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Leave-group-out cross-validation for latent 
gaussian models 

Zhedong Liu1, Janet Van Niekerk2 and Håvard Rue3 

Abstract 

Evaluating the predictive performance of a statistical model is commonly done using 
cross-validation. Among the various methods, leave-one-out cross-validation (LOOCV) 
is frequently used. Originally designed for exchangeable observations, LOOCV has 
since been extended to other cases such as hierarchical models. However, it focuses 
primarily on short-range prediction and may not fully capture long-range prediction sce-
narios. For structured hierarchical models, particularly those involving multiple random 
effects, the concepts of short- and long-range predictions become less clear, which can 
complicate the interpretation of LOOCV results. In this paper, we propose a comple-
mentary cross-validation framework specifcally tailored for longer-range prediction in 
latent Gaussian models, including those with structured random effects. Our approach 
differs from LOOCV by excluding a carefully constructed set from the training set, which 
better emulates longer-range prediction conditions. Furthermore, we achieve compu-
tational effciency by adjusting the full joint posterior for this modifed cross-validation, 
thus eliminating the need for model reftting. This method is implemented in the R-INLA 
package (www.r-inla.org) and can be adapted to a variety of inferential frameworks. 
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1. Introduction 

1.1. Rationale and Background 

Leave-one-out cross-validation (LOOCV) (Stone, 1974) stands as a popular method to 
evaluate a statistical model’s predictive performance, perform model selections, or esti-
mating some critical parameters in the model. The core concept of LOOCV is elegantly 
straightforward. Suppose we have data, y = {yi}, for i = 1, . . . ,n, presumed to be in-
dependent and identically distributed (I.I.D.) samples from the true distribution πT (y). 
Our objective is to determine how well a ftted model can predict a new observation, ỹ, 
sampled from this true distribution. In the Bayesian context, we use the posterior pre-
dictive distribution π(y|y) to predict ỹ sampled from πT (y) as proposed by Geisser and 
Eddy (1979). Using the logarithmic score (Gneiting and Raftery, 2007), we can compute 
Eỹ[logπ(ỹ|y)] as a metric for prediction ability. 

Owing to the lack of πT (y), directly computing the expectation becomes infeasi-
ble. Nonetheless, since yi is an exchangeable sample from πT (y), we can estimate this 
expectation by evaluating 

n 
uLOOCV = 

1 
∑ logπ(yi|y−i), n i=1 

where yi is the testing point and y−i is the training set, and y−i are all data except the ith 
observation. 

The informal interpretation of LOOCV is that it mimics “using y to predict ỹ” by “us-
ing y−i to predict yi”. This intuitive interpretation is then used to justify, often implicitly, 
the use of LOOCV as a “default” way to evaluate predictive performance. 

However, issues can arise in more complex statistical models where the dependency 
in the model results in the data not being exchangeable (see Vehtari and Ojanen (2012) 
for a complete discussion of cross-validation (CV) for several types of exchangeability); 
we describe these kinds of models as “dependent” cases for the purpose of this paper. An 
intuitive dependent case is a time series. Burman, Chow and Nolan (1994) proposed a 
block CV method for dependent data from a stationary process, acknowledging the need 
for a different approach to CV than LOOCV. McQuarrie and Tsai (1998) propose modi-
fed cross-validation (MCV) where dependent data chunks are removed together with the 
relevant point to account for the dependence in a time series (and other dependent data 
generating models). Bergmeir and Benı́tez (2012) investigated the properties of blocked 
CV and other approaches for robust time series model evaluations (see also Bergmeir, 
Hyndman and Koo (2018) for a study on k-fold CV), while Bürkner, Gabry and Ve-
htari (2020) proposed a leave-future-out CV strategy. Cerqueira, Torgo and Mozetič 
(2020) investigated CV and holdout approaches for time series models and concluded 
that the out-of-sample holdout procedure is more accurate for non-stationary processes 
than LOOCV. 

Besides time series, spatial dependence models come to mind for which Valavi et al. 
(2018) proposed a buffering strategy by leaving out specifc spatial points or areas and 
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spatial and environmental blocking. Spatial blocking forms clusters of data points ac-
cording to spatial effects, and environmental blocking forms clusters using K-means 
(Hartigan and Wong, 1979) on the covariates. Other examples of dependent cases are 
longitudinal data for multiple subjects in a study (Saeb et al., 2017) and hierarchical 
models (see Gelman et al. (1995) and Vehtari and Ojanen (2012, Section 5.1.4). Racine 
(2000) proposed an hv-block CV approach for dependent data while Merkle, Furr and 
Rabe-Hesketh (2019) considers a multilevel model and shows that marginal WAIC is 
akin to LOOCV. Roberts et al. (2017) advocate a block cross-validation, partitioning 
ecological data based on inherent patterns, when the prediction task is not simply short-
range prediction. Rabinowicz and Rosset (2022) offers a modifcation to LOOCV, ensur-
ing an unbiased measure of predictive performance given the correlation between new 
and observed data, where the unbiasedness is in the sense of randomized both observed 
and new data. We should note that an assumed prediction task determines the correlation 
between new and observed data. 

In dependent cases, LOOCV can provide a restricted assessment of the models’ pre-
dictive performance since LOOCV cannot evaluate longer-range prediction. Even in 
terms of short-range prediction, it is not clear what is short- or longer-range in depen-
dent models that are not purely temporal or spatial models where the range has a phys-
ical interpretation. We use the concepts of short-range and longer-range predictions, 
acknowledging that these concepts can have overlapping meanings. 

We thus propose a framework that emulates longer-range prediction scenarios, for 
hierarchical models, by constructing non-random leave-out sets based on model-based 
correlations. This can be viewed as a complementary approach to LOOCV for evaluat-
ing predictive performance, providing additional informative insights of the predictive 
ability for dependent cases. 

1.2. The prediction task 

The critical observation is that the meaning of “prediction” is not clearly defned when 
we are far away from exchangeability, so that y are non-exchangeable samples of πT (y). 
πT (ỹ|y) lacks a unique defnition in dependent cases as without a clear prediction task, 
i.e., how we imagine a new data point, ỹ, is generated given observed data y. This 
ambiguity extends to the act of “using y to predict ỹ” as it is uncertain what our target, 
ỹ, represents. To illustrate these concepts, let us discuss some more concrete examples. 

Time-series model 

Assume data y = {y1,y2, . . . ,yT } is a time-series, observed sequentially at time 1,2, . . . ,T . 
The inherent prediction task is to predict future values, given the temporal nature of the 
data. We can predict a new observation at k ≥ 1 steps into the future by π(yT+k|y1, . . . ,yT ). 

In this example, the LOOCV will be computed from 

π(yt |y1, . . . ,yt−1,yt+1, . . . ,yT ), t = 1, . . . ,T, 
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which is often referred to as interpolation or imputation of missing values, rather than a 
prediction. However, the predictive performance of time series models is often assessed 
through leave-future-out cross-validation (LFOCV) (Bürkner et al., 2020): 

T −k 

∑ logπ(yT ′ +k|y1, . . . ,yT ′ ), 
′T =T0 

′where T starts from time T0 > 1 as we need some data to estimate the model. 
The message from this example is that LOOCV, when applied to such models, is 

essentially evaluating short-range prediction performance rather than longer-range pre-
dictive performance. 

We acknowledge two issues. First, the distinction between short and longer-range 
prediction is not always clear-cut, leading to overlapping concepts. For example, a one-
step-ahead forecast leans more towards short range than a two-step-ahead prediction. In 
contrast, a one-step-ahead forecast leans less towards short-range than a missing value 
imputation. However, this does not deter our discussion. Secondly, while an ideal model 
succeeds in all prediction tasks, real-world scenarios require us to settle for the defnition 
of the “best ft”. Consequently, our choice of evaluation should align with our specifc 
objectives. 

Multilevel model 

Figure 1 illustrates an example of a multilevel model. Consider observations of stu-
dent grades or performance. This data exhibits a hierarchical structure: students belong 
to classes, classes reside within schools, and schools are nested within regions. This 
hierarchical arrangement is signifcant because it introduces correlated random effects 
attributed to the class, school, and region levels, substantially deviating from the ex-
changeable case. 
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Figure 1. A nested multilevel model. 

Given such a model, the prediction task becomes ambiguous. Are we aiming to pre-
dict the performance of an unobserved student from an observed class? Or are we trying 
to predict the performance of an unobserved student in an unobserved class, school, or 
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even region? This diffculty mirrors the challenges in defning asymptotic regimes for 
these models. As students, classes, schools, and regions can grow indefnitely in various 
ways, it is unclear whether one of such choices is the most reasonable. 

To evaluate predictive performance within this context, users must frst explicitly 
defne their prediction task and then evaluate the model according to this defnition. 
It should be noted that applying LOOCV would evaluate the prediction of individual 
students within observed classes. In our view, this mimics more short-range prediction 
rather than longer-range prediction, and another framework is needed to quantify the 
predictive ability for a new student in a new class in a new school in a new region, for 
example. Our proposal provides some insight into this kind of prediction task. 

1.3. LGOCV: Complementing LOOCV for dependent cases 

Our discussions illuminate an important insight: when dealing with models that lead to 
non-exchangeable data, the prediction task implicitly defned through LOOCV may be 
less appropriate, as it leans more towards assessing imputing qualities and short range 
predictions than predictive performance for longer range as is usually implied by “out-
of-sample” prediction. This prompts the question: What is a suitable approach moving 
forward? 

One observation is the absence of a “one size fts all” solution. Each model may 
possess a natural prediction task-or several-based on its intended application. Thus, 
for a specifc assessment of predictive performance, we need to defne these prediction 
tasks explicitly. One can then evaluate distinct predictive performance metrics using our 
proposed leave-group-out cross-validation (LGOCV): 

n 
uLGOCV = 

1 
∑ log(π(yi|y−Ii 

)). (1)
n i=1 

Here, the group (denoted by Ii) is an index set including i. This confguration facili-
tates that the pair (yi, y−Ii 

) mimics a specifed prediction task, with y−Ii 
being the data 

subset excluding the data indexed by Ii. In a multilevel model, as depicted in Figure 1, 
predicting a student’s grade from an unseen class necessitates that Ii includes i and all 
observations from student i’s class. However, more complex models, such as models 
containing both time series and hierarchical elements, pose challenges when defning a 
natural prediction task. Therefore, even in complex cases, LOOCV is often applied for 
its simplicity-even if it leans more towards imputation or short-range prediction. 

Developing a framework that evaluates a model’s longer-range prediction like the 
proposed LGOCV, necessitates the construction of the leave-out group Ii for each dat-
apoint yi. Our approach constructs a model-based group, Ii, for each i by using the 
prior or posterior correlation among the set of linear predictors. Though we will delve 
into the construction of Ii in Section 3, an initial understanding is that Ii comprises the 
data points that correspond to the linear predictors that are most informative for pre-
dicting the testing linear predictor, and thus the testing point, yi. This set ensures that 
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our LGOCV focuses less on short-range prediction (interpolation) and more on longer-
range prediction than LOOCV. In other words, LGOCV tests the model on more diffcult 
prediction tasks since the most infuential points are removed together with the testing 
point, instead of some arbitrary (possibly uncorrelated) point(s). The user needs to only 
provide a number that indicates the “degree of the independence” between the predic-
tion point and the rest of the data”, and we compute these groups for each datapoint in an 
automated way. In various practical examples, we will show how this model-based pro-
cedure produces reasonable groups. Advanced spatial examples applying the proposed 
method are presented by Adin et al. (2024). For a simple time-series example, our new 
approach will correspond to evaluating π(yt |y1, . . . ,yt−k,yt+k, . . . ,yT ), for fxed k > 1. 
This corresponds to removing a sequence of data with length 2k − 1, to predict the cen-
tral one. As we see, this task mimics a longer-range prediction task. Our interpretation 
is that LGOCV quantifes the model’s ability to predict longer-range more appropriately 
than LOOCV, when k > 1, and is similar to the cross-validation procedure proposed by 
Burman et al. (1994) for stationary processes. 

There are two key challenges to address to make our proposal practical. Firstly, 
we must quantify the information contributed by one data point in predicting another; 
this is crucial for the group construction. Secondly, we face the computational task of 
evaluating uLGOCV given a set of groups. The naive computation of LGOCV by ftting 
models across all potential training sets and evaluating their utility against correspond-
ing testing points is computationally infeasible, especially given the resource-demanding 
nature of modern statistical models. However, these challenges can be handled elegantly 
within the framework of latent Gaussian models (LGMs) combined with the integrated 
nested Laplace approximation (INLA) inference, as detailed in Rue et al. (2009, 2017); 
Van Niekerk and Rue (2024); Van Niekerk et al. (2023). Throughout this paper, we 
will assume that our model is an LGM. We will discuss how to integrate the automatic 
group construction and the fast computation of uLGOCV using the INLA framework. 
Notably, our proposed methodology has been incorporated into the R-INLA package 
(www.rinla.org), extending its applicability across all LGMs supported by R-INLA. 

1.4. Theoretical aspects 

Cross-validation (CV), particularly LOOCV, is frequently considered as an estimator of 
Eỹ[logπ(ỹ|y)] or Eỹ,y[logπ(ỹ|y)]. The frst expectation describes the generalized predic-
tive performance given a specifc training set, while the second expectation describes the 
generalized predictive performance averaged over different identically distributed train-
ing sets. These expectations can be evaluated when assuming the existence of the joint 
density πT (ỹ, y), representing the true data generation process. Under the assumption of 
exchangeability and some regularity conditions on the model, the Bernstein-Von-Mises 
theorem states that logπ(ỹ|y) converges to a random variable irrelevant to y. Conse-
quently, Eỹ[logπ(ỹ|y)] and Eỹ,y[logπ(ỹ|y)] become equivalent in the limit. If we further 
assume that ỹ is sampled from the same distribution as all the training data, LOOCV 
is an asymptotically unbiased estimator of the expectations. Commonly used informa-

www.rinla.org
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tion criteria, such as AIC (Akaike, 1973), WAIC (Watanabe, 2010), are asymptotically 
equivalent to LOOCV in fully exchangeable cases. This type of analysis is prevalent in 
the literature with various settings (Stone, 1974, 1977; Yang, 2007; Shao, 1993). 

However, a similar analysis does not hold for dependent cases in general. Firstly, 
the existence of different prediction tasks means that both the model prediction, π(ỹ|y), 
and the true data generation process, πT (ỹ|y), are not uniquely defned as discussed 
in Section 1.2. Secondly, the asymptotic scheme is not uniquely defned, even with a 
specifc prediction task. For example, in a temporal model where data y = {y1,y2, . . . ,yn} 
is a time-series, observed at time t1 < t2 < · · · < tn and we denote the last time step as T . 
Several meanings of of n → ∞ can be considered: 

• T → ∞ and ti − ti−1 is a constant 

• ti − ti−1 → 0 and T is a constant 

• ti − ti−1 → 0 and T → ∞ with T (ti − ti−1) fxed 

These scenarios correspond to observing more future data and having higher sample 
rates within a time frame. As mentioned in Section 1.2, multilevel data can also have 
various asymptotic regimes. Thirdly, if the data generation process is not stationary, 
the model will not converge under certain asymptotic regimes, which differentiate Eỹ 
[logπ(ỹ|y)] from Eỹ,y[logπ(ỹ|y)] even in asymptotic scenarios. These points highlight 
that the estimand of CV is not uniquely defned in dependent cases, preventing the es-
tablishment of an asymptotic analysis framework. 

From the perspective of CV, it is also inappropriate to consider it an estimator since 
each summand in CV should be viewed as a sample from different distributions due to 
the relevance of data indexes in dependent cases. For example, if we compute LOOCV in 
a time series. Each yt is sampled from a different conditional distribution πT (yt |y−t) and 

1 
∑

Tthus the average t=1 logπ(yt |y−t ) cannot be considered as an estimator in general.n 
Therefore, it is more reasonable to view CV as a predictive measurement rather than 
an estimator of an expectation. This perspective allows us to interpret the proposed 
LGOCV as the averaged predictive performance for similar prediction tasks, created 
systematically by the model. 

While the proposal of Merkle et al. (2019) for multilevel model demonstrates that 
marginal WAIC is akin to LOOCV, we note that conditional WAIC aligns with LGOCV, 
where a hierarchical level, such as a school, defnes the groups. The h-block CV of 
Burman et al. (1994) is a special case of LGOCV for a stationery model. LFOCV pro-
posed by Bürkner et al. (2020) is similar to LGOCV as shown in Section 5. The spatial 
buffering proposed by (Valavi et al., 2018) ensures that no test data is spatially next to 
any training data, and is a special case of LGOCV for model with only spatial effects. 
LGOCV this provides a framework where no training data is placed next to the test data 
in terms of the entire model, and not just specifc components thereof. 
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1.5. Plan of paper 

We propose the model-based LGOCV to evaluate longer-range prediction performance 
for latent Gaussian models, as a special case of a hierarchical model. Complementing 
this, we introduce a computational method to approximate uLGOCV without model reft-
ting, which is crucial for practical implementation of our proposal. Our computational 
technique also facilitates the calculation of uLGOCV with user-specifed groups. 

Section 2 introduces LGMs and explains how they can be effciently inferred us-
ing INLA. In Section 3, we discuss the model-based group construction method for 
LGMs. This method can be implemented in two ways: by using the prior correlation 
matrix or the posterior correlation matrix of the latent linear predictors. In Section 4, 
we demonstrate how to approximate the LGOCV predictive density. Finally, in Section 
5, we compare the approximated LGOCV with the exact LGOCV computed by Markov 
chain Monte Carlo (MCMC) and present some applications. We conclude with a general 
discussion in Section 6. 

2. Latent Gaussian models 

This section briefy introduces LGMs, as detailed in Rue et al. (2009, 2017); Van Niekerk 
and Rue (2024); Van Niekerk et al. (2023), since the model-based group construction and 
fast approximations rely on them. The LGMs can be formulated by 

yi|ηi, θ ∼ π(yi|ηi, θ), 
(2)

η = A f , f |θ ∼ N(0, P f (θ )), θ ∼ π(θ). 

In LGMs, each yi is independent conditioned on its corresponding linear predictor ηi, 
and hyperparameters θ ; η is a linear combination of f , which is assigned with a Gaus-
sian prior with zero mean and a precision matrix parameterized by θ ; A is the design 
matrix mapping f to η ; π(θ) is a prior density of hyperparameters. It is worth mention-
ing that the prior precision matrix P f (θ) is very sparse, which is leveraged to speed up 
the inference. 

The model is quite general because f can combine many modeling components, 
including linear model, spatial components, temporal components, spline components, 
etc (Wang, Yue and Faraway, 2018; Krainski et al., 2018; Gómez-Rubio, 2020). It is 
also common with linear constraints on the latent effects f (Rue and Held, 2005). 

We can approximate π( f |θ , y) and π(θ |y) at some confgurations, θ 1 . . . θ k. The 
confgurations are located around the mode of π(θ |y), denoted by θ

∗ , for numerical 
integration. Approximations of π(η |θ , y) are computed using the linear relation, η = 
A f . The Gaussian approximation of π( f |θ , y) plays an essential role, which is outlined 
as follows. 

We have π( f |θ , y) for a given θ , � �n 
π( f |θ , y) ∝ exp − 

1 
f TP f (θ) f + ∑ log(π(yi|ηi, θ )) , (3)

2 i=1 
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whose mode is µ f (θ , y). The Gaussian approximation of π( f |θ , y) is � � 

πG( f |θ , y) ∝ exp − 
1 

f T(P f (θ )+ ATC(θ , y)A) f + ATb(θ , y) f . (4)
2 

i ) − g ′′In (4), bi(θ , y) = g ′ i(η
∗ 

i (ηi 
∗)ηi 

∗ , and C(θ , y) is a diagonal matrix with Cii(θ , y) = 
−g ′′ i (ηi 

∗), where gi(ηi) = log(π(yi|ηi, θ )) and η∗ = Ai µ f (θ , y) with Ai being ith row ofi 
A. The Gaussian approximation is denoted by, 

f |y, θ ≈ N(µ f (θ , y), Q f (θ , y)), (5) 

where µ f (θ , y) = Q f (θ , y)−1ATb(θ , y) and Q f (θ , y) = P f (θ )+ ATC(θ , y)A are the ap-
proximated posterior mean and precision matrix of f given θ . 

3. Model-based Group Construction 

The primary feature of our proposed group construction is that it requires a choice of 
correlation matrix (prior or posterior) for the linear predictors, and a single mandatory 
parameter to adjust the diffculty of the prediction task. This parameter is termed “the 
number of level sets”. It can be interpreted as the strength of the non-dependence be-
tween the group to leave out and the rest of the data. A higher value would thus ensure 
that the leave-out group is more independent from the rest of the data, than a lower value. 
A higher indpeendnece between the leave-out data and the rest of the data simluates a 
more diffcult prediction task for the model. Based on this value and the correlation ma-
trix choice, all other processes are automated. In a multivariate Gaussian distribution, 
we can quantify the information provided by a data point to predict another data point 
by the variance reduction of the conditional distribution, and the variance reduction is 
a function of their correlation coeffcient. To elaborate, if X and Y are both Gaussian 
random variables, the variance reduction resulting from knowing X when predicting Y 
equates to σY 

2ρ2, where σY 
2 is the marginal variance of Y and ρ is the correlation between 

X and Y . 
In LGMs, the linear predictors, η , represent the underlining data generation process 

of data in (2). The linear predictors are designed to have a Gaussian prior and approx-
imated to be Gaussian in posterior given θ therefore, we can use the absolute value of 
the correlation matrix of η to represent the information provided by one data point to 
predict another data point. We evaluate those correlation matrices at the mode of π(θ |y), 
denoted by θ ∗ . Then, we have correlation matrices of η derived from the prior preci-
sion matrix, P f (θ

∗ ), and the posterior precision matrix, Q f (θ
∗ , y). We call the former 

one prior correlation matrix, denoted by Rprior, and the latter one posterior correlation 
matrix, denoted by Rpost. Note that the correlation matrices are not fully evaluated and 
stored to avoid computational burden as they are dense and large; thus, care has to be 
applied to the implementation to make it feasible. The group would vary with θ . We use 
θ ∗ because it has the highest weight in the posterior. This preference arises because we 
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frequently employ non-informative priors for hyperparameters. This approach ensures 
that our focus remains on evidence from the data rather than on arbitrary assumptions 
about hyperparameters. 

Manually constructed groups are often based on prior knowledge and some struc-
tured effects, represented by f . To imitate this process, we can compute the correlation 
matrix from a submatrix of P f (θ). The correlation matrix, Rprior, derived from the sub-
matrix of the prior precision matrix, is a correlation matrix conditioning on those unse-
lected effects. The groups constructed using Rprior are viewed to be solely user-defned 
in the way that it only depends on the priors and not on the data. In some situations 
this could be motivated, but in general we recommend using Rpost to construct groups 
because the data will be informative to determine the importance of each effect. 

When using a correlation matrix R, it is natural to select a fxed number of η j most 
correlated to ηi and include their index in the group Ii. However, this approach can be 
problematic as some linear predictors may have identical absolute correlations to ηi, e.g., 
in a model with only intercept, all the linear predictors are correlated to each other with 
correlation 1. Instead, we include all indices of η j’s with identical absolute correlations 
to ηi in Ii if one of them is included. We defne a level set as all η j’s with the same 
absolute correlation to ηi and determine the group size based on the number of level 
sets, denoted as m. Setting a higher m results in a less dependent training set and testing 
point. We recommend using a small number of level sets, such as m = 3, as a high value 
of m can result in a large leave-out group size. 

The automated group construction process thus involves selecting the number of 
level sets, m, and the correlation matrix to use, Rprior or Rpost. For each i, we can associate 
m level sets with the m largest absolute correlations to ηi, and the union of those level 
sets forms Ii. As an illustration, we outline the automated group construction procedure 
in Algorithm 1. 

4. Approximation of LGOCV predictive density 

In this section, we will explore the process of approximating π(yi|y−Ii 
). The results are 

straightforward but tedious in implementation; thus, it is crucial to exercise caution to 
ensure that all potential numerical instabilities are accounted for. Through empirical 
testing, this new method has shown to be both more accurate and stable compared to the 
approach outlined in Rue et al. (2009), when Ii = i. 

We start by writing π(yi|y−Ii 
) as nested integrals, Z 

π(yi|y−Ii 
) = π(yi|θ , y−Ii 

)π(θ |y−Ii 
)dθ 

θ Z 
(6) 

π(yi|θ , y−Ii 
) = π(yi|ηi, θ)π(ηi|θ , y−Ii 

)dηi. (7) 

The integral (6) is computed by the numerical integration (Rue et al., 2009), and the 
integral (7) is computed by Gauss-Hermite quadratures (Liu and Pierce, 1994) as the 
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conditional posterior density π(ηi|θ , y−Ii 
) will be approximated by a Gaussian distribu-

tion. The key to the accuracy of (7) is that the likelihood, π(yi|ηi, θ), is known such that 
small approximation errors of π(ηi|θ , y−Ii 

) diminish due to the integration. The accu-
racy of (6) relies on the accuracy of (7) and the assumption that the removal of yIi 

does 
not have a dramatic impact on the posterior. 

Algorithm 1: Find groups for all data points 

1 Input: A correlation matrix choice R (posterior correlation is the default), 
Number of level sets m; 

2 Output: A list containing the groups for all data points; 
3 Calculate R from the model; 
4 N ← number of rows in R; 
5 groups ← initialize N empty lists; 
6 for i = 1 to N do 
7 r ← absolute values of the i-th row of R; 
8 ordered indices ← indices of r sorted by value in decreasing order; 
9 current absolute correlation ← 1; 

10 k ← 1 ; 
11 for j = 1 to m do 
12 while current absolute correlation == r[ordered indices[k]] do 
13 groups[i].append(ordered indices[k]); 
14 k ← k + 1; 
15 end 
16 current absolute correlation ← r[ordered indices[k]]; 
17 end 
18 end 
19 return groups; 

The computation of the nested integrals reduces to the computation of π(ηi|θ , y−Ii 
) 

and π(θ |y−Ii 
). We will approximate π(ηi|θ , y−Ii 

) by a Gaussian distribution, denoted 
by πG(ηi|θ , y−Ii 

), and π(θ |y−Ii 
) by correcting the approximation of π(θ |y) in Rue et al. 

(2009). We further improve the mean of πG(ηi|θ , y−Ii 
) using variational Bayes (Van 

Niekerk and Rue, 2024) in the implementation. In this section, we focus on the explana-
tion of computing πG(ηi|θ , y−Ii 

) and an approximation of π(θ |y−Ii 
). 

Computing πG(ηi|θ , y−Ii ) 

The mean and variance of πG(ηi|θ , y−Ii 
) can be obtained by 

µηi (θ , y−Ii 
) = Ai µ f (θ , y−Ii 

), 
(8)

σ
2 ) = AiQ−1 )AT 
ηi 
(θ , y−Ii f (θ , y−Ii i. 

The computation of πG( f |θ , y−Ii 
) requires the mode of π( f |θ , y−Ii 

) for each i at each 
confguration of θ , which is computationally expensive. With the mode at full data, we 
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use an approximation to avoid the optimization step, 

Q f (θ , y−Ii 
) ≈ Q̃ 

f (θ , y−Ii 
) = Q f (θ , y) − AT CIi (θ , y)AIi , (9)Ii 

µ f (θ , y−Ii 
) ≈ µ̃ f (θ , y−Ii 

) = Q̃ 
f (θ , y−Ii 

)−1(ATb(θ , y) − AT bIi (θ , y)), (10)Ii 

where AIi is a submatrix of A formed by rows of A, bIi (θ , y) is a subvector of b(θ , y), 
and CIi (θ , y) is a principal submatrix of C(θ , y). When the posterior is Gaussian, the 
approximation is exact as (9) and (10) defne the precision matrix and the mean of the 
posterior. It seems easy to obtain the moments using (8), but the decomposition of 
Q̃ 

f (θ , y−Ii 
) is too expensive. To avoid the decomposition of Q̃ 

f (θ , y−Ii 
), we use the lin-

ear relation η Ii 
= AIi f to map all the computation on f to η Ii 

. We compute Ση Ii 
(θ , y−Ii 

) 
and µ η Ii 

(θ , y−Ii 
) through Ση Ii 

(θ , y) and µ η Ii 
(θ , y) as shown in the Appendix A using 

a low rank representation, where Ση Ii 
(θ , y) is the posterior covariance matrix of η Ii 

and Ση Ii 
(θ , y−Ii 

) is the covariance matrix of η Ii 
with yIi 

left out. The computation of 
Ση Ii 

(θ , y) is non-trivial, especially when linear constraints are applied, which is demon-
strated in Appendix B. 

The approximation is more accurate when π(ηi|θ , y−Ii 
) is close to Gaussian. The 

Gaussianity of ηi|θ , y−Ii 
comes from three sources. Firstly, π(ηi|θ , y−Ii 

) is nearly Gaus-
sian, when ηi is connected to large amount of data (Rue et al., 2009). Secondly, π(ηi|θ , y−Ii 

) 
is dominated by the Gaussian prior, which happens when ηi is connected to very few 
data. Thirdly, the log-likelihood can be close to the log-likelihood of a Gaussian dis-
tribution, resulting in the Gaussianity of π(ηi|θ , y−Ii 

) due to the conjugacy. Thus, 
π(ηi|θ , y−Ii 

) is rarely far away from a Gaussian distribution. 

Approximating π(θ |y−Ii ) 

π(θ |y)To approximate π(θ |y−Ii 
), we use the relation,π(θ |y−Ii 

) ∝ ) , where we can
π(yIi 

|θ ,y−Ii 

approximate π(θ |y) at confgurations as in Rue et al. (2009). We need to computeR
π(yIi 

|θ , y−Ii 
) ≈ π(yIi 

|η Ii 
, θ )πG(η Ii 

|θ , y−Ii 
)dη Ii 

. A Laplace approximation can be ap-
plied to this integral, 

π(yIi 
|η I 
∗ 
i 
, θ)πG(η I 

∗ 
i 
|θ , y−Ii 

)
πLA(yIi 

|θ , y−Ii 
) = , (11)

πG(η∗ |θ , y)Ii 

where η∗ is the mode of πG(η
∗ |θ , y). Note that the correction of the hyperparameterIi Ii 

reuses πG(η Ii 
|θ , y−Ii 

) and πG(η Ii 
|θ , y). 

5. Simulations and Applications 

This section showcases two simulated examples and two real data applications. The code 
is available at https://github.com/zhedongliu/LGOCV. 

https://github.com/zhedongliu/LGOCV
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We start with a simulation that tests the approximation accuracy in a multilevel model 
with various response types. Following this, a time series forecasting simulation is pre-
sented. This allows LGOCV results with automatically constructed groups to be com-
pared to the LFOCV. We then delve into disease mapping, contrasting group construc-
tions derived from various strategies. Finally, we apply our methodology to intricate 
models using a large dataset, as documented by Lowe et al. (2021). For the construction 
of the leave-out group for LGOCV, we used Algorithm 1 in Section 3. The procedures 
detailed in Sections 3 and 4 have been integrated into R-INLA, ensuring that all compu-
tational tasks in this section are executed through R-INLA. 

Simulated Multilevel Model with Various Responses 

This example is a simulation that demonstrates the accuracy of the approximation de-
scribed in Section 4. The main purpose is to compare π(yi|y−Ii 

) computed using an 
approximation in Section 4 and the same quantity computed using MCMC. Further-
more, we use automatic group construction with the number of level sets equal to 1, 
corresponding to predicting a data point from a new class. 

We simulate data according to the following process. Initially, we simulate 10 class 
means, denoted as s, from a standard normal distribution. Next, we compute 100 linear 
predictors, ηi = µ + s j(i), where µ = log(10) and j(i) is a function mapping data index 
i to the group index j. For this function, we set j(i) = ⌈10 

i ⌉, where the ceiling function, 
⌈x⌉, rounds a number up to the nearest integer. We generate responses according to the 
linear predictor and one of three response types; Gaussian, binomial and exponential. 
The mean of the Gaussian response is ηi, and the standard deviation is 0.1. We generate 

1binomial responses with a success probability of −η j for 20 trials. The exponential
1+e

η jresponses are generated with a mean of e . 
We consider the model, 

log(τs) ∼ N(0,10−4), µ ∼ N(0,10−4), s j|τs ∼ N(0,τs), (12)
ηi = µ + s j, yi|ηi ∼ response model(ηi), 

where the second parameter of the Gaussian distribution is the precision, and the likeli-
hood is specifed according to the data generation process with the given response model. 

As a reference, we let the MCMC runs for 108 iterations, which makes the Monte 
Carlo errors negligible. The large size of MCMC samples is required because the pre-
dictive distributions are infuenced by the tails of π(ηi|θ , y−Ii 

). In Figure 2, (a), (c), and 
(d) show the data against its group index, which presents a clear group structure; (b), 
(d), and (e) show the comparison of π(yi|y−Ii 

) obtained from the approximations and 
MCMC. We use Rstan (Stan Development Team, 2022) for the MCMC. 
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Figure 2. Comparison of π(yi|y−Ii ) from approximations and MCMC. First column: y-axis 
shows response value, x-axis shows group index. Second column: y-axis shows LGOCV from 
proposed approximation, x-axis shows LGOCV from MCMC. 
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This example shows that the approximations are highly accurate. When the response 
is Gaussian, the approximation almost equals the MCMC results, where the main dif-
ference is due to MCMC sampling errors, as our approach is exact up to numerical 
integration in this case. Also, under both non-Gaussian cases, the results are close to the 
long-run MCMC results. 

Time Series Forecasting 

In this example, we will demonstrate how the automatic LGOCV method can measure 
the forecasting performance of a time series model, while LOOCV is not effective in 
doing so. 

We will frst simulate 2000 data points using the following procedure: We will simu-
late an AR(1) time series by using ui = 0.9ui−1 + εui , where εui follows a standard Gaus-
sian distribution. Next, we will compute linear predictors by calculating ηi = µ + ui, 
with µ set to 2. Finally, the Gaussian responses have mean ηi, and a standard deviation 
of 0.1. 

We ft a time series model on the simulated data: 

µ ∼ N(0,10−4), u ∼ N(0, Qu), 

ηi = µ + ui, yi|ηi ∼ N(ηi,100), 

where Qu is determined by an AR(1) model with the true parameters. 
The prediction task is k steps forward forecasting for k = {1,2, . . . ,10} using the true 

model. The natural cross-validation for these prediction tasks is LFOCV. To replicate the 
LFOCV, the group in LGOCV for testing point yi and k steps forward prediction includes 
y(i−k+1):n. We can compute LFOCV for every k, denoted by LFOCV(k). To make the 
training set similar to the data set, the last 500 data points will be used as testing points, 
which means i = {1501, . . .2000} in (1), and the quantity is averaged over 500 data 
points. We can also compute LGOCV using automatically constructed groups with the 
number of level sets, m = {1,2, . . . ,10}, denoted by LGOCV(m). In this setting, the 
automatically constructed group for a testing point yi with a number of level sets equal 
to m includes ymax(1,i−m+1):min(n,i+m−1). Also, LGOCV(1) is equivalent to LOOCV in 
this model. 

To compare LGOCV and LFOCV, we will ft a natural spline to have LFOCV(t) 
for t as a real number (see Figure 3 (a)) and map the number of level sets in LGOCV 
to the steps ahead in LFOCV (see Figure 3 (b)). We can see that LOOCV measures 
approximately 0.4 steps forward forecasting when the simplest prediction task is one 
step forward forecasting. LGOCV(2) represents roughly a one-step forward forecasting 
performance of the model. As the number of level sets increases in LGOCV, it represents 
more steps forward forecasting performance. Note that the specifc translation between 
the automatic LGOCV and LFOCV is only valid in this model and may not be applicable 
in other models. 
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(b) Correspondence between LGOCV and LFOCV

Figure 3. Comparison of Automatic LGOCV and LFOCV. LOOCV measures approximately 
0.4 steps forward forecasting. LGOCV(2) roughly represents a one-step forward forecasting 
performance. 

Disease Mapping 

In this example, we will present groups constructed by different automatic group con-
struction strategies. We will see the differences between those groups and get an idea to 
choose a proper group construction strategy. 

We applied a disease mapping model to data detailing cancer incidence by location 
(Besag, York and Mollie,´ 1991; Wakefeld, Best and Waller, 2000; Held et al., 2005). 
This dataset captures oral cavity cancer cases in Germany from 1986-1990 (Held et al., 
2005). The response yi indicates the cases in area i over fve years. The case count 
in each region is infuenced by its population and age distribution. The expected case 
count Ei in the region i is derived from its age distribution and population, ensuring 
∑i yi = ∑i Ei. Additionally, the covariate xi represents tobacco consumption in area i. 

We ft the following model on the data set: 

yi|ηi ∼ Poisson(Ei exp(ηi)) 
(13)

ηi = µ + frw(xi)+ ui + vi, 

where µ is an intercept, u is a spatially structured component, v is an unstructured com-
ponent (Krainski et al., 2018), and f rw is an intrinsic second-order random-walk model 
of the covariate xi (Rue and Held, 2005). 

In Figure 4, we illustrate groups formed through various automatic group construc-
tion strategies. The testing point is located in the black region, while the data in the 
group are located in grey areas. As seen in Figure 4 (a) and (b), Groups from Rprior 
focus solely on spatial effects. Groups from Rpost exhibit mostly strong spatial patterns, 
such as Figure 4 (c). Yet, some points, like in Figure 4 (d), indicate non-spatial patterns. 
This arises as all model components, including fxed and random effects, priors, and the 
response variable, are considered. 
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The spatial patterns in posterior groups may justify incorporating spatial effects into 
the model, given that data retains this pattern in correlation. In practice, groups from 
Rpost offer a more balanced representation. However, Rprior with selective effects resem-
ble those from manually defned groups. 

(a) Groups constructed by prior (spatial only) at location id:50

 

 

(b) Groups constructed by prior (spatial only) at location id:500

 

 

(c) Groups constructed by posterior at location id:50

 

 

(d) Groups constructed by posterior at location id:500

 

 

Figure 4. Groups by different automatic construction strategies. The testing point is located in 
the black region, and the data in the group are located in the grey regions. In (d), the group 
constructed by posteriors contains some non-spatial patterns. 

Dengue Risk in Brazil 

In this real-world example, we will demonstrate the scalability and adaptability of the 
automatic LGOCV method in a complex model structure and a large sample size. The 
automatically constructed model-based groups are consistent with the domain knowl-
edge that dengue disease is prevalent in summer. 
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We will repeat the variable selection process as shown in Lowe et al. (2021) using the 
automatic LGOCV. The model chosen by LGOCV is considered to have better predictive 
power for longer-range predictions, than those selected based on other criteria because 
the most informative data points for predicting the target are excluded from the training 
set. 

The models study the infuence of extreme hydrometeorological hazards on dengue 
risk, factoring in Brazil’s urbanization levels. Our dataset, with 127,224 samples repre-
senting 12,895,293 dengue cases, covers Brazil’s 558 microregions from January 2001 
to December 2019. Given the dataset’s magnitude and the model’s intricacy, LGOCV or 
LOOCV calculations require the approximation method detailed in Section 4. 

Data points include month, year, microregion, and state. The candidate covariates 
encompass the monthly average of daily minimum (Tmin) and maximum temperatures 
(Tmax), the palmer drought severity index (PDSI), the urbanization levels: overall (u), 
centered at high (u1), intermediate (u2), and more rural levels (u3) and the access to 
water supply: overall (w) and centered at high-frequency shortages (w1), intermediate 
(w2), and low-frequency shortages (w3). To preprocess these covariates’ specifcs, refer 
to Lowe (2021). 

The data generating model is chosen to be negative binomial, to account for overdis-
persion. The latent feld consists of a temporal component describing a state-specifc 
seasonality using a cyclic frst difference prior distribution and a spatial component de-
scribing year-specifc spatially unstructured and structured random effects using a mod-
ifed Besag-York-Mollie (BYM2) model with a scaled spatial component (Riebler et al., 
2016). The temporal component has replications for each state, and the spatial compo-
nent has replications for each year. We can express the base model using the INLA-style 
formula, 

y ∼ 1 + covariates + f(month, model = "rw1", replicate = state, cyclic = TRUE) 

+f(microregion, model = "bym2", replicate = year). 

In short, we write this model as y ∼ 1 + covariates + ft + fs. The number of parameters 
in this model is 21,567 with 127,224 observations for the full model. The appendix of 
Lowe et al. (2021) and its repository Lowe (2021) provide full details about the models 
and data. 

The model accounts for temporal effects with spatial replicates and spatial effects 
with temporal replicates, complicated by various constraints. Given its intricacy and 
the lack of a clear prediction task, crafting groups for LGOCV manually is challeng-
ing. Hence, utilizing our automatic group construction through posterior correlation is 
benefcial. For model comparisons, using the same groups across different models is 
recommended. The base model, which only incorporates structured components, is cho-
sen for group building. Most automatic groups cluster data from the same year, location, 
and nearby months to the testing points. Figure 5 displays the relative month frequencies 
in the group, given the testing points correspond to a specifc month. The chart suggests 
the frst half-year data better informs predictions. Even in July and November testing 
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points, the group frequently includes that data, aligning with the known prevalence of 
dengue during summer. See Figure 5 (c) and (d) for details. 

The results of model selection using deviance information criterion (DIC), LOOCV, 
and LGOCV (m = 2,3,4) are presented in Table 1. The candidate models are those 
referenced in Lowe (2021). To transform equation 1 into a loss function, we calculated 
its negative value. 

From Table 1 we note that LOOCV prefers the spatio-temporal model that incorpo-
rates access to water while the spatio-temporal model with urbanization as a covariate, 
is preferred by LGOCV. This result is interesting since we can conclude that the same 
model might not necessarily perform well for short- and longer-range prediction. The 
practitioner thus needs to decide what the goal of the modeling is, and then choose the 
model to be used accordingly. If we want to predict dengue risk for a new unobserved 
area or time point, it seems that urbanization has a better prediction ability than access to 
water. Note also that as we increase the number of level sets, we are defning a prediction 
target with an increased range, thus moving further away from LOOCV. 

Table 1. Comparative evaluation of models for predicting variable y based on various environ-
mental factors. This table presents the model selection results, including each model’s Deviance 
Information Criterion (DIC), LOOCV, and LGOCV scores. 
Note: We offset DIC by 826841.66, LOOCV by 3.2721, LGOCV (m = 2) by 3.314, LGOCV 
(m = 3) by 3.3763 and LGOCV (m = 4) by 3.4372. 

Index Model DIC LOOCV LGOCV 

(m = 2) (m = 3) (m = 4) 

1 y ∼ 1 + ft + fs 3615.38 0.0151 0.0158 0.0206 0.0270 

2 y ∼ 1 + Tmin + ft + fs 1562.96 0.0064 0.0067 0.0088 0.0098 

3 y ∼ 1 + Tmax + ft + fs 2228.73 0.0091 0.0098 0.0133 0.0163 

4 y ∼ 1 + PDSI + ft + fs 2167.12 0.0092 0.0095 0.0126 0.0184 

5 y ∼ 1 + PDSI + Tmin + ft + fs 160.43 0.0006 0.0006 0.0012 0.0023 

6 y ∼ 1 + PDSI + Tmax + ft + fs 900.65 0.0038 0.0038 0.0057 0.0084 

7 y ∼ 1 + PDSI + Tmin + PDSI ∗ u1 + u + ft + fs 38.21 0.0002 0* 0* 0* 

8 y ∼ 1 + PDSI + Tmin + PDSI ∗ u2 + u + ft + fs 39.13 0.0002 0* 0* 0* 

9 y ∼ 1 + PDSI + Tmin + PDSI ∗ u3 + u + ft + fs 28.64 0.0002 0* 0* 0* 

10 y ∼ 1 + PDSI + Tmin + PDSI ∗ w1 + w + ft + fs 6.68 0* 0.0005 0* 0.0014 

11 y ∼ 1 + PDSI + Tmin + PDSI ∗ w2 + w + ft + fs 0* 0* 0.0005 0* 0.0015 

12 y ∼ 1 + PDSI + Tmin + PDSI ∗ w3 + w + ft + fs 4.55 0* 0.0006 0* 0.0014 

https://826841.66
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(d) Groups for November data

Figure 5. Groups for testing points from a specifc month. y-axis: relative frequency, x-axis: 
month of data measurement in groups. The frst half-year data are more informative for pre-
diction. As shown in (c) and (d), even in July and November, the group often includes data 
consistent with the known summer prevalence of dengue. Note that dengue is prevalent in the 
summer months which are approximately November to February. 

6. Discussion 

An over-reliance on LOOCV to evaluate predictive capacity in general persists in statisti-
cal practice, despite concerns raised in studies such as Roberts et al. (2017); Vehtari et al. 
(2019). LOOCV can provide an evaluation of short-range predictive ability with well-
established asymptotics for some models. On the other hand, what can we do to evaluate 
the longer-range predictive ability of complex models? Various approaches for specifc 
models, such as time series or spatial models have been proposed, where custom CV 
procedures are designed to mimic a longer-range prediction task than that of LOOCV. 
We have introduced an automated approach for evaluating the longer-range prediction 
ability of any latent Gaussian model, namely LGOCV. LGOCV is designed to be ap-
plicable to all models that are latent Gaussian models, and thus provides a framework 
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for general longer-range predictive ability evaluation without the need for case-by-case 
considerations. Moreover, we propose a computationally effcient approach to calculate 
LGOCV scores and metrics based on the INLA methodology. We have shown that our 
approximate LGOCV implementation is almost exact when compared with the results 
from MCMC, albeit at a much lower computational cost. This enables practitioners to 
use the LGOCV approach for complex models and large data. 

Our approach is designed for latent Gaussian models and some ideas can thus be ex-
tended to the case of non-latent Gausian models with careful consideration of the com-
putational cost associated with this endeavor. LGOCV for LGMs is computationally 
effcient in INLA, since it is fully parallelizable by computing the necessary quantities 
only at the mode of the hyperparameters. For huge data (n > 106) however, the cost 
will be high since the cost increases linearly in n, albeit much lower than other avail-
able approaches. For huge data, performing CV on a subset or constructing the groups 
manually could be considered. Nonetheless, for LGMs, the proposed LGOCV could be 
considered as the most feasible approach for longer-range predictive ability evaluation. 

The choice of the number of level sets determine the prediction task and thus the de-
gree of independence between the leave-out group and the rest of the data. There is not 
a one-to-one correspondence between the number of level sets and the number of points 
to leave out as shown in the simulations and applications, although a higher number of 
level sets would imply a longer range for the prediction task, than a lower number. The 
choice of the number of level sets remains arbitrary since it is a user-defned parameter, 
we recommend a low number like m = 2 or m = 3 if there is no clear indication of what 
else m should be. There exists no optimal value of m in general, since it would imply dif-
ferent prediction tasks for different levels of dependency. In our applications, and those 
of others who have applied the LGOCV framework, it is shown that LGOCV provides 
the information we need to evaluate longer-range prediction ability, and complements 
the information from LOOCV. 

It is pertinent to note that the proposed LGOCV do not replace a custom CV strategy 
designed by modelers, tailored for specifc applications. We pose it as an alternative de-
fault strategy for longer-range prediction ability evaluation, that complements LOOCV 
in assessing the predictive ability of an LGM, while being computationally effcient and 
practical for real-world scenarios. 
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A. On the computation of ΣηIi 
(θ ,y−Ii ) and µηIi 

(θ ,y−Ii) 

In this section, we let Ii be I and drop θ to simplify the notation. We have a random 
vector η I|y ∼ N(µ η I 

(y), Ση I (y)), which can be viewed as a posterior distribution with� 

prior η I|y−I ∼ N(µ η (y−I), Ση (y−I)) and likelihood πG(yI|η I) ∝ exp − 1 
ηT

I C(yI)η I+2� 

b(yI)η I . Now, we need to use the posterior and the likelihood to obtain the prior. 

If Ση I (y) is full rank, we have Qη I 
(y) = Ση I (y)

−1 and bη I (y) = Qη I 
(y)µ η I 

(y). By 
conjugacy of Gaussian prior and Gaussian likelihood, Qη I 

(y−I) = Qη I 
(y) − C(yI) and 

bη I (y−I) = Qη I 
(y)µ η I 

(y) − b(yI). Then we have desired µ η I 
(y−I) and Ση I (y−I). 

If Ση I (y) is singular, we let η |y = BBzz|y, where B = V Λ with V containing eigen-
vectors corresponding to non-zero eigenvalues, Λ containing square root of non-zero 
eigenvalues on its diagonal, and z|y ∼ N(µ (y),I), where I is an identity matrix andz 
µ z(y) = BT

µ η I 
(y). By conjugacy, we have Qz(y−I) = I − BTC(yI)B and bz(y−I) = 

µ z(y) − BTb(yI). It is followed by µ z(y−I) = Qz(y−I)
−1 bz(y−I). Then mean and co-

variance of z|y−I is µ η (y−I) = Bµ (y−I), Ση (y−I) = BΣz(y−I)B
T .z 

B. On the computation of ΣηIi 
(θ ,y) and µηIi 

(θ ,y) with Linear 
Constraints 

We start by illustrating how to compute Ση Ii 
(θ , y) and µ η Ii 

(θ , y) without linear con-
straints. µ η Ii 

(θ , y) is simply obtained by µ η Ii 
(θ , y) = AIi µ f (θ , y). However, we never 

store large dense matrix like Q f (θ , y)−1. Thus, Ση Ii 
(θ , y) cannot be obtained by using 

matrix multiplication AIi Q f (θ , y)−1AT 
Ii 
. Instead, we compute Ση (θ , y) entry by entry 

and use the result to fll in entries of Ση Ii 
(θ , y). We compute Ση (θ , y)i, j by solving 

Q f (θ , y)x = Ai 

and Ση (θ , y)i, j = A j x. The computation is fast because A and Q f (θ , y) are sparse, and 
the factorization of Q f (θ , y) is reused. 

When linear constraints C f = e are applied on f , we have 

Σ f (θ , y) ∗ = Q f (θ , y)
−1 − Q f (θ , y)−1C

T(CQ f (θ , y)−1C
T)−1CQ f (θ , y)

−1 , 

µ f (θ , y) ∗ = µ f (θ , y) − Q f (θ , y)−1C
T(CQ f (θ , y)−1C

T)−1(Cµ f − e), 

where Σ f (θ , y)∗ and µ f (θ , y)
∗ are the mean and the covariance matrix after applying 

constraints (Rue and Held, 2005). Because µ f (θ , y)∗ , is always stored, the computa-
tion of µ η Ii 

(θ , y) is simple. We need to propagate the effects of linear constraints to 
Ση (θ , y)i, j. This is achieved by computing (Rue and Held, 2005) 

∗ = x − Q f (θ , y)−1C
T(CQ f (θ , y)−1C

T)−1Cx,x 

where x solves Q f (θ , y)x = Ai. Then Ση (θ , y)∗ i, j = A j x ∗ . 
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