist_matrix(madrid_houses_df, S_robust=S_robust_) 

G-Gower: Robust Mahalanobis (trimmed), jaccard, Hamming (matching): 

GG_init = GGowerDistMatrix(p1=5, p2=4, p3=2, 

d1=’robust_mahalanobis’, d2=’jaccard’, d3=’hamming’, 

method=’trimmed’, alpha=0.05, epsilon=0.05, n_iters=20, 

fast_VG=False) 

D_GG = GG_init.compute(X=madrid_houses_df) 

D_GG 

https://www.kaggle.com/datasets/mirbektoktogaraev/madrid-real-estate-market
https://epsilon=0.05
https://alpha=0.05
https://epsilon=0.05
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RelMS: Robust Mahalanobis (winsorized), Jaccard, Hamming (matching): 

RelMS_init = RelMSDistMatrix(p1=5, p2=4, p3=2, 

d1=’robust_mahalanobis’, d2=’jaccard’, d3=’hamming’, 

method=’winsorized’, epsilon=0.05, alpha=0.05, 

n_iters=20) 

D_RelMS = RelMS_init.compute(X=madrid_houses_df.head(1000), 

Gs_PSD_trans=True) 

D_RelMS 

B. Computational cost 

In this section a computational experiment is derived to illustrate the computational cost 
of G-Gower and RelMS metrics. 

For such purpose eight synthetic datasets were generated using make blobs func-
tion from scikit-learn Python library. The datasets have increasing sample size, 
going from n = 3,000 to n = 70,000, and same characteristics like p1 = 4 numerical, 
p2 = 2 binary and p3 = 2 multiclass variables and number of true classes k = 3. 

https://alpha=0.05
https://epsilon=0.05
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For each dataset the computation time for G-Gower (robust Mahalanobis trimmed-
Jaccard-Hamming), RelMS (robust Mahalanobis trimmed-Jaccard-Hamming) and ro-
bust Mahalanobis (trimmed) distances was collected. The experiment was carried out 
with a DESKTOP-I1Q2RCC device, 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz 
processor, with Installed RAM of 32.0 GB (31.6 GB usable) and 64-bit operating system, 
x64-based processor. Results are shown in Figure 8. 

Figure 8. Computational time (in minutes) for G-Gower and robust Mahalanobis. 

The computationally cheapest distance is robust Mahalanobis, since it takes less than 
one minute for n = 30,000 and below, between one and four minutes for sizes between 
n = 30,000 and n = 50,000, and for the largest size (n = 70,000) it takes seven minutes, 
approx. Its calculation is feasible for all sample sizes tested, and reasonably practical for 
all of them as well. G-Gower takes few seconds for sample sizes up to n = 10,000, no 
more than two minutes for sample sizes between n = 10,000 and n = 20,000, between 
2 and 7 minutes for sizes between n = 20,000 and n = 30,000, and becomes unfeasible 
for larger sample sizes. Computational time for RelMS goes from 2.37 minutes for 
n = 3,000 to 534.07 minutes for n = 20,000, this is the reason why they are not included 
in Figure 8. Sample sizes n ≥ 30,000 are unfeasible for RelMS. 
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