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Leave-group-out cross-validation for latent
gaussian models

Zhedong Liu!, Janet Van Niekerk? and Havard Rue?

Abstract

Evaluating the predictive performance of a statistical model is commonly done using
cross-validation. Among the various methods, leave-one-out cross-validation (LOOCV)
is frequently used. Originally designed for exchangeable observations, LOOCV has
since been extended to other cases such as hierarchical models. However, it focuses
primarily on short-range prediction and may not fully capture long-range prediction sce-
narios. For structured hierarchical models, particularly those involving multiple random
effects, the concepts of short- and long-range predictions become less clear, which can
complicate the interpretation of LOOCV results. In this paper, we propose a comple-
mentary cross-validation framework specifically tailored for longer-range prediction in
latent Gaussian models, including those with structured random effects. Our approach
differs from LOOCYV by excluding a carefully constructed set from the training set, which
better emulates longer-range prediction conditions. Furthermore, we achieve compu-
tational efficiency by adjusting the full joint posterior for this modified cross-validation,
thus eliminating the need for model refitting. This method is implemented in the R-INLA
package (www.r-inla.org) and can be adapted to a variety of inferential frameworks.
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1. Introduction

1.1. Rationale and Background

Leave-one-out cross-validation (LOOCYV) (Stone, 1974) stands as a popular method to
evaluate a statistical model’s predictive performance, perform model selections, or esti-
mating some critical parameters in the model. The core concept of LOOCYV is elegantly
straightforward. Suppose we have data, y = {y;}, for i = 1,...,n, presumed to be in-
dependent and identically distributed (I.1.D.) samples from the true distribution 7z (y).
Our objective is to determine how well a fitted model can predict a new observation, ¥,
sampled from this true distribution. In the Bayesian context, we use the posterior pre-
dictive distribution 7(y|y) to predict ¥ sampled from 77 (y) as proposed by Geisser and
Eddy (1979). Using the logarithmic score (Gneiting and Raftery, 2007), we can compute
Ej[log w(¥|y)] as a metric for prediction ability.

Owing to the lack of mr(y), directly computing the expectation becomes infeasi-
ble. Nonetheless, since y; is an exchangeable sample from 77 (y), we can estimate this
expectation by evaluating

1 n
ULoocy = Y logm(yily_;),
i=1

where y; is the testing point and y_; is the training set, and y_; are all data except the ith
observation.

The informal interpretation of LOOCYV is that it mimics “using y to predict j”° by “us-
ing y_; to predict y;”. This intuitive interpretation is then used to justify, often implicitly,
the use of LOOCYV as a “default” way to evaluate predictive performance.

However, issues can arise in more complex statistical models where the dependency
in the model results in the data not being exchangeable (see Vehtari and Ojanen (2012)
for a complete discussion of cross-validation (CV) for several types of exchangeability);
we describe these kinds of models as “dependent” cases for the purpose of this paper. An
intuitive dependent case is a time series. Burman, Chow and Nolan (1994) proposed a
block CV method for dependent data from a stationary process, acknowledging the need
for a different approach to CV than LOOCV. McQuarrie and Tsai (1998) propose modi-
fied cross-validation (MCV) where dependent data chunks are removed together with the
relevant point to account for the dependence in a time series (and other dependent data
generating models). Bergmeir and Benitez (2012) investigated the properties of blocked
CV and other approaches for robust time series model evaluations (see also Bergmeir,
Hyndman and Koo (2018) for a study on k-fold CV), while Biirkner, Gabry and Ve-
htari (2020) proposed a leave-future-out CV strategy. Cerqueira, Torgo and Mozetic
(2020) investigated CV and holdout approaches for time series models and concluded
that the out-of-sample holdout procedure is more accurate for non-stationary processes
than LOOCV.

Besides time series, spatial dependence models come to mind for which Valavi et al.
(2018) proposed a buffering strategy by leaving out specific spatial points or areas and
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spatial and environmental blocking. Spatial blocking forms clusters of data points ac-
cording to spatial effects, and environmental blocking forms clusters using K-means
(Hartigan and Wong, 1979) on the covariates. Other examples of dependent cases are
longitudinal data for multiple subjects in a study (Saeb et al., 2017) and hierarchical
models (see Gelman et al. (1995) and Vehtari and Ojanen (2012, Section 5.1.4). Racine
(2000) proposed an hv-block CV approach for dependent data while Merkle, Furr and
Rabe-Hesketh (2019) considers a multilevel model and shows that marginal WAIC is
akin to LOOCYV. Roberts et al. (2017) advocate a block cross-validation, partitioning
ecological data based on inherent patterns, when the prediction task is not simply short-
range prediction. Rabinowicz and Rosset (2022) offers a modification to LOOCYV, ensur-
ing an unbiased measure of predictive performance given the correlation between new
and observed data, where the unbiasedness is in the sense of randomized both observed
and new data. We should note that an assumed prediction task determines the correlation
between new and observed data.

In dependent cases, LOOCYV can provide a restricted assessment of the models’ pre-
dictive performance since LOOCV cannot evaluate longer-range prediction. Even in
terms of short-range prediction, it is not clear what is short- or longer-range in depen-
dent models that are not purely temporal or spatial models where the range has a phys-
ical interpretation. We use the concepts of short-range and longer-range predictions,
acknowledging that these concepts can have overlapping meanings.

We thus propose a framework that emulates longer-range prediction scenarios, for
hierarchical models, by constructing non-random leave-out sets based on model-based
correlations. This can be viewed as a complementary approach to LOOCYV for evaluat-
ing predictive performance, providing additional informative insights of the predictive
ability for dependent cases.

1.2. The prediction task

The critical observation is that the meaning of “prediction” is not clearly defined when
we are far away from exchangeability, so that y are non-exchangeable samples of 77 (y).
7 (¥]y) lacks a unique definition in dependent cases as without a clear prediction task,
i.e., how we imagine a new data point, y, is generated given observed data y. This

ambiguity extends to the act of “using y to predict ¥’ as it is uncertain what our target,
¥, represents. To illustrate these concepts, let us discuss some more concrete examples.

Time-series model

Assume datay = {yi,y2,...,yr} is a time-series, observed sequentially at time 1,2,...,7.
The inherent prediction task is to predict future values, given the temporal nature of the
data. We can predict a new observation at k > 1 steps into the future by 7(yr«|y1,...,y7)-

In this example, the LOOCV will be computed from

ﬂ(yzlyl,---,yH,ym,-..,yT), t=1,....T,
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which is often referred to as interpolation or imputation of missing values, rather than a
prediction. However, the predictive performance of time series models is often assessed
through leave-future-out cross-validation (LFOCV) (Biirkner et al., 2020):

T—k

Z log T(y7/k|y1,-- -, y1),
T'=T,

where T’ starts from time Tp > 1 as we need some data to estimate the model.

The message from this example is that LOOCYV, when applied to such models, is
essentially evaluating short-range prediction performance rather than longer-range pre-
dictive performance.

We acknowledge two issues. First, the distinction between short and longer-range
prediction is not always clear-cut, leading to overlapping concepts. For example, a one-
step-ahead forecast leans more towards short range than a two-step-ahead prediction. In
contrast, a one-step-ahead forecast leans less towards short-range than a missing value
imputation. However, this does not deter our discussion. Secondly, while an ideal model
succeeds in all prediction tasks, real-world scenarios require us to settle for the definition
of the “best fit”. Consequently, our choice of evaluation should align with our specific
objectives.

Multilevel model

Figure 1 illustrates an example of a multilevel model. Consider observations of stu-
dent grades or performance. This data exhibits a hierarchical structure: students belong
to classes, classes reside within schools, and schools are nested within regions. This
hierarchical arrangement is significant because it introduces correlated random effects
attributed to the class, school, and region levels, substantially deviating from the ex-
changeable case.
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Figure 1. A nested multilevel model.

Given such a model, the prediction task becomes ambiguous. Are we aiming to pre-
dict the performance of an unobserved student from an observed class? Or are we trying
to predict the performance of an unobserved student in an unobserved class, school, or
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even region? This difficulty mirrors the challenges in defining asymptotic regimes for
these models. As students, classes, schools, and regions can grow indefinitely in various
ways, it is unclear whether one of such choices is the most reasonable.

To evaluate predictive performance within this context, users must first explicitly
define their prediction task and then evaluate the model according to this definition.
It should be noted that applying LOOCV would evaluate the prediction of individual
students within observed classes. In our view, this mimics more short-range prediction
rather than longer-range prediction, and another framework is needed to quantify the
predictive ability for a new student in a new class in a new school in a new region, for
example. Our proposal provides some insight into this kind of prediction task.

1.3. LGOCV: Complementing LOOCYV for dependent cases

Our discussions illuminate an important insight: when dealing with models that lead to
non-exchangeable data, the prediction task implicitly defined through LOOCV may be
less appropriate, as it leans more towards assessing imputing qualities and short range
predictions than predictive performance for longer range as is usually implied by “out-
of-sample” prediction. This prompts the question: What is a suitable approach moving
forward?

One observation is the absence of a “one size fits all” solution. Each model may
possess a natural prediction task-or several-based on its intended application. Thus,
for a specific assessment of predictive performance, we need to define these prediction
tasks explicitly. One can then evaluate distinct predictive performance metrics using our
proposed leave-group-out cross-validation (LGOCV):

1 n
uLGocy = Y log(x(yily_;,))- (D
i=1

Here, the group (denoted by I;) is an index set including i. This configuration facili-
tates that the pair (y;,y ;) mimics a specified prediction task, with y ; being the data
subset excluding the data indexed by /;. In a multilevel model, as depicted in Figure 1,
predicting a student’s grade from an unseen class necessitates that /; includes i and all
observations from student i’s class. However, more complex models, such as models
containing both time series and hierarchical elements, pose challenges when defining a
natural prediction task. Therefore, even in complex cases, LOOCYV is often applied for
its simplicity-even if it leans more towards imputation or short-range prediction.
Developing a framework that evaluates a model’s longer-range prediction like the
proposed LGOCYV, necessitates the construction of the leave-out group /; for each dat-
apoint y;. Our approach constructs a model-based group, I;, for each i by using the
prior or posterior correlation among the set of linear predictors. Though we will delve
into the construction of /; in Section 3, an initial understanding is that /; comprises the
data points that correspond to the linear predictors that are most informative for pre-
dicting the testing linear predictor, and thus the testing point, y;. This set ensures that
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our LGOCYV focuses less on short-range prediction (interpolation) and more on longer-
range prediction than LOOCV. In other words, LGOCYV tests the model on more difficult
prediction tasks since the most influential points are removed together with the testing
point, instead of some arbitrary (possibly uncorrelated) point(s). The user needs to only
provide a number that indicates the “degree of the independence” between the predic-
tion point and the rest of the data”, and we compute these groups for each datapoint in an
automated way. In various practical examples, we will show how this model-based pro-
cedure produces reasonable groups. Advanced spatial examples applying the proposed
method are presented by Adin et al. (2024). For a simple time-series example, our new
approach will correspond to evaluating 7T(y;|y1, ..., Yr—ksYitk,---,y7), for fixed k > 1.
This corresponds to removing a sequence of data with length 2k — 1, to predict the cen-
tral one. As we see, this task mimics a longer-range prediction task. Our interpretation
is that LGOCYV quantifies the model’s ability to predict longer-range more appropriately
than LOOCYV, when k > 1, and is similar to the cross-validation procedure proposed by
Burman et al. (1994) for stationary processes.

There are two key challenges to address to make our proposal practical. Firstly,
we must quantify the information contributed by one data point in predicting another;
this is crucial for the group construction. Secondly, we face the computational task of
evaluating up gocv given a set of groups. The naive computation of LGOCYV by fitting
models across all potential training sets and evaluating their utility against correspond-
ing testing points is computationally infeasible, especially given the resource-demanding
nature of modern statistical models. However, these challenges can be handled elegantly
within the framework of latent Gaussian models (LGMs) combined with the integrated
nested Laplace approximation (INLA) inference, as detailed in Rue et al. (2009, 2017);
Van Niekerk and Rue (2024); Van Niekerk et al. (2023). Throughout this paper, we
will assume that our model is an LGM. We will discuss how to integrate the automatic
group construction and the fast computation of urgocy using the INLA framework.
Notably, our proposed methodology has been incorporated into the R-INLA package
(www.rinla.org), extending its applicability across all LGMs supported by R-INLA.

1.4. Theoretical aspects

Cross-validation (CV), particularly LOOCY, is frequently considered as an estimator of
E;[log m(3|y)] or Ejy[log m(3]y)]. The first expectation describes the generalized predic-
tive performance given a specific training set, while the second expectation describes the
generalized predictive performance averaged over different identically distributed train-
ing sets. These expectations can be evaluated when assuming the existence of the joint
density 77 (¥,y), representing the true data generation process. Under the assumption of
exchangeability and some regularity conditions on the model, the Bernstein-Von-Mises
theorem states that log 7(¥|y) converges to a random variable irrelevant to y. Conse-
quently, E[logm(y|y)] and E5y[log (J|y)] become equivalent in the limit. If we further
assume that j is sampled from the same distribution as all the training data, LOOCV
is an asymptotically unbiased estimator of the expectations. Commonly used informa-
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tion criteria, such as AIC (Akaike, 1973), WAIC (Watanabe, 2010), are asymptotically
equivalent to LOOCYV in fully exchangeable cases. This type of analysis is prevalent in
the literature with various settings (Stone, 1974, 1977; Yang, 2007; Shao, 1993).

However, a similar analysis does not hold for dependent cases in general. Firstly,
the existence of different prediction tasks means that both the model prediction, 7(J|y),
and the true data generation process, 77 (J|y), are not uniquely defined as discussed
in Section 1.2. Secondly, the asymptotic scheme is not uniquely defined, even with a
specific prediction task. For example, in a temporal model where datay = {y;,y2,...,yn}
is a time-series, observed at time t; < 1, < --- < t, and we denote the last time step as 7.
Several meanings of of n — oo can be considered:

e T — o andt; —t_; is a constant
e t;—ti_1 — 0and T is a constant
* ti—tig —0and T — oo with T(f; — ;1) fixed

These scenarios correspond to observing more future data and having higher sample
rates within a time frame. As mentioned in Section 1.2, multilevel data can also have
various asymptotic regimes. Thirdly, if the data generation process is not stationary,
the model will not converge under certain asymptotic regimes, which differentiate Ey
[logm(§]y)] from Ejy[log (F|y)] even in asymptotic scenarios. These points highlight
that the estimand of CV is not uniquely defined in dependent cases, preventing the es-
tablishment of an asymptotic analysis framework.

From the perspective of CV, it is also inappropriate to consider it an estimator since
each summand in CV should be viewed as a sample from different distributions due to
the relevance of data indexes in dependent cases. For example, if we compute LOOCYV in
a time series. Each y, is sampled from a different conditional distribution 77 (y,|y_,) and
thus the average %Zthl logm(y,|y_,) cannot be considered as an estimator in general.
Therefore, it is more reasonable to view CV as a predictive measurement rather than
an estimator of an expectation. This perspective allows us to interpret the proposed
LGOCYV as the averaged predictive performance for similar prediction tasks, created
systematically by the model.

While the proposal of Merkle et al. (2019) for multilevel model demonstrates that
marginal WAIC is akin to LOOCYV, we note that conditional WAIC aligns with LGOCY,
where a hierarchical level, such as a school, defines the groups. The h-block CV of
Burman et al. (1994) is a special case of LGOCYV for a stationery model. LFOCV pro-
posed by Biirkner et al. (2020) is similar to LGOCV as shown in Section 5. The spatial
buffering proposed by (Valavi et al., 2018) ensures that no test data is spatially next to
any training data, and is a special case of LGOCYV for model with only spatial effects.
LGOCYV this provides a framework where no training data is placed next to the test data
in terms of the entire model, and not just specific components thereof.



128 Leave-group-out cross-validation for latent gaussian models

1.5. Plan of paper

We propose the model-based LGOCYV to evaluate longer-range prediction performance
for latent Gaussian models, as a special case of a hierarchical model. Complementing
this, we introduce a computational method to approximate uy gocy without model refit-
ting, which is crucial for practical implementation of our proposal. Our computational
technique also facilitates the calculation of up gocy with user-specified groups.

Section 2 introduces LGMs and explains how they can be efficiently inferred us-
ing INLA. In Section 3, we discuss the model-based group construction method for
LGMs. This method can be implemented in two ways: by using the prior correlation
matrix or the posterior correlation matrix of the latent linear predictors. In Section 4,
we demonstrate how to approximate the LGOCYV predictive density. Finally, in Section
5, we compare the approximated LGOCV with the exact LGOCV computed by Markov
chain Monte Carlo (MCMC) and present some applications. We conclude with a general
discussion in Section 6.

2. Latent Gaussian models

This section briefly introduces LGMs, as detailed in Rue et al. (2009, 2017); Van Niekerk
and Rue (2024); Van Niekerk et al. (2023), since the model-based group construction and
fast approximations rely on them. The LGMs can be formulated by

yilni, 0 ~ n(yi|n;, ),

2
n=Af, £|6~N(0,Ps(8)), 6~n(6). @

In LGMs, each y; is independent conditioned on its corresponding linear predictor 7;,
and hyperparameters 6; 1) is a linear combination of f, which is assigned with a Gaus-
sian prior with zero mean and a precision matrix parameterized by 0; A is the design
matrix mapping f to n; () is a prior density of hyperparameters. It is worth mention-
ing that the prior precision matrix P¢(@) is very sparse, which is leveraged to speed up
the inference.

The model is quite general because f can combine many modeling components,
including linear model, spatial components, temporal components, spline components,
etc (Wang, Yue and Faraway, 2018; Krainski et al., 2018; Gémez-Rubio, 2020). It is
also common with linear constraints on the latent effects f (Rue and Held, 2005).

We can approximate 7(f]0,y) and 7(0]y) at some configurations, 0...0;. The
configurations are located around the mode of 7(0]y), denoted by 0%, for numerical
integration. Approximations of 7(1|0,y) are computed using the linear relation, N =
Af. The Gaussian approximation of 7(f]0,y) plays an essential role, which is outlined
as follows.

We have 7(f|0,y) for a given 0,

w(£16.3) <exp { = L7Ps(6)f + Y log(xrin.0)) ). @
i=1
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whose mode is 1 £(0,y). The Gaussian approximation of 7(f|8,y) is

%o(f10.5) <exp{ - 17 (Py(0) + ACOYAS +ABONS ).

In (4), b;(0,y) = gi(n) — g/ (n7)n/, and C(8,y) is a diagonal matrix with C;(0,y) =
—g; (n/), where gi(n;) = log(7(yi|n;,0)) and n; = A;pt ;(6,y) with A; being ith row of
A. The Gaussian approximation is denoted by,

fly,0 ~N(1z(0,y),0¢(6,y)), (5)

where p1,(0,y) = Q¢(0,y) 'A'b(0,y) and Q((0,y) = P£(8)+A'C(8,y)A are the ap-
proximated posterior mean and precision matrix of f given 6.

3. Model-based Group Construction

The primary feature of our proposed group construction is that it requires a choice of
correlation matrix (prior or posterior) for the linear predictors, and a single mandatory
parameter to adjust the difficulty of the prediction task. This parameter is termed “the
number of level sets”. It can be interpreted as the strength of the non-dependence be-
tween the group to leave out and the rest of the data. A higher value would thus ensure
that the leave-out group is more independent from the rest of the data, than a lower value.
A higher indpeendnece between the leave-out data and the rest of the data simluates a
more difficult prediction task for the model. Based on this value and the correlation ma-
trix choice, all other processes are automated. In a multivariate Gaussian distribution,
we can quantify the information provided by a data point to predict another data point
by the variance reduction of the conditional distribution, and the variance reduction is
a function of their correlation coefficient. To elaborate, if X and Y are both Gaussian
random variables, the variance reduction resulting from knowing X when predicting ¥
equates to G}% p?, where O'Y2 is the marginal variance of Y and p is the correlation between
XandY.

In LGMs, the linear predictors, 1), represent the underlining data generation process
of data in (2). The linear predictors are designed to have a Gaussian prior and approx-
imated to be Gaussian in posterior given @ therefore, we can use the absolute value of
the correlation matrix of 1 to represent the information provided by one data point to
predict another data point. We evaluate those correlation matrices at the mode of 7(0|y),
denoted by @*. Then, we have correlation matrices of N derived from the prior preci-
sion matrix, P¢(8"), and the posterior precision matrix, Q(8",y). We call the former
one prior correlation matrix, denoted by Ryior, and the latter one posterior correlation
matrix, denoted by R,o5. Note that the correlation matrices are not fully evaluated and
stored to avoid computational burden as they are dense and large; thus, care has to be
applied to the implementation to make it feasible. The group would vary with 8. We use
0" because it has the highest weight in the posterior. This preference arises because we
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frequently employ non-informative priors for hyperparameters. This approach ensures
that our focus remains on evidence from the data rather than on arbitrary assumptions
about hyperparameters.

Manually constructed groups are often based on prior knowledge and some struc-
tured effects, represented by f. To imitate this process, we can compute the correlation
matrix from a submatrix of P f(O). The correlation matrix, Rpyior, derived from the sub-
matrix of the prior precision matrix, is a correlation matrix conditioning on those unse-
lected effects. The groups constructed using R0 are viewed to be solely user-defined
in the way that it only depends on the priors and not on the data. In some situations
this could be motivated, but in general we recommend using Rpos to construct groups
because the data will be informative to determine the importance of each effect.

When using a correlation matrix R, it is natural to select a fixed number of 77; most
correlated to 1; and include their index in the group ;. However, this approach can be
problematic as some linear predictors may have identical absolute correlations to 7;, e.g.,
in a model with only intercept, all the linear predictors are correlated to each other with
correlation 1. Instead, we include all indices of 1;’s with identical absolute correlations
to 1); in /; if one of them is included. We define a level set as all 1;’s with the same
absolute correlation to 1); and determine the group size based on the number of level
sets, denoted as m. Setting a higher m results in a less dependent training set and testing
point. We recommend using a small number of level sets, such as m = 3, as a high value
of m can result in a large leave-out group size.

The automated group construction process thus involves selecting the number of
level sets, m, and the correlation matrix to use, Ryrior O Rpyost. For each i, we can associate
m level sets with the m largest absolute correlations to 1;, and the union of those level
sets forms /;. As an illustration, we outline the automated group construction procedure
in Algorithm 1.

4. Approximation of LGOCV predictive density

In this section, we will explore the process of approximating 7(y;|y_;.). The results are
straightforward but tedious in implementation; thus, it is crucial to exercise caution to
ensure that all potential numerical instabilities are accounted for. Through empirical
testing, this new method has shown to be both more accurate and stable compared to the
approach outlined in Rue et al. (2009), when [; = i.

We start by writing 7(y;[y_; ) as nested integrals,

wily ) = [ 7((8.y_,)7(Bly ;)d0 ©
7116,y ;) = [ 7(ulm;.0)x(nl8.y ;). ™

The integral (6) is computed by the numerical integration (Rue et al., 2009), and the
integral (7) is computed by Gauss-Hermite quadratures (Liu and Pierce, 1994) as the



Zhedong Liu, Janet Van Niekerk and Havard Rue 131

conditional posterior density 7(1,;/0,y_;) will be approximated by a Gaussian distribu-
tion. The key to the accuracy of (7) is that the likelihood, 7(y;|n;, @), is known such that
small approximation errors of 7£(1;/6,y_;) diminish due to the integration. The accu-
racy of (6) relies on the accuracy of (7) and the assumption that the removal of y; does
not have a dramatic impact on the posterior.

Algorithm 1: Find groups for all data points

1 Input: A correlation matrix choice R (posterior correlation is the default),
Number of level sets m;

2 Output: A list containing the groups for all data points;

3 Calculate R from the model;

4 N < number of rows in R;

5 groups < initialize N empty lists;

6 fori=1toN do

7 r < absolute values of the i-th row of R;
8 ordered indices < indices of r sorted by value in decreasing order;
9 current absolute correlation < 1;
10 k+1;
11 for j=1tomdo
12 while current absolute correlation == r|ordered indices[k]] do
13 groups[i].append(ordered indices[k]);
14 k+—k+1;
15 end
16 current absolute correlation <— rordered indices|[k]];
17 end
18 end

19 return groups;

The computation of the nested integrals reduces to the computation of 7(1;/0,y_;)
and 7(@|y_;). We will approximate 7z(7;/0,y_;) by a Gaussian distribution, denoted
by 7(n:|@,y_;.), and (0@|y_; ) by correcting the approximation of 7£(@|y) in Rue et al.
(2009). We further improve the mean of 75 (n;|@,y_;) using variational Bayes (Van
Niekerk and Rue, 2024) in the implementation. In this section, we focus on the explana-
tion of computing 76(n;|@,y_;,) and an approximation of 7z(0[y_;).

Computing 7g(n:6,y_,,)

The mean and variance of 75(1;|@,y_;,) can be obtained by
Hni(0,y_) =Aips(0,y_;),
0;,(0,y_1) :AiQ;I(B,y,,i)A;.

The computation of 7g(f|6,y_; ) requires the mode of 7(f[@,y_; ) for each i at each
configuration of @, which is computationally expensive. With the mode at full data, we

®)
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use an approximation to avoid the optimization step,

Qf(evyfl,-) ~ Qf(evyfl,-) = Qf(evy) _A;icli(eay)AIia )]
l"’f(eay—l,») ~ ﬂ'f(eayfl,-) = Qf(ea)’fl,-)il(ATb(eJ) _A;ibli(67y))7 (10)

where Ay, is a submatrix of A formed by rows of A, b;,(0,y) is a subvector of b(0,y),
and C;,(0,y) is a principal submatrix of C(0,y). When the posterior is Gaussian, the
approximation is exact as (9) and (10) define the precision matrix and the mean of the
posterior. It seems easy to obtain the moments using (8), but the decomposition of
0 +(0,y_;,) is too expensive. To avoid the decomposition of 0 +(0,y_;,), we use the lin-
ear relation 1), = Ay, f to map all the computation on f to 1);,. We compute Ly, (6,y_;)
and K, (6,y_;,) through Xy, (6,y) and K, (8,y) as shown in the Appendix A using
a low rank representation, where Xy 1[_(9, y) is the posterior covariance matrix of 1,
and Xy ) (6,y_y,) is the covariance matrix of 1, with y, left out. The computation of
Iy . (8,y) is non-trivial, especially when linear constraints are applied, which is demon-
strated in Appendix B.

The approximation is more accurate when 7(7;/@,y_, ) is close to Gaussian. The
Gaussianity of 17;/6,y_; comes from three sources. Firstly, 7£(1;|0,y_,) is nearly Gaus-
sian, when 7; is connected to large amount of data (Rue et al., 2009). Secondly, 7(n;|6,y_;,)
is dominated by the Gaussian prior, which happens when 1; is connected to very few
data. Thirdly, the log-likelihood can be close to the log-likelihood of a Gaussian dis-
tribution, resulting in the Gaussianity of 7(n;|@,y_;) due to the conjugacy. Thus,
7(n:|6,y_,,) is rarely far away from a Gaussian distribution.

Approximating (0|y_;.)

7(6ly)
”(YII- ‘9»}'—1,-) ’
approximate 7m(@|y) at configurations as in Rue et al. (2009). We need to compute
7(y,18. ;) ~ [ 7(y;|1;.0)7:(1,16.y_;)dn, A Laplace approximation can be ap-
plied to this integral,

To approximate 7(@]y_; ), we use the relation,7(0]y_; ) o where we can

ﬂ’-(yl,'|n>1k,-7 G)WG(nmea)LIi)
nG(N710,y)

A (y,10,y_;) = ; an

where 17, is the mode of 7G(17|0,y). Note that the correction of the hyperparameter
reuses 7G(N,|0,y_;) and (N, [6,y).
5. Simulations and Applications

This section showcases two simulated examples and two real data applications. The code
is available at https://github.com/zhedongliu/LGOCV.
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We start with a simulation that tests the approximation accuracy in a multilevel model
with various response types. Following this, a time series forecasting simulation is pre-
sented. This allows LGOCYV results with automatically constructed groups to be com-
pared to the LFOCV. We then delve into disease mapping, contrasting group construc-
tions derived from various strategies. Finally, we apply our methodology to intricate
models using a large dataset, as documented by Lowe et al. (2021). For the construction
of the leave-out group for LGOCYV, we used Algorithm 1 in Section 3. The procedures
detailed in Sections 3 and 4 have been integrated into R-INLA, ensuring that all compu-
tational tasks in this section are executed through R-INLA.

Simulated Multilevel Model with Various Responses

This example is a simulation that demonstrates the accuracy of the approximation de-
scribed in Section 4. The main purpose is to compare 7(y;[y_;) computed using an
approximation in Section 4 and the same quantity computed using MCMC. Further-
more, we use automatic group construction with the number of level sets equal to 1,
corresponding to predicting a data point from a new class.

We simulate data according to the following process. Initially, we simulate 10 class
means, denoted as s, from a standard normal distribution. Next, we compute 100 linear
predictors, 1; = U +5(;), where yt = log(10) and j(i) is a function mapping data index
i to the group index j. For this function, we set j(i) = [5], where the ceiling function,
[x], rounds a number up to the nearest integer. We generate responses according to the
linear predictor and one of three response types; Gaussian, binomial and exponential.
The mean of the Gaussian response is 1);, and the standard deviation is 0.1. We generate

binomial responses with a success probability of 1+e1*"/' for 20 trials. The exponential

responses are generated with a mean of e/,
‘We consider the model,

IOg(TS) NN(0?10_4)> u NN(0710_4)7 S]'|T3 NN(()?TS)v

(12)
ni =M +sj, Yyilni ~ response model(n;),

where the second parameter of the Gaussian distribution is the precision, and the likeli-
hood is specified according to the data generation process with the given response model.

As a reference, we let the MCMC runs for 108 iterations, which makes the Monte
Carlo errors negligible. The large size of MCMC samples is required because the pre-
dictive distributions are influenced by the tails of 7£(1;|6,y_; ). In Figure 2, (a), (c), and
(d) show the data against its group index, which presents a clear group structure; (b),
(d), and (e) show the comparison of 7(y;|y_ I,-) obtained from the approximations and
MCMC. We use Rstan (Stan Development Team, 2022) for the MCMC.
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(a) Gaussian response (b) Comparison for Gaussian response
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Figure 2. Comparison of ﬂ(y,-|y71i) Jfrom approximations and MCMC. First column: y-axis
shows response value, x-axis shows group index. Second column: y-axis shows LGOCV from
proposed approximation, x-axis shows LGOCYV from MCMC.
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This example shows that the approximations are highly accurate. When the response
is Gaussian, the approximation almost equals the MCMC results, where the main dif-
ference is due to MCMC sampling errors, as our approach is exact up to numerical
integration in this case. Also, under both non-Gaussian cases, the results are close to the
long-run MCMC results.

Time Series Forecasting

In this example, we will demonstrate how the automatic LGOCV method can measure
the forecasting performance of a time series model, while LOOCYV is not effective in
doing so.

We will first simulate 2000 data points using the following procedure: We will simu-
late an AR(1) time series by using u; = 0.9u;_1 + &,,, where g,, follows a standard Gaus-
sian distribution. Next, we will compute linear predictors by calculating 1n; = u + u;,
with u set to 2. Finally, the Gaussian responses have mean 7);, and a standard deviation
of 0.1.

We fit a time series model on the simulated data:

u~N(0,107%), u~N(0,Q,),
ni=W+u;, yi|n:i ~N(n;,100),

where @, is determined by an AR(1) model with the true parameters.

The prediction task is k steps forward forecasting for k = {1,2,..., 10} using the true
model. The natural cross-validation for these prediction tasks is LFOCV. To replicate the
LFOCY, the group in LGOCYV for testing point y; and k steps forward prediction includes
Y(i—k+1):m- We can compute LFOCV for every k, denoted by LFOCV (k). To make the
training set similar to the data set, the last 500 data points will be used as testing points,
which means i = {1501,...2000} in (1), and the quantity is averaged over 500 data
points. We can also compute LGOCV using automatically constructed groups with the
number of level sets, m = {1,2,...,10}, denoted by LGOCV(m). In this setting, the
automatically constructed group for a testing point y; with a number of level sets equal
to m includes Y (1,i—m+1):min )- Also, LGOCV(1) is equivalent to LOOCV in
this model.

To compare LGOCV and LFOCYV, we will fit a natural spline to have LFOCV(t)
for ¢ as a real number (see Figure 3 (a)) and map the number of level sets in LGOCV
to the steps ahead in LFOCV (see Figure 3 (b)). We can see that LOOCV measures
approximately 0.4 steps forward forecasting when the simplest prediction task is one
step forward forecasting. LGOCV (2) represents roughly a one-step forward forecasting
performance of the model. As the number of level sets increases in LGOCY, it represents
more steps forward forecasting performance. Note that the specific translation between
the automatic LGOCYV and LFOCYV is only valid in this model and may not be applicable
in other models.

n,i+m—1
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(a) A natural spline fitted on LFOCV (b) Correspondence between LGOCV and LFOCV
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Figure 3. Comparison of Automatic LGOCV and LFOCV. LOOCV measures approximately
0.4 steps forward forecasting. LGOCV(2) roughly represents a one-step forward forecasting
performance.

Disease Mapping

In this example, we will present groups constructed by different automatic group con-
struction strategies. We will see the differences between those groups and get an idea to
choose a proper group construction strategy.

We applied a disease mapping model to data detailing cancer incidence by location
(Besag, York and Molli€, 1991; Wakefield, Best and Waller, 2000; Held et al., 2005).
This dataset captures oral cavity cancer cases in Germany from 1986-1990 (Held et al.,
2005). The response y; indicates the cases in area i over five years. The case count
in each region is influenced by its population and age distribution. The expected case
count E; in the region i is derived from its age distribution and population, ensuring
Y. vi=1Y,E;. Additionally, the covariate x; represents tobacco consumption in area i.

We fit the following model on the data set:

yi|n: ~ Poisson(E;exp (1n;))

13
Ni = U+ frw(xi) +ui +vi, (13

where U is an intercept, u is a spatially structured component, v is an unstructured com-
ponent (Krainski et al., 2018), and f,,, is an intrinsic second-order random-walk model
of the covariate x; (Rue and Held, 2005).

In Figure 4, we illustrate groups formed through various automatic group construc-
tion strategies. The testing point is located in the black region, while the data in the
group are located in grey areas. As seen in Figure 4 (a) and (b), Groups from Ryyior
focus solely on spatial effects. Groups from Ry, exhibit mostly strong spatial patterns,
such as Figure 4 (c). Yet, some points, like in Figure 4 (d), indicate non-spatial patterns.
This arises as all model components, including fixed and random effects, priors, and the
response variable, are considered.
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The spatial patterns in posterior groups may justify incorporating spatial effects into
the model, given that data retains this pattern in correlation. In practice, groups from
Rpos; offer a more balanced representation. However, Rpyior With selective effects resem-
ble those from manually defined groups.

(a) Groups constructed by prior (spatial only) at location id:50 (b) Groups constructed by prior (spatial only) at location id:500
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Figure 4. Groups by different automatic construction strategies. The testing point is located in
the black region, and the data in the group are located in the grey regions. In (d), the group
constructed by posteriors contains some non-spatial patterns.

Dengue Risk in Brazil

In this real-world example, we will demonstrate the scalability and adaptability of the
automatic LGOCV method in a complex model structure and a large sample size. The
automatically constructed model-based groups are consistent with the domain knowl-
edge that dengue disease is prevalent in summer.
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We will repeat the variable selection process as shown in Lowe et al. (2021) using the
automatic LGOCYV. The model chosen by LGOCYV is considered to have better predictive
power for longer-range predictions, than those selected based on other criteria because
the most informative data points for predicting the target are excluded from the training
set.

The models study the influence of extreme hydrometeorological hazards on dengue
risk, factoring in Brazil’s urbanization levels. Our dataset, with 127,224 samples repre-
senting 12,895,293 dengue cases, covers Brazil’s 558 microregions from January 2001
to December 2019. Given the dataset’s magnitude and the model’s intricacy, LGOCYV or
LOOCYV calculations require the approximation method detailed in Section 4.

Data points include month, year, microregion, and state. The candidate covariates
encompass the monthly average of daily minimum (7;,;,) and maximum temperatures
(Thax), the palmer drought severity index (PDSI), the urbanization levels: overall (u),
centered at high (1)), intermediate (1), and more rural levels (#3) and the access to
water supply: overall (w) and centered at high-frequency shortages (wy), intermediate
(wy), and low-frequency shortages (w3). To preprocess these covariates’ specifics, refer
to Lowe (2021).

The data generating model is chosen to be negative binomial, to account for overdis-
persion. The latent field consists of a temporal component describing a state-specific
seasonality using a cyclic first difference prior distribution and a spatial component de-
scribing year-specific spatially unstructured and structured random effects using a mod-
ified Besag-York-Mollie (BYM2) model with a scaled spatial component (Riebler et al.,
2016). The temporal component has replications for each state, and the spatial compo-
nent has replications for each year. We can express the base model using the INLA-style
formula,

y~1l+covariates+ f (month, model="rwl", replicate=state, cyclic=TRUE)

+f (microregion, model="bym2", replicate=year).

In short, we write this model as y ~ 1 4 covariates + f; + f;. The number of parameters
in this model is 21,567 with 127,224 observations for the full model. The appendix of
Lowe et al. (2021) and its repository Lowe (2021) provide full details about the models
and data.

The model accounts for temporal effects with spatial replicates and spatial effects
with temporal replicates, complicated by various constraints. Given its intricacy and
the lack of a clear prediction task, crafting groups for LGOCV manually is challeng-
ing. Hence, utilizing our automatic group construction through posterior correlation is
beneficial. For model comparisons, using the same groups across different models is
recommended. The base model, which only incorporates structured components, is cho-
sen for group building. Most automatic groups cluster data from the same year, location,
and nearby months to the testing points. Figure 5 displays the relative month frequencies
in the group, given the testing points correspond to a specific month. The chart suggests
the first half-year data better informs predictions. Even in July and November testing



Zhedong Liu, Janet Van Niekerk and Havard Rue 139

points, the group frequently includes that data, aligning with the known prevalence of
dengue during summer. See Figure 5 (c) and (d) for details.

The results of model selection using deviance information criterion (DIC), LOOCY,
and LGOCV (m = 2,3,4) are presented in Table 1. The candidate models are those
referenced in Lowe (2021). To transform equation 1 into a loss function, we calculated
its negative value.

From Table 1 we note that LOOCYV prefers the spatio-temporal model that incorpo-
rates access to water while the spatio-temporal model with urbanization as a covariate,
is preferred by LGOCYV. This result is interesting since we can conclude that the same
model might not necessarily perform well for short- and longer-range prediction. The
practitioner thus needs to decide what the goal of the modeling is, and then choose the
model to be used accordingly. If we want to predict dengue risk for a new unobserved
area or time point, it seems that urbanization has a better prediction ability than access to
water. Note also that as we increase the number of level sets, we are defining a prediction
target with an increased range, thus moving further away from LOOCV.

Table 1. Comparative evaluation of models for predicting variable y based on various environ-
mental factors. This table presents the model selection results, including each model’s Deviance
Information Criterion (DIC), LOOCYV, and LGOCYV scores.

Note: We offset DIC by 826841.66, LOOCV by 3.2721, LGOCV (m = 2) by 3.314, LGOCV
(m=23) by 3.3763 and LGOCV (m = 4) by 3.4372.

Index | Model DIC  |LOOCV LGOCV
(m=2)|(m=3)|(m=4)
1 |y~l+fi+f 361538 | 0.0151 | 0.0158 |0.0206 |0.0270
2 |y~ 4+ T+ i+ fi 1562.96 | 0.0064 | 0.0067 |0.0088 |0.0098
3 |y~ 14 Tt fi+ fo 222873 0.0091 | 0.0098 [0.0133 [0.0163
4 |y~1+PDSI+fi+f; 2167.120.0092 | 0.0095 |0.0126 |0.0184
5 |y~1+PDSI+ T+ fi+fe 160.43 |0.0006 | 0.0006 |0.0012 |0.0023
6 | y~1+PDSI+Tpax+ fi+fo 900.65 |0.0038 |0.0038 |0.0057 |0.0084
7 |y~ 1+PDSI+ T+ PDSIuy +u+fi+ f; |3821 |0.0002 | 0% 0% 0%
8 |y~ 14+PDSI+Tpin+PDSIxu+u+f+f; |39.13 |0.0002 |0% 0% 0%
9 |y~ 1+PDSI+ T+ PDSI*us +u+fi+ f; |28.64 |0.0002 | 0% 0% 0%
10 |y~ 1+PDSI+ Tyin+PDSTxwy +w+ fi+ f; | 6.68 | 0% 0.0005 | 0% 0.0014
11 |y~ 1+PDSI+ T+ PDSI*wy +w+ f; + f; | 0% 0% 0.0005 | 0% 0.0015
12 |y~ 1+PDSI+ Typin+ PDSI%w3 +w+ f,+ f; | 455 | 0% 0.0006 | 0% 0.0014
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(a) Groups for January data (b) Groups for April data
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Figure 5. Groups for testing points from a specific month. y-axis: relative frequency, x-axis:
month of data measurement in groups. The first half-year data are more informative for pre-
diction. As shown in (c) and (d), even in July and November, the group often includes data
consistent with the known summer prevalence of dengue. Note that dengue is prevalent in the
summer months which are approximately November to February.

6. Discussion

An over-reliance on LOOCYV to evaluate predictive capacity in general persists in statisti-
cal practice, despite concerns raised in studies such as Roberts et al. (2017); Vehtari et al.
(2019). LOOCY can provide an evaluation of short-range predictive ability with well-
established asymptotics for some models. On the other hand, what can we do to evaluate
the longer-range predictive ability of complex models? Various approaches for specific
models, such as time series or spatial models have been proposed, where custom CV
procedures are designed to mimic a longer-range prediction task than that of LOOCV.
We have introduced an automated approach for evaluating the longer-range prediction
ability of any latent Gaussian model, namely LGOCV. LGOCYV is designed to be ap-
plicable to all models that are latent Gaussian models, and thus provides a framework
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for general longer-range predictive ability evaluation without the need for case-by-case
considerations. Moreover, we propose a computationally efficient approach to calculate
LGOCYV scores and metrics based on the INLA methodology. We have shown that our
approximate LGOCV implementation is almost exact when compared with the results
from MCMC, albeit at a much lower computational cost. This enables practitioners to
use the LGOCYV approach for complex models and large data.

Our approach is designed for latent Gaussian models and some ideas can thus be ex-
tended to the case of non-latent Gausian models with careful consideration of the com-
putational cost associated with this endeavor. LGOCV for LGMs is computationally
efficient in INLA, since it is fully parallelizable by computing the necessary quantities
only at the mode of the hyperparameters. For huge data (n > 10°) however, the cost
will be high since the cost increases linearly in n, albeit much lower than other avail-
able approaches. For huge data, performing CV on a subset or constructing the groups
manually could be considered. Nonetheless, for LGMs, the proposed LGOCYV could be
considered as the most feasible approach for longer-range predictive ability evaluation.

The choice of the number of level sets determine the prediction task and thus the de-
gree of independence between the leave-out group and the rest of the data. There is not
a one-to-one correspondence between the number of level sets and the number of points
to leave out as shown in the simulations and applications, although a higher number of
level sets would imply a longer range for the prediction task, than a lower number. The
choice of the number of level sets remains arbitrary since it is a user-defined parameter,
we recommend a low number like m = 2 or m = 3 if there is no clear indication of what
else m should be. There exists no optimal value of m in general, since it would imply dif-
ferent prediction tasks for different levels of dependency. In our applications, and those
of others who have applied the LGOCYV framework, it is shown that LGOCV provides
the information we need to evaluate longer-range prediction ability, and complements
the information from LOOCV.

It is pertinent to note that the proposed LGOCYV do not replace a custom CV strategy
designed by modelers, tailored for specific applications. We pose it as an alternative de-
fault strategy for longer-range prediction ability evaluation, that complements LOOCV
in assessing the predictive ability of an LGM, while being computationally efficient and
practical for real-world scenarios.
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A. On the computation of X, (6,y-;) and py, (6,y—y)

In this section, we let I; be I and drop 0 to simplify the notation. We have a random
vector 1]y ~ N(ly,(¥),Zq,(¥)), which can be viewed as a posterior distribution with

prior 1,1y ~N(tty (y_1):En(y_)) and likelihood 76(y,|11,) o< exp { _InTCOmn -

b(y,)n ,}. Now, we need to use the posterior and the likelihood to obtain the prior.

If Xy, (y) is full rank, we have Qp, (y) = Z,,,(y)*l and by, (y) = in(y)um(y). By
conjugacy of Gaussian prior and Gaussian likelihood, @y (y_;) = Qy,(¥) — C(y,) and

b (y_1) = Cn, (¥)itn,(3) — b(y). Then we have desired ft (y_,) and Eq, (7).
If £y, (y) is singular, we let n|y = Bz|y, where B = VA with V containing eigen-

vectors corresponding to non-zero eigenvalues, A containing square root of non-zero
eigenvalues on its diagonal, and z|y ~ N(l,(y),J), where J is an identity matrix and
1,(y) = Bty (¥). By conjugacy, we have Q(y_;) = — BC(y,)B and by(y_;) =
p,(y) —B'b(y;). It is followed by p,(y_;) = Q,(y_;) 'by(y_;). Then mean and co-
variance of z|y_; is y (y_) = BR,(y_;), Zq(y_;) = BZ.(y_;)B.

B. On the computation of £, (6,y) and py, (6,y) with Linear
Constraints

We start by illustrating how to compute £y, (6,y) and p, (0,y) without linear con-
straints. [ty (6,y) is simply obtained by u,, (0,y) = A1 (0,y). However, we never
store large dense matrix like Q(6,y)~!. Thus, Iy, (0,y) cannot be obtained by using

matrix multiplication A;Q(8,y) 'A;. Instead, we compute Z5(8,y) entry by entry
and use the result to fill in entries of £y, (0,y). We compute X, (8,y); ; by solving

Qf(e7y)x :Ai

and Xy, (0,y); ; = A jx. The computation is fast because A and Q((@,y) are sparse, and
the factorization of Qf(8,y) is reused.
When linear constraints Cf = e are applied on f, we have

zf(evy)* = Qf(e7y)71 - Qf(e7y)71eT(le(evy)ileT)ille(evy)il7
1y(0.5)" = s(0.5) —0,(6.5) ' €/(€0/(6.5)'€) " (€py—e).

where X¢(6,y)" and p¢(0,y)" are the mean and the covariance matrix after applying
constraints (Rue and Held, 2005). Because u f(O, ¥)*, is always stored, the computa-
tion of pp, (8,y) is simple. We need to propagate the effects of linear constraints to

X, (0,y); ;. This is achieved by computing (Rue and Held, 2005)

x" :x_Qf(eay)_]GT(GQf(07y)_leT)_lexa
where x solves Q¢(0,y)x = A;. Then £4(0,y); ; = A;x".
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