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Abstract 

Household composition reveals vital aspects of the socioeconomic situation and ma-
jor changes in developed countries for decision-making and mapping the distribution of 
single-person households is highly relevant and useful. Driven by the Spanish House-
hold Budget Survey data, we propose a new statistical methodology for small area esti-
mation of proportions and total counts of single-person households. Estimation domains 
are defned as crosses of province, sex and age group of the main breadwinner of the 
household. Predictors are based on area-level zero-infated Poisson mixed models. 
Model parameters are estimated by maximum likelihood and mean squared errors by 
parametric bootstrap. Several simulation experiments are carried out to empirically in-
vestigate the properties of these estimators and predictors. Finally, the paper concludes 
with an application to real data from 2016. 
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1. Introduction 

National statistical offces plan surveys to provide a cost effective way of obtaining ac-
curate estimates at a certain level of aggregation. Nonetheless, disaggregated statistics 
can facilitate more effective targeting of decision-making, but obviously require more 
information to adequately represent population subgroups. If domain sample sizes are 
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large enough, we can accurately estimate domain characteristics using direct estimators, 
such as the H´ ajek, 1971). The term “small areas” is commonly used toajek estimator (H´ 
describe domains with too small sample sizes to obtain precise direct estimates. In these 
cases, indirect estimation techniques, relying on statistical modelling, will have to be 
used. Small area estimation (SAE) addresses this challenge by borrowing strength from 
auxiliary variables, data from other domains and underlying dependency structures. 

Given the topic of our research, in recent decades, most developed countries have 
faced major demographic changes that directly affect household composition (Cohen, 
2021), with new forms of cohabitation replacing the traditional concept of “two-parent 
family with children” (Lesthaeghe, 2014). In a context of social transformation, living 
alone has become a sign of individual autonomy and freedom (Fritsch, Riederer and See-
wann, 2023), even if it is sometimes still stereotyped (Greitemeyer, 2009). Meanwhile, 
loneliness and its impact on physical and mental health are an increasingly widespread 
problem (Snell, 2017), accentuating the symptoms of cognitive diseases (Lee and Lee, 
2021; Park et al., 2016). Especially, among elderly single-person households, the need 
for medical care is expected to be high, and even more so compared to other age groups. 
Hence the natural need for research aimed at curbing these problems. 

Among the main indicators of loneliness, we can mention the proportion and total 
count of single-person households by domains defned by territorial and demographic 
features. Indeed, the disaggregated mapping of these indicators provides valuable infor-
mation for governments to implement social and health policies aimed at improving the 
well-being of people suffering from loneliness. Hence, more specifc studies are needed. 
In addition, the number and size of households in the coming years is closely related 
to demographic projections (Ortiz-Ospina, 2019) and their distribution across provinces, 
sex and age groups is therefore of particular interest (Cho et al., 2019). For that pur-
pose, this paper develops a new statistical methodology and illustrates its use with an 
application to the Spanish Household Budget Survey (SHBS), where the aim is to esti-
mate proportions of single-person households by Spanish province, sex and age group. 
However, it can be applied to other contexts where the same problem holds. 

The following is an overview of the state of the art. SAE uses linear mixed mod-
els (LMMs) and generalized linear mixed models (GLMMs) that can be ftted to ei-
ther unit or area-level data. Area-level models have the advantage of easily incorpo-
rate auxiliary variables from statistical sources other than the sample. Namely, Torabi 
and Rao (2014) and Cai and Rao (2022) use subarea-models to deal with hierarchi-
cally structured data. Zhang and Chambers (2004) develops log-linear structural models 
suitable to estimate small area cross-classifed counts based on survey data. Esteban 
et al. (2012), Marhuenda, Molina and Morales (2013); Marhuenda, Morales and Pardo 
(2014) and Morales, Pagliarella and Salvatore (2015) estimate poverty proportions based 
on LMMs. For GLMMs, binomial and multinomial mixed models are applied to esti-
mate proportions by Molina, Saei and Lombardı́a (2007), Ghosh et al. (2009), Chandra 
and Chambers (2011), Chen and Lahiri (2012), Chambers, Salvati and Tzavidis (2012), 
López-Vizcaı́no, Lombardı́a and Morales (2013, 2015), Militino, Ugarte and Goicoa 
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(2015), Chambers, Salvati and Tzavidis (2016), Hobza and Morales (2016), Liu and 
Lahiri (2017), as well as Hobza, Morales and Santamarı́a (2018). Poisson (PO) and 
Negative Binomial (NB) mixed models are employed to estimate counts and proportions 
by Dreassi, Petrucci and Rocco (2014), Tzavidis et al. (2015), Boubeta, Lombardı́a and 
Morales (2016, 2017) and Morales, Krause and Burgard (2022), among others. As for 
the computational limitations of PO-GLMMs, but with a unit-level approach, the con-
jugate form of the Gamma-PO model allows for computationally light estimation and 
prediction procedures (Berg, 2022). However, none of the above cited papers deal with 
data with excess zeros. 

In scientifc and technical studies it is common to fnd count data with many zeros 
(Zuur et al., 2009; Michael and Thomas, 2016). This is the case for our target variable, 
the count of single-person households by domains. A possible solution is to ft a Fay-
Herriot (FH) model after a transformation, and apply the methodology of Berg and Fuller 
(2012) to obtain a non-zero variance estimate if the observed value is zero. Another ap-
proach is to consider models in which the probability of the null count is modifed with 
respect to that which would correspond to a given probability distribution. Because of 
their fexibility, zero-infated models play a relevant role. Without wishing to be exhaus-
tive, we cite some papers where these models are used in SAE. Pfeffermann, Terryn 
and Moura (2008) consider situations where the value of the target variable is zero or 
an observation from a continuous distribution. They analyse the assessment of literacy 
profciency with the possible outcome of zero, indicating illiteracy, or a positive score 
measuring the literacy level. Chandra, Bathla and Sud (2010) and Chandra and Sud 
(2012) introduce unit-level mixtures between zero and a LMM. They estimate domain 
means of continuous variables when the census vector contains a substantial proportion 
of zeros. Chandra and Chambers (2011) generalize their previous proposal by modelling 
logarithms. Anggreyani, Indahwati and Kurnia (2015) estimate infant mortality using 
plug-in predictors based on area-level mixed effects zero-infated PO models. Krieg, 
Boonstra and Smeets (2016) and Sadik, Anisa and Aqmaliyah (2019) have carried out 
simulation experiments for unit-level mixtures between zero and a nested error regres-
sion model under a Bayesian approach. Hartono, Kurnia and Indahwati (2017) deal with 
area-level zero-infated binomial models, with an application to unemployment data in 
Indonesia. Datta and Mandal (2015) and Sugasawa, Kubokawa and Ogasawara (2017) 
propose uncertain random effects, which are expressed as mixtures of a normal distribu-
tion and a one-point-at-zero distribution. Bugallo et al. (2023) model the number of fres 
in small areas using a zero-infated NB mixed model. 

Currently, there are no published studies that address the estimation of proportions of 
single-person households in small areas. However, it is essential for a more accurate im-
plementation of social policies, as well as for clarifying certain economic aspects related 
to the housing sector and the private consumption of basic resources. Because of this 
challenge, we introduce a zero-infated PO mixed model, that is, a mixture model with 
a logistic mixed model on a latent variable that indicates whether we count zero or ac-
cording to a PO mixed model. Based on that model, we construct predictors of domain-
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level counts and proportions. To estimate mean squared errors (MSE) of small area 
predictors, we lay out a parametric bootstrap method following González-Manteiga et 
al. (2007) and González-Manteiga et al. (2008). For assessment and illustration, several 
simulation experiments and a detailed application to real data are included. Regarding 
the latter, special attention has been reserved for the excess of zeros and the concilia-
tion between the area-level model-based approach and the traditional survey sampling 
design-based approach. Further comparisons are also made with a FH model and an 
area-level zero-infated NB mixed model. 

The main document is organized as follows. Section 2 describes the data and SAE 
problem. Section 3 introduces the area-level zero-infated PO mixed model. Section 4 
provides model-based predictors of domain counts and proportions. Section 5 presents 
bootstrap-based confdence intervals (CI) of model parameters and MSE estimators of 
the predictors. Section 6 addresses the case study. Section 7 summarizes some con-
clusions. The paper includes supplementary material organized in four appendices. 
Appendix A describes the Laplace approximation to the model log-likelihood and the 
algorithm to calculate the maximum likelihood (ML) estimators of model parameters 
and obtain modal predictors of random effects. Appendix B empirically investigates the 
behaviour of the ftting algorithm, predictors and MSE estimators. Appendix C gives 
some additional simulation results. Appendix D maps relative root mean squared error 
(RRMSE) estimates for the application to real data. 

2. Data and problem of interest 

This paper presents and applies a new SAE methodology, based on an area-level zero-
infated PO mixed model, to estimate proportions of single-person households in small 
areas. The script has been approached from an applied point of view, in order to provide 
a reference text for future research on zero-infated data in SAE. As far as the dataset 
is concerned, we use the 2016 SHBS (SHBS2016). The anonymized data fle can be 
downloaded from the Spanish Statistical Offce (INE) website. Regarding sample sizes, 
the SHBS2016 is designed to calculate precise direct estimators at NUTS 2 level, but it 
does not publish results at a lower level of aggregation. Below that level, sample sizes 
are quite small and direct estimators lose precision. In our research, we consider D = 416 
domains defned at NUTS 3 level by Spanish province (I = 52) crossed by sex (J = 2) 
and age group (K = 4). Given the sample sizes of SHBS2016, we are faced with an 
SAE problem. In fact, the quartiles of the small area sample sizes are q0 = 1, q0.25 = 17, 
q0.5 = 34, q0.75 = 72 and q1 = 367, respectively. Therefore, it is desirable to use more 
sophisticated prediction methods rather than direct estimators. In terms of methodology, 
Section 2.1 describes our research framework; Section 2.2 introduces the explanatory 
variables of the case study and Section 2.3 focuses on the zero infation problem. 
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2.1. Count and size variables 

Further notation is introduced below. Formally, the fnite population of Spanish house-
holds, U , can be partitioned in subpopulations Ui jk, i ∈ I = {1, . . . , I}, j ∈ J = {1, . . . ,J}, 
k ∈ K = {1, . . . ,K}, defned by province, sex (sex1: men, sex2: women) and age group 
(age1: less than 45 years; age2: between 46 and 55 years; age3: between 56 and 64 
years; age4: 65 years or older) of the main breadwinner. This is to say, each Ui jk isSI SJ SKdisjoint and U = i=1 j=1 k=1 Ui jk. Let N and Ni jk be the sizes of populations U and 
Ui jk, respectively. 

At unit-level, the variable of interest is dichotomic, i.e. yi jkl = 1 if the householdSI SJ SKui jkl ∈ Ui jk is single-person and yi jkl = 0, otherwise. Let s = i=1 j=1 k=1 si jk be a 
SHBS sample extracted from U , so that si jk ⊂ Ui jk, i ∈ I, j ∈ J, k ∈ K. Let n and ni jk be 
the sample sizes of s and si jk, respectively. For ease of exposition, we write l = 1, . . . ,ni jk 
for the households in si jk and l = ni jk + 1, . . . ,Ni jk for the households in Ui jk\si jk. 

The domain parameters of interest are the total count and proportion of single-person 
households in Ui jk, i.e. 

Ni jk Yi jk
∑Yi jk = Y i jk = i ∈ I, j ∈ J, k ∈ K. (2.1)yi jkl, ,

Ni jkl=1 

Let wi jkl be the household sampling weight of ui jkl ∈ Ui jk. The sample count and the 
Hájek estimator of Yi jk and Ni jk are 

ni jk ni jk ni jk 

yi jk· = ∑ yi jkl, Ŷ dir 
i jk = ∑ wi jkl yi jkl, N̂ dir 

i jk = ∑ wi jkl, i ∈ I, j ∈ J, k ∈ K. 
l=1 l=1 l=1 

The sample proportion and the Hájek estimator of Y i jk are 

Ŷ dir yi jk· dir i jk yi jk· = , Ŷ 
i jk = 

Ndir , i ∈ I, j ∈ J, k ∈ K. (2.2)ˆni jk i jk 

Once the count and size variables have been presented, it is important to be aware of 
the following scheme. Section 3 details the area-level zero-infated PO mixed model and 
Section 4 proposes model-based predictors of the domain parameters defned in (2.1). 
Nevertheless, this requires an external fle with auxiliary variables aggregated at domain 
level. In any case, it must contain the dependent variable of the area-level model, yi jk, 
the size variable (offset), mi jk, and a vector of domain-level auxiliary variables, xi jk (see 
Section 2.2). As far as yi jk and mi jk are concerned, two options can be considered: 
Option 1. Take yi jk = ⌊Ŷi jk 

dir⌋ and mi jk = ⌊Ni jk⌋, where ⌊·⌋ is the closest integer operator. 
Let µ̂yi jk be a model-based predictor of the expected value of yi jk. The predictors of Y i jk 
and Yi jk are 

µ̂yi jkŶ 
i jk = , Ŷi jk = µ̂yi jk, i ∈ I, j ∈ J, k ∈ K. 

mi jk 
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By taking the direct estimators of domain totals as the dependent variable of the 
area-level model, Option 1 reconciles the area-level model-based approach and the sam-
ple design approach to inference in fnite populations. This is an important argument in 
favour of Option 1. On the other hand, the ftting algorithm or the calculation of predic-
tors may become unstable when the values of the dependent variable are large, which 
require more refned programming. 
Option 2. Take yi jk = yi jk· and mi jk = ni jk. Let µ̂yi jk be a model-based predictor of the 
expected value of yi jk. The predictors of Y i jk and Yi jk are 

µ̂yi jk Ndir Ŷ 
i jk = , Ŷi jk = ˆ Ŷ 

i jk, i ∈ I, j ∈ J, k ∈ K.i jk mi jk 

Boubeta, Lombardı́a and Morales (2016) applies Option 2 for area-level PO mixed mod-
els, as it is computationally more robust, but it does not include the sampling weights 
into the model. As omission of sampling weights is an important problem with Option 
2, because it can lead to biased predictors, our choice of Option 1 is properly justifed, 
even if it makes programming more diffcult. 

2.2. Domain-level auxiliary information 

Population sizes and domain-level auxiliary variables have been estimated from the 2016 
Spanish Labour Force Survey (SLFS). The SLFS is published quarterly, includes nearly 
65,000 dwellings, equivalent to approximately 160,000 people, and collects data on the 
labour force and its various categories, as well as on the population outside the labour 
market. The anonymized data fle can be downloaded from the INE website. The sample 
size of each quarterly SLFS is larger than three times the size of an annual SHBS. From 
the frst to the last quarter of 2016, there are about 4 · 160,000 respondents. As there 
are D = 416 estimation domains, it is expected an average of 1538 respondents per 
domain. In order to improve our results, we jointly use data from the four quarters of 
2016 and apply (2.2). In this way the effects of the variances of the covariate means on 
the properties of the prediction procedure are considered negligible. 

The set of domain-level auxiliary variables is calculated by estimating the propor-
tion of people in the following factor categories: Citizenship: Spanish (cit1) and foreign 
(cit2); Education: primary or less (edu1), basic secondary education (edu2), advanced 
secondary education (edu3) and higher education, such as university (edu4); Labour 
situation: employed (lab1), unemployed (lab2) and inactive (lab3); Civil status: unmar-
ried (civ1), married (civ2), widower (civ3) and separated or divorced (civ4); Dwelling 
mobility: more than a year in the same dwelling (dwe1) and the opposite (dwe2). The 
above-mentioned auxiliary variables are proportions, bounded in the interval [0, 1], i.e. 
they are continuous variables, not binary indicators. Since the sum of proportions in the 
categories of each factor is one, and based on their socio-economic meaning, we omit 
one category from each factor. Namely, we have deleted cit2, edu2, lab3, civ1, dwe2. 
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2.3. Zero infation 

So far we have discussed the necessity of auxiliary information, but we have not ad-
dressed the problem of excess zeros, nor even demonstrated its occurrence. Neverthe-
less, it is important to assess the presence of false zeros to model counts of single-person 
households by province, sex and age group. The reason lies in the low number of re-
spondents at some crosses and thus the diffculty of detecting single-person households. 
Throughout the paper, it will be shown why the incorporation of zero-infated structures 
is more appropriate for the case study. As we assume that yi jk counts the number of 
single-person households in Ui jk, i ∈ I, j ∈ J, k ∈ K, it can be described by an area-level 
PO mixed model with offset parameter mi jk and some explanatory variables. However, 
the target variable is aggregated by province, sex and age group, so that the number of 
households in si jk may be too small. Moreover, there are 28 domains with zero single-
person households in SHBS2016. As the number of zeros seems to be too large, it has 
been decided to ft an area-level zero-infated PO mixed model to (yi jk,mi jk), i ∈ I, j ∈ J, 
k ∈ K. 

Table 2.1. Distribution of domains where single-person households are not observed in 
SHBS2016, by sex and age group of the main breadwinner. 

sex 
age group sex1 sex2 Total 

age1 3 8 11 
age2 2 8 10 
age3 2 2 4 
age4 3 0 3 
Total 10 18 28 

Table 2.1 presents the distribution of zeros by sex and age group in SHBS2016. It is 
shown that the 28 zeros are mainly concentrated in certain sex-age group categories. In 
fact, it can be suggested that single-person households inhabited by young and middle-
age women are likely to be more diffcult to capture in the count, i.e. their expected 
proportion is lower. The opposite is true at older ages. In any case, the number of 
zeros appears to be too large for what would be expected under a PO distribution. This 
motivates that a zero-infated PO mixed model will have a better performance. Section 
6 and Appendix B analytically justify the importance of incorporate the zero-infated 
structure, both in terms of signifcance and goodness-of-ft. The area-level PO mixed 
model and the area-level zero-infated PO mixed model will be compared and the latter 
will be chosen because it will give better results. 

In order to test the dependence between the count of zeros/non zeros and provinces, 
sex and age groups, we have applied the Pearson’s Chi-Squared test in 2 × I, 2 × J and 
2 × K contingency tables, calculating p-values by Monte Carlo (MC). As a result, p-
values close to 0.06 are reached for province and age group as inputs, increasing to 0.18 
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for sex. Based on Table 2.1 and the results of the above tests, we have decided to consider 
only age-group randomness to model zero-infated probabilities. Furthermore, applying 
the same tests to assess the dependence between the count of single-person households 
(less/greater than 1, 2 or 3) and provinces, sex and age groups, only the randomness of 
the age group is signifcant. Guided by the promise of fnding a good, simple model, 
Section 3 presents our methodological proposal. 

3. Area-level zero-infated Poisson mixed model 

This section describes the area-level zero-infated PO mixed model proposed as a basis to 
derive small area predictors of the proportion of single-person households by domains. 
All mathematical steps are detailed, justifying the soundness of what is presented. The 
formulation of the model is given in an orderly fashion, followed by the description 
of the ftting algorithm in Appendix A, the ML-Laplace approximation. Although the 
model is proposed in a general form, it is adapted for application to real data where 
appropriate. In fact, the model description is based on the stratifcation used in the real 
data example in Section 6, because it is in these domains that the need to incorporate a 
zero-infated structure to model the response variable has been assessed. Even so, it is 
easily adaptable to other situations involving the general zero infation problem. 

Let us consider a count variable yi jk taking values on N ∪ {0}, i ∈ I, j ∈ J, k ∈ 
K. Let D = IJK be the total number of y-values. As a particular case, a country di-
vided into provinces, sex and age groups can be modelled as follows. Let zi jk, x1,i jk = 
(x1,i jk1, . . . ,x1,i jkq1 ) and x2,i jk = (x2,i jk1, . . . ,x2,i jkq2 ) be latent (non observable) variables 
and 1 × q1 and 1 × q2 row vectors containing area-level explanatory variables, respec-
tively. Defne the vectors and matrices yi j = col (yi jk), zi j = col (zi jk), X1,i j = 

1≤k≤K 1≤k≤K 
col (x1,i jk). X2,i j = col (x2,i jk), y = col ( col (yi j)), z = col ( col (zi j)), X1 = 

1≤k≤K 1≤k≤K 1≤i≤I 1≤ j≤J 1≤i≤I 1≤ j≤J 

col ( col (X1,i j)) and X2 = col ( col (X2,i j)). In order to understand how the data 
1≤i≤I 1≤ j≤J 1≤i≤I 1≤ j≤J 

are stacked according to the col(.) operator, we rely on the application to the SHBS2016 
data as a useful example. In this dataset, the D = 416 domains are sorted by age group 
and, within each age group, the Spanish provinces are concatenated, frst for males and 
then for females. 

Let u1,k, u2,i jk be independent N(0,1) random effects, u1 = col (u1,k) ∼ NK(0, I),
1≤k≤K 

u2 = col ( col ( col (u2,i jk))) ∼ NIJK(0, I), u =(uT 
1, u

T 
2)

T . The bivariate vector (yi jk,zi jk)
1≤i≤I 1≤ j≤J 1≤k≤K 

follow an area-level zero-infated PO (aZIP13) mixed model if 

e−µi jk µ t 
ind i jk zi jk ∼ BE(pi jk), P(yi jk = 0/zi jk = 1) = 1, P(yi jk = t/zi jk = 0) = , t ∈ {0}∪N,

t! 

where 0 < pi jk < 1, µi jk = mi jkλi jk, mi jk ∈ N is known, λi jk > 0 and pi jk and λi jk de-
pend on the explanatory variables x1,i jk and x2,i jk, on the regression parameters β 1 = 
(β11, . . . ,β1q1 )

T and β 2 = (β21, . . . ,β2q2 )
T, and on the standard deviation parameters φ1 > 
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0 and φ2 > 0 by means of the link functions 

q1pi jk 
= x1,i jkβ 1 + φ1u1,k = ∑logit(pi jk) = log x1,i jkℓβ1ℓ + φ1u1,k1− pi jk ℓ=1 

q2 

log(λi jk) = x2,i jkβ 2 + φ2u2,i jk = ∑ x2,i jkℓβ2ℓ + φ2u2,i jk, i ∈ I, j ∈ J,k ∈ K. 
ℓ=1 

Inverting the above functions, it follows that 

exp{x1,i jkβ 1 + φ1u1,k}pi jk = , λi jk = exp{x2,i jkβ 2 + φ2u2,i jk}, i ∈ I, j ∈ J,k ∈ K.
1+ exp{x1,i jkβ 1 + φ1u1,k} 

(3.1) 

In short, the proposed model is a mixture of two mixed submodels. First, the BE 
submodel drives the mixture and incorporates the information derived from the excess 
of zeros. Subsequently, the PO submodel deals with the modelling of count variables. To 
complete its defnition, it is assumed that (yi jk,zi jk)

T , i ∈ I, j ∈ J, k ∈ K, are independent 
conditioned to u. 

Let θ =(βT 
1, β

T 
2, φ1,φ2)

T be the vector of model parameters and defne ξi jk = I{0}(yi jk), 
i ∈ I, j ∈ J, k ∈ K. This is to say, ξi jk = 1 if yi jk = 0 and ξi jk = 1, otherwise. It holds that � � � yi jk � e−µi jk µi jk−µi jkP(yi jk|u1,k,u2,i jk;θ) = ξi jk pi jk +(1− pi jk)e +(1 − ξi jk) (1 − pi jk) yi jk! � �−1 
= 1+ exp{x1,i jkβ 1 + φ1u1,k}( � o�n 
· ξi jk exp{x1,i jkβ 1 + φ1u1,k} + exp − mi jk exp{x2,i jkβ 2 + φ2u2,i jk} n 
+ (1 − ξi jk)exp yi jk(x2,i jk) 

β 2 + φ2u2,i jk) − mi jk exp{x2,i jkβ 2 + φ2u2,i jk} o 
+ yi jk logmi jk − logyi jk! , i ∈ I, j ∈ J, k ∈ K. 

By the independence assumptions, we have that 

I J K 
P(y|u;θ) = ∏∏∏ 

i=1 j=1 k=1 
P(yi jk|u1,k,u2,i jk;θ). 

Therefore, the likelihood function of the aZIP13 mixed model is Z 
P(y;θ ) = P(y|u;θ ) fu(u)du (3.2) 

RK(1+IJ) 

K Z � I J � 
∏ ∏∏ P(yi jk|u1,k,u2,i jk;θ) fN(0,1)(u2,i jk)du2,i jk fN(0,1)(u1,k)du1,k,= 
k=1 R1+IJ 

i=1 j=1 
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and the respective log-likelihood function is 

K Z � I J � 
ℓ(θ ;y) = ∑ ∏∏log P(yi jk|u1,k,u2,i jk;θ ) fN(0,1)(u2,i jk)du2,i jk fN(0,1)(u1,k)du1,k. 

R1+IJ
k=1 i=1 j=1 

Given y, the ML estimator of θ is θ̂ = argmaxθ∈Θ ℓ(θ ;y), where Θ = Rq1+q2 × R2 and+ 
R+ = (0,∞). The expression of ℓ(θ ;y) contains integrals in R1+IJ . To maximize it, 
two functions can be applied sequentially. The frst one would compute the integral 
on R1+IJ and the second one would perform the maximization on θ . As this approach 
is not effcient, Appendix A describes the ML-Laplace approximation as an alternative 
maximization method. 

4. Prediction of totals and proportions 

Under the assumption that yi jk, i ∈ I, j ∈ J,k ∈ K, follows the proposed aZIP13 mixed 
model, this section is devoted to the development of new small area predictors. Typical 
of the literature, the inference is focused on the expected values 

µyi jk ≜ E[yi jk|ui jk] = mi jk(1 − pi jk)λi jk, i ∈ I, j ∈ J, k ∈ K, (4.1) 

where pi jk = pi jk(u1,k) and λi jk = λi jk(u2,i jk) are defned in (3.1). In an orderly fashion, 
frst the plug-in predictor is introduced. Subsequently, the best predictor and its empirical 
version are derived (see Molina, Saei and Lombardı́a (2007) for futher details). At the 
expense of the theoretical properties, simpler alternatives are fnally proposed looking for 
a better computational performance. Under a scenario based on SHBS2016, they will 
be compared in simulation experiments in Appendix B so as to justify the application to 
real data in Section 6. 

Firstly, by plugging ML estimators and modal predictors, the population-based quan-
tities given by (4.1) can be predicted using the plug-in (IN) predictor, defned as � �−1in ˆ ˆµ̂yi jk = mi jk 1 + exp{x1,i jkβ 1 + φ̂1û1,k} exp{x2,i jkβ 2 + φ̂2û2,i jk}. 

Among the different predictors that can be mentioned, this is the simplest approach to 
understand and the easiest to calculate. Indeed, its ease of interpretation and calcula-
tion, as well as its computational performance and execution times, are unsurpassed. 
Nevertheless, there are other potentially competitive alternatives. Let us defne yk = 
col ( col (yi jk)), u2,k = col ( col (u2,i jk)), vk = (u1,k,uT 

2,k)
T . The best predictor (BP)

1≤i≤I 1≤ j≤J 1≤i≤I 1≤ j≤J 
bpof (4.1) is µ̂yi jk(θ) = mi jkE[(1− pi jk)λi jk|yk]. The conditional expectation Ei jk = E[(1− 

pi jk)λi jk|yk] is 

R � �−1 
R1+IJ 1 + exp{x1,i jkβ 1 + φ1u1,k} exp{x2,i jkβ 2 + φ2u2,i jk}P(yk|vk) f (vk)dvkEi jk = R . 

R1+IJ P(yk|vk) f (vk)dvk 
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Denote the numerator and denominator of Ei jk by Ai jk = Ai jk(yk,θ) and Bk = Bk(yk,θ ), 
respectively. Defne ξrtk = I{0}(yrtk), r ∈ I, t ∈ J, k ∈ K. It holds that 

Z I Jexp{x2,i jkβ 2 + φ2u2,i jk}
1 + exp{x1,i jkβ 1 + φ1u1,k} ∏∏ ωrtk fN(0,1)(u1,k) fN(0,1)(u2,rtk)du1,k du2,rtk,Ai jk = 

R1+IJ 
r=1 t=1 

Z I J 

∏∏ ωrtk fN(0,1)(u1,k) fN(0,1)(u2,rtk)du1,k du2,rtk,Bk = 
R1+IJ 

r=1 t=1 ( � 

ωrtk = (1+ exp{x1,rtkβ 1 + φ1u1,k})−1 
ξrtk exp{x1,rtkβ 1 + φ1u1,k} n o� n 

+ exp − mrtk exp{x2,rtkβ 2 + φ2u2,rtk} +(1− ξrtk)exp yrtk(x2,rtkβ 2 + φ2u2,rtk) )
yrtk o 

β̂ 2 + φ̂2u2,rtk} + yrtk logmrtk −∑ loga .− mrtk exp{x2,rtk 
a=1 

ebp bpThe empirical best predictor (EBP) is µ̂yi jk = µ̂yi jk(θ̂
 ) and can be calculated by a MC 

method using antithetic variables to reduce variability Hobza and Morales (2016). The 
outline is as follows: 

1. Calculate θ̂ = (β̂
T 

1, β̂
T 

2, φ̂1, φ̂2)
T . 

(s) (s) (S+s) (s) (S+s) (s)2. For s = 1, . . . ,S, generate u 2,rtk i.i.d. N(0,1), u = −u = −u1,k, u 1,k 1,k, u2,rtk 2,rtk. 

3. Calculate µ̂ ebp ˆ Bk, whereyi jk = mi jkAi jk/ ˆ 

(s)2S ˆ1 exp{x2,i jkβ 2 + φ̂2u2,i jk} 1
Âi jk = ω̂rtk, B̂k = ω̂rtk, (4.2)

β 1 + φ̂1u 

I J 2S I J 

∑ ∏∏ ∑ ∏∏ˆ2S 2S(s)1 + exp{x1,i jks=1 r=1 t=1 s=1 r=1 t=11,k}( � 
1 

(s)ˆ1+ exp{x1,rtkβ 1 + φ̂1u1,k}n 

(s)
β̂ 1 + φ̂1u1,k}ω̂rtk = ξrtk exp{x1,rtk 

o� n 
(s) (s)ˆ ˆ+ exp − mrtk exp{x2,rtkβ 2 + φ̂2u2,rtk} +(1 − ξrtk)exp yrtk(x2,rtkβ 2 + φ̂2u2,rtk) )

yrtk o 
(s)

β̂ 2 + φ̂2u2,rtk} + yrtk logmrtk −∑ loga , ξrtk = I{0}(yrtk).− mrtk exp{x2,rtk 
a=1 

It has been noted that (4.2) contains products with IJ terms. Given the nature of 
our problem, these products are close to zero under Option 1, leading to numerical pre-
cision problems in Section 6 and Appendix B. Facing this challenge, we have intro-
duced a simplifed version of the BP by conditioning to yi jk instead of yk. This simpli-
fed predictor (SP) is µ̂ sp The conditional expectationyi jk(θ ) = mi jkE[(1 − pi jk)λi jk|yi jk]. 
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Esp 
i jk = E[(1− pi jk)λi jk|yi jk] is 

R � �−1 

Esp R2 1 + exp{x1,i jkβ 1 + φ1u1,k} exp{x2,i jkβ 2 + φ2u2,i jk}P(yi jk|ui jk) f (ui jk)dui jk 
i jk = R 

R2 P(yi jk|ui jk) f (ui jk)dui jk 
, 

Asp BspDenote the numerator and denominator of Esp 
i jk by Asp 

i jk(yi jk,θ) and Bsp 
i jk(yi jk,i jk = i jk = 

θ ), respectively. It holds that 

Z 
Asp exp{x2,i jkβ 2 + φ2u2,i jk}

i jk = ωi jk fN(0,1)(u1,k) fN(0,1)(u2,rtk)du1,k du2,rtk, 
R2 (1 + exp{x1,i jkβ 1 + φ1u1,k}) 

and Z 
Bsp 

i jk = ωi jk fN(0,1)(u1,k) fN(0,1)(u2,rtk)du1,k du2,rtk. 
R2 

esp spThe empirical simplifed predictor (ESP) is µ̂yi jk = µ̂yi jk(θ̂
 ) and can be approximated by 

numerical approximation of integrals. However, the following antithetical MC algorithm 
is applied: 

1. Calculate θ̂ = (β̂
T 

1, β̂
T 

2, φ̂1, φ̂2)
T . � �T(s) (s) (s) (S+s) (s)2. For s = 1, . . . ,S, generate u = u1,k,u i.i.d. N2(0, I2), u = −u .i j 2,i jk i j i j 

esp Asp Bspˆ3. Calculate µ̂yi jk = mi jk i jk/ ˆi jk, where 

(s)2S ˆ 2S 
Asp 1 exp{x2,i jkβ 2 + φ̂2u2,i jk} Bsp 1ˆ ω̂i jk and ˆ ω̂i jk. 

β 1 + φ̂1u 
∑ ∑i jk = i jk = 

ˆ2S 2S(s) 
1,k})(1 + exp{x1,i jks=1 s=1 

Because of the numerical precision of R, calculating exponential functions to predict 
µyi jk may result in negative values that are too small. Consequently, ωi jk would be close 
to zero. These overfow problems were detected by Boubeta, Lombardı́a and Morales 
(2016) and motivated these authors to choose Option 2, more computationally stable. In 
our case, as defned, the ESP allows us to solve them. Therefore, we assume Option 1, 
which is more convenient, as it reconciles to some extent the design-based and model-
based approaches. Consequently, in simulations experiments in Appendix B and the case 
study in Section 6, the ESP will be used and the EBP will be omitted. 

5. Bootstrap inference 

This section presents bootstrap-based CIs for the model parameters and estimators of 
the MSEs of the predictors. For the latter, we adapt the procedures used by González-
Manteiga et al. (2007, 2008). 
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5.1. Confdence intervals for model parameters 

Let θℓ be a component of the vector of model parameters θ . Let α ∈ (0,1). The follow-
ing procedure calculates a (1− α)% percentile bootstrap CI for θℓ. 

1. Fit the model to the sample and calculate the ML estimate θ̂ = (β̂
T 

1, β̂
T 

2, φ̂1, φ̂2)
T . 

2. Repeat B times (b = 1, . . . ,B): 

∗(b) ∗(b)(a) For i ∈ I, j ∈ J, k ∈ K, generate u ∼ N(0,1), u2,i jk ∼ N(0,1) and calculate1,k � � � � −1∗(b) ∗(b) ∗(b)ˆ ˆpi jk = exp x1,i jkβ 1 + φ̂1u1,k 1+ exp x1,i jkβ 1 + φ̂1u1,k , (5.1) � 
λ ∗(b) ˆ ∗(b)

= exp β 2 + φ̂2ui jk x2,i jk 2,i jk . 

∗(b) ∗(b) ∗(b) ∗(b) ∗(b)(b) Generate z ∼ BE(p = 1, do y = 0. If z = 0, generatei jk i jk ). If zi jk i jk i jk 
∗(b)y ∼ PO(mi jkλ ∗(b)).i jk i jk 

(c) On the basis of the bootstrap sample (y ∗(b) ,mi jk,xi jk), i ∈ I, j ∈ J, k ∈ K,i jk 

calculate the ML estimate θ̂ ∗(b) .ℓ 

3. Sort the values θ̂ ∗(b) , b = 1, . . . ,B, from smallest to largest. They are θ̂ ∗ ≤ . . . ≤ℓ ℓ(1) 

θ̂ 
ℓ 
∗ 
(B). A (1 − α)% percentile bootstrap CI for θℓ is 

� 
θ̂ 
ℓ 
∗ 
(⌊(α/2)B⌋), θ̂

 
ℓ 
∗ 
(⌊(1−α/2)B⌋) 

� 
. 

5.2. Mean squared error estimation 

The model-based MSE of the EBP, ESP or IN predictor, µ̂yi jk, i ∈ I, j ∈ J, k ∈ K, can be 
estimated using a resampling method. The following procedure calculates a parametric 
bootstrap estimator of MSE(µ̂yi jk), i ∈ I, j ∈ J, k ∈ K. 

1. Fit the model to the sample and calculate the ML estimate θ̂ = (β̂
T 

1, β̂
T 

2, φ̂1, φ̂2)
T . 

2. Repeat B times (b = 1, . . . ,B): 

(a) Run Steps (a) and (b) of the algorithm detailed in Section 5.1. 
∗(b) ∗(b)(b) For i ∈ I, j ∈ J, k ∈ K, calculate µyi jk = mi jk(1− pi jk )λ ∗(b) .i jk 

∗(b)(c) On the basis of the bootstrap sample (yi jk ,mi jk,xi jk), i ∈ I, j ∈ J, k ∈ K, 

θ 
∗(b) ∗(b)calculate the ML estimate ˆ and the predictor µ̂yi jk . � ∗(b) ∗(b)�23. Output: mse ∗( ̂  B 

1 
∑

B 
µ̂ , i ∈ I, j ∈ J, k ∈ K.µyi jk) = b=1 yi jk − µyi jk 

4. An estimator of the model-based MSE of the Hájek estimator is 

1 B � ∗(b) ∗(b)�2 mse ∗ (Ŷ 
i jk) = ∑ yi jk − µyi jk , i ∈ I, j ∈ J,k ∈ K.

B b=1 
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6. Application to real data 

As a starting point, some considerations are presented to place the application in context 
and to encourage us in the work we are about to undertake. Regarding 2016, the Span-
ish Household Projection 2016–2031 addresses demographic trends and social patterns 
currently observed in Spain in terms of the number of households. Its authorship is at-
tributed to the INE. It shows that households will increase by 4.9%, despite the decrease 
in the number of inhabitants, because of a reduction in the expected number of residents 
per dwelling, from 2.50 in 2016 to 2.35 in 2031. Related to this, between 2016 and 
2031 the smallest households (one or two people in a shared dwelling) would continue 
to grow, while the largest ones would decrease, with a relative increase of 19.6% of 
single-person households. As a result, there will be more than 5.5 million single-person 
households (28.6%), with 12% of the Spanish population living alone. 

For methodological purposes, this section applies the aZIP13 mixed model to the 
SHBS2016 data so as to estimate proportions of single-person households in small areas. 
Regarding the SHBS, it is published annually by the INE to study the nature and desti-
nation of consumer spending and the living conditions of households. The SHBS2016 
includes around 22,000 dwellings, selected by means of a two-stage stratifed random 
sampling carried out independently in each Autonomous Community (NUTS 2 level). 
Broadly speaking, the frst stage units are territories with around 2,000 dwellings, called 
census sections. The second stage units are dwellings, interviewing all individuals over 
16 years of age who reside in them. In each NUTS 2 region, the frst stage units are 
stratifed following a geographical criterion, which assigns the stratum according to 
the size of the municipality to which the section belongs. Sections are selected within 
each stratum with probability proportional to their population size. Dwellings are se-
lected, within each section, with equal probability by means of systematic sampling 
with random start. The target variable yi jk is the direct estimate of the number of single-
person households in a domain where i, j and k represent the province of residence, 
sex and age group of the main breadwinner, respectively. Furthermore, direct estimates 
of population sizes and area-level auxiliary variables have been obtained from the four 
2016SLFS microdata. What is more, they have been considered as true population val-
ues because of the precision derived from the acceptable sample sizes of the 2016SLFS 
surveys. 

Table 6.1 shows the ML estimates of the regression parameters (RP) β 1, φ1 (BE 
submodel), β 2 and φ2 (PO submodel), the p-values to test H0 : βtℓ = 0, t = 1,2, ℓ = 
1, ...,qt , and H0 : φt = 0, t = 1,2, and the normal-asymptotic and bootstrap CIs at a 
95% confdence level. For convenience, their lower (LB) and upper (UB) bounds are 
provided. Normal-asymptotic CIs are discussed in Appendix A and bootstrap CIs in 
Section 5. 

The fnal model incorporates only those variables that are signifcant at 5%. The 
fexibility achieved by making the random effects of the count model domain-dependent 
allows us to reduce the importance of the set of domain-level variables and incorporate 



Marı́a Bugallo Porto, Domingo Morales González and Marı́a Dolores Esteban Lefer 139 

only those that actually add relevant knowledge. In order, edu4, ci1, edu1, tm1, ec4, lab1, 
lab2 are removed. The BE submodel contains one auxiliary variable, x1,1 = intercept, 
and the PO submodel four: x2,1 = intercept, x2,2 = edu3, x2,3 = civ2 and x2,4 = civ3. 

The only parameter of the BE submodel, β11, is signifcantly non-zero and its CIs 
have an acceptable short length, which guarantees some precision in its estimation. Ac-
tually, the latter provides strong evidence in favour of the zero-infated structure. Ac-
cording to Table 6.1, none of the area-level auxiliary variables is relevant to explain the 
zero-infated probabilities, supporting our contribution. Null counts are caused by the 
diffculty of detecting single-person households in domains with small sample sizes. The 
basic zero-infated probability is p0(β̂11) = 0.063, which implies that the basic probabil-
ity of obtaining an observation from the PO submodel is 0.937. However, it has already 
been proven that it is also important to take into account the age-group randomness. 
Here, it is confrmed that the asymptotic and bootstrap 95% CIs for φ1 do not contain the 
zero. 

Table 6.1. Regression parameters of the fnal aZIP13 mixed model. 

RP 

BE submodel 

β11 φ1 β21 

PO submodel 

β22 β23 β24 φ2 

Asymp. 

Boot. 

Estimate 

p-value 

LB 95% 

UB 95% 

LB 95% 

UB 95% 

-2.696 0.398 

0.000 0.000 

-3.270 0.091 

-2.121 1.752 

-3.317 0.0002 

-2.162 0.859 

-1.857 

0.000 

-2.319 

-1.395 

-2.312 

-1.432 

2.138 -0.649 3.881 

0.000 0.000 0.000 

1.007 -1.057 3.207 

3.269 -0.242 4.554 

1.051 -1.016 3.215 

3.270 -0.222 4.577 

0.517 

0.000 

0.482 

0.555 

0.480 

0.554 

For the PO submodel, it could be suggested that a medium-high level of educa-
tion (β22), as well as being widower (β24), contribute to increase the count of single-
person households by domains, because their signs are signifcantly positive. On the 
other hand, an increase in the proportion of people who are married (β23) implies a 
decrease in the number of single-person households, assuming that the other auxiliary 
variables are fxed. Given the group effect, it can be inferred that Spanish citizenship, 
employment status and dwelling mobility are not relevant to model the count of single-
person households. The proportion of inhabitants with primary or university education 
and the proportion of separated or divorced people are also irrelevant. Last but not least, 
the asymptotic and bootstrap 95% CIs for φ2 do not contain the zero, confrming the 
necessity of modelling the counts with a random-effect model. 

Back to the modelling of the zero-infated structure, recall that Table 2.1 suggested 
that the number of zeros appears to be too large for what would be expected under a PO 
distribution. This statement is confrmed by comparing the number of zeros found in B = 
1000 bootstrap resamples under the PO mixed model and the proposed aZIP13 mixed 
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model. Indeed, for the PO mixed model there are no null counts in any resample, with 38 
single-person households in the lowest case. The number of zeros in the data exceeds the 
number of zeros that could plausibly be generated by the ftted PO distribution. For the 
aZIP13 mixed model, each resample contains an average of 28 zeros, closely mimicking 
the structure of Table 2.1 and, thus, the behaviour of the target variable. 

Hereafter, we assume the aZIP13 mixed model that Table 6.1 presents. To have more 
confdence in this model as a true generating model, Section 6.1 addresses its validation 
and Appendix B performs some simulation experiments under the SHBS2016 scenario. 
Importantly, they support the use of the IN predictor. 

6.1. Model validation 

Residual analysis is used to validate a model as well as to detect potential underlying 
dependency relationships. As the aZIP13 mixed model is an area-level model, model 
diagnosis is also performed at that level of aggregation. Besides, we are interested in 
the conciliation of the model-based approach and the design-based approach to SAE. 
Further notation is introduced below. Let us defne the raw residuals (RR) as ei jk = yi jk − 
µ in = ⌊Ŷ dir = ⌊Ŷ dir Under Option 1, yi jk i jk ⌋− µ in Theyi jk, i ∈ I, j ∈ J,k ∈ K. i jk ⌋ and ei jk yi jk. 
standardized residuals (SR) are defned by dividing the RRs by its standard deviation. 

In what follows, validation results are shown for a better interpretation of the appli-
cation to real data. To start with, Figure 6.1 plots the SRs of the aZIP13 mixed model 
versus domain indexes (left) and predicted values of the proportion of single-person 
households in original (center) and log scale (right). In dotted red, the line y = 0 is 
added. 
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Figure 6.1. SRs versus domain indexes (left) and predicted values of the proportion of single-
person households in original (center) and log scale (right). 

As general conclusions drawn from Figure 6.1, it can be seen that SRs have a pattern 
of symmetry around zero and are mainly found in [−3,3]. The central plot has a low 
percentage of domains with large predicted probabilities, which exceed the threshold 
of 0.7, and correspond to domains with predominantly single-person households, i.e. 
inhabited by elderly women. Regarding the right plot, plotting SRs against log predicted 
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probabilities allows us to detect a conical pattern in the scatterplot. That is, as the log 
predicted probabilities increases, so does the variability of SRs. This phenomenon is in 
agreement with the theoretical dispersion of the aZIP13 mixed model. 

As expected, SRs are highly variable between provinces, with different sample sizes 
and socioeconomic conditions. Namely, there are 11 areas with absolute SRs greater 
than 3, which represents 2.650% of the domains. Directly related to housing prices, the 
most affected are Madrid and Barcelona. Related to age group and sex, changes are 
minor. However, age4 contains the largest amount of outliers. 

6.1.1. Zero infation validation 

Area-level models do not aim to chase the scatterplot, but to smooth it and provided more 
accurate results. It is therefore crucial to understand the importance of zero-infated 
probabilities, as they solve the problems of overftting of the PO mixed model to the 
Hájek estimates. Indeed, Figure 6.2 shows this improvement in domains with null counts 
of single-person households (left) and with less than 5 counts (center). All observations 
are sorted according to the domain index. The line charts plot the Hájek estimates, the 
IN predictions and those relative to the IN predictor of the PO mixed model with the 
same set of area-level auxiliary variables as the aZIP13 mixed model, denoted as IN0. 
The advantage of the IN predictor over the IN0 predictor also applies when comparing 
with the IN predictor that uses a constant zero-infated probability pi jk = p, denoted as 
IN1 in Appendix B, although it is not included for ease of exposition. 
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Figure 6.2. Predicted proportions of single-person households in domains with null counts (left) 
and less than 5 counts (center) and boxplots for the respective SRs (right). 

On balance, the IN predictor of the aZIP13 mixed model is the one that smoothes 
the results the most. In addition, a challenge encountered in modelling direct estimators 
is that, in areas with tiny sample sizes, some households in the sample represent too 
many households in the population. The main concern is to fnd area-level outliers. 
Figure 6.2 (right) shows boxplots of the SRs from the aZIP13 mixed model and the PO 
mixed model in domains with less than 5 counts, grouped according to the observed 
single-person household counts. When single-person households are not observed, the 
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PO mixed model is clearly worse and, for low counts, its performance does not improve 
either: the variability of the boxes is higher. It is concluded that the aZIP13 mixed 
model performs satisfactorily, both in terms of the signifcance level of the RPs, the 
validation via SRs and the ft of zero outcomes. This is a great support for the proposed 
methodology. 

6.2. Predictions and error measures 

This section provides Hájek estimates and IN predictions of the proportion of single-
person households by province, sex and age group. Figure 6.3 shows line charts of 
these values sorted by domain index (left) and sample size (center), as well as a com-
parison of both (right). Among the most noteworthy fndings, model-based predictors 
correct the excessively large Hájek estimates, especially for elderly women in Madrid 
and Barcelona. Even more, it is inferred that the IN predictor smoothes the results of 
the Hájek estimator, although it still presents problems when dealing with extreme pro-
portions. On the other hand, if single-person households are not observed, the Hájek 
estimator has no margin of error, although the model never comes to such a low propor-
tion. The same is true for values close to one. This can be seen in Figure 6.3 (left). As 
it is unlikely, our research is a methodological improvement. In addition, it can be ob-
served that household composition does not affect all domains equally: as the age group 
increases, the proportion of single-person households also increases. 
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Figure 6.3. IN proportions of single-person households sorted by domain (left) and sample size 
(center), and Hájek estimates versus IN proportions (right). 

According to Figure 6.3 (center), the IN predictor gets closer to the Hájek estimator 
as the sample size increases, which is one of the most convincing aspects of the data anal-
ysis. Eventually, Figure 6.3 (right) plots the Hájek estimates versus the IN proportions. 
It can be seen that the dots are evenly distributed around y = x. To support this statement, 
a local polynomial regression of degree 3, with an appropriate bandwidth, is plotted to 
smoothly represent the relationship between ordinates and abscissas. Consequently, we 
can underline a crucial advantage of our approach: the theoretical properties of the Hájek 
estimator, such as asymptotic design-based unbiasedness, are, to some extent, inherited 
by the IN predictor based on the aZIP13 mixed model. 
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Table 6.2 (a) reports IN proportions of single-person households by sex and age 
group. Predominantly, it is the population of age2 that is least likely to live in single-
person households, followed by age1. The current trend projects an increase in the 
proportion of single-person households, with the number of households inhabited by 
elderly women skyrocketing. This phenomenon is associated with the ageing process, 
which progressively involves the emancipation of children and widowhood. 

Table 6.2. Tabular results for the IN predictor and RRMSEs (%) of the proportion of single-
person households by sex and age group of the main breadwinner. 

sex sex 
age group sex1 sex2 Total 

age1 0.1988 0.2389 0.2187 
age2 0.1596 0.1838 0.1736 
age3 0.1468 0.3694 0.2612 
age4 0.1707 0.6479 0.4394 
Total 0.1830 0.3371 0.2621 

age group sex1 sex2 Total 
age1 20.8360 19.8250 20.3350 
age2 20.3787 22.0940 21.2451 
age3 20.9409 12.6800 16.6921 
age4 20.1576 18.1149 19.0072 
Total 20.6300 19.3125 19.9537 

(a) IN proportions aggregated by province. (b) IN RRMSEs (%) aggregated by province. 

As for the error measures, we calculate the parametric bootstrap estimator of the 
MSE of µ in 

yi jk, i ∈ I, j ∈ J,k ∈ K, following Section 5. B = 2000 resamples are used. 
To avoid scale dependencies, and as usual, the script should be focused on RRMSEs. 
However, the non-relative version, the root-MSE (RMSE), is preferable because it al-
lows a better understanding of what happens with null counts. Accordingly, Figure 6.4 
plots model-based estimates of RMSEs for the IN predictor versus design-based stan-
dard deviations (RVAR) for the Hájek estimator (left) and versus model-based estimates 
of RMSEs for the Hájek estimator (right). See Morales et al. (2021) (Section 2.5) for 
further details about the RVARs of the Hajék estimator. 
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Figure 6.4. Model-based estimates of RMSEs for the IN predictor versus design-based RVARs 
(left) and model-based estimates of RMSEs (right) for the Hájek estimator. 
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Broadly speaking, both plots in Figure 6.4 show that the IN predictor has lower 
RMSE in all domains and, in most of them, it is also lower than the design-based RVAR 
of the Hájek estimator. The reduction of the model-based RMSE is therefore prominent 
when we use the IN predictor instead of the Hájek estimator. Nevertheless, the Hájek 
estimator has an estimated variance of zero for an observed zero and the RMSE of the IN 
predictor is always greater than zero. As there are 28 zeros in SHBS2016, this implies 
28 aligned points in the lower left corner of Figure 6.4 (left). Clearly, we have already 
reported that these are false zeros. 

In terms of magnitude, the RMSE is higher for elderly women, and it is attributable 
to the high predicted and/or estimated proportions for these domains. Therefore, it is also 
useful to provide summary measures of the RRMSE, expressing the error in percentage 
terms. Table 6.2 (b) contains the bootstrap estimates of the RRMSE (in %) for the IN 
predictor by sex and age group. As a general conclusion, all values are around 20%, with 
a slightly lower average for women and especially for age3. Hence, the IN predictions 
of the proposed aZIP13 mixed model have low RRMSEs, as expected in SAE. Appendix 
D of Supplementary Material maps these relative errors by province, sex and age group. 

6.3. Mapping proportions of single-person households 

The case study concludes by analysing the socioeconomic fndings drawn from the area-
level predictions. In this sense, the proposed methodology offers the opportunity to 
analytically read the appreciable differences by Spanish province, sex and age group. 
Figures 6.5–6.8 map the provincial distribution of single-person households for men 
(left) and women (right) according to the age group of the main breadwinner. 

Young men: Age group 1
under 15

15 - 25

25 - 35

35 - 50

Young women: Age group 1
under 15

15 - 25

25 - 35

35 - 50

50 - 65

Figure 6.5. Percentages of single-person households for young men (left) and women (right). 
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Middle-age men: Age group 2
under 15

15 - 25

25 - 35

35 - 50

Middle-age women: Age group 2
under 15

15 - 25

25 - 35

35 - 50

50 - 65

Figure 6.6. Percentages of single-person households for middle-age men (left) and women 
(right). 

Adult men: Age group 3
under 15

15 - 25

25 - 35

35 - 50

Adult women: Age group 3
under 15

15 - 25

25 - 35

35 - 50

50 - 65

Figure 6.7. Percentages of single-person households for adult men (left) and women (right). 

On the one hand, they show that the highest proportions of single-person house-
holds are found in the centre and north-west of Spain, with lower rates in the south 
and Canary Islands. As expected, the distribution between neighboring provinces, or 
between those whose demographic and socioeconomic conditions are similar, is gen-
erally homogeneous. This fact justifes how model-based predictors lead to smoother 
results (and closer to reality) than direct estimators. In addition, an interesting spatial 
pattern emerges, as it can be observed an inverse relationship between house prices and 
the proportion of single-person households. Thus, lower proportions are estimated for 
the Catalan Coast, Madrid, Balearic Islands and Málaga. In other words, the Spanish 
provinces with the highest average prices. 

On the other hand, over the course of a person’s life, their lifestyle can be expected 
to change, with the age group directly affecting the composition of households. Most 
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notably, old age is linked to another factor that alters household composition: mortality. 
So sex and age4 are crucial here. Moreover, the increase in quality of life implies not 
only an increase in life expectancy but also in the autonomy of the elderly, which results 
in an increase in the number of single-person households inhabited by retired people. 
Most men live with their partners until their death. In contrast, women have a longer life 
expectancy (implying a greater accumulation at the top of the demographic pyramid) 
and the average age of their partners is higher, so they will live alone to a greater extent. 
Accordingly, Figures 6.5–6.8 map a signifcant difference between men and women, 
with clearly higher proportions of dwellings inhabited only by women. 

Elderly men: Age group 4
under 15

15 - 25

25 - 35

Elderly women: Age group 4
35 - 50

50 - 65

65 - 75

over 75

Figure 6.8. Percentages of single-person households for elderly men (left) and women (right). 

7. Conclusions 

Households are a key unit in a country’s socioeconomic decision-making. Therefore, 
statistical studies of household composition in small and disaggregated areas are of great 
interest. Against this background, this paper addresses the prediction of total counts and 
proportions of single-person households by province, sex and age group of the main 
breadwinner. Given the diffculty of detecting single-person households from survey 
data, it is also important to model the disaggregated probabilities of false zeros. To do 
so, it has been taken into account that area-level zero-infated PO mixed models are quite 
fexible to predict and explain count variables. In addition, they successfully model zero-
infated outcomes and have been applied in many felds of research. Consequently, the 
paper deals with an important, common but rather underestimated issue in SAE, which 
is the problem of zero infation data. 

To ft the model, we have calculated ML estimators of the model parameters and 
modal predictors of random effects by applying the ML-Laplace approximation. Then, 
we have considered the EBP, ESP and IN predictors. In theory, the EBP is very attrac-
tive because of its properties of approximately null bias and small RMSE. However, its 
formula contains double products of exponentials and integrals in R1+IJ . The evaluation 
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of exponential functions usually cause overfow problems when the observed counts are 
large, which is quite common under Option 1. This produces computational instabil-
ity problems, especially when applying bootstrap resampling procedures, which made it 
necessary to omit the EBP from our simulation experiments. Finally, we have investi-
gated the behaviour of the remaining predictors by generating the target variable from 
the same model as the one selected in the application to real data. Ultimately, we found 
that the ESP seems very attractive as it has a very low bias, but the IN predictor seems 
more interesting, as it has a small RMSE and lower computational cost. That is why we 
have decided to use the IN predictor in the case study. Regarding MSE estimation, we 
propose a parametric bootstrap procedure and recommend to use B = 600 iterations as a 
good tradeoff between accuracy and computational time. 

Simulations also empirically investigated what happens if excess zeros are ignored 
in the prediction. Namely, if the excess of zeros is large, predictions based on the PO 
mixed model are rather ineffcient. According to our results, the same applies if constant 
zero-infated probabilities are considered, so that age-group randomness is required. 

Section 6 presents an application to the 2016SHBS and illustrates how to use the 
proposed methodology. It has been concluded that living alone is a common residential 
choice across all age groups, infuenced by marital separations, emancipation of children, 
cohabiting relationships and lifestyle in general. Declining fertility and increasing life 
expectancy are leading to an ageing population. Therefore an overwhelming increase 
in the proportion of single-person households is expected. What is more, differences 
in household composition for men and women are more pronounced among the elderly. 
In addition, RRMSE estimates are below 30% in most domains, which is a fairly good 
accuracy for a SAE problem. 
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Morales, D., Esteban, M.D., Pérez, A. and Hobza, T. (2021). A course on small area 
estimation and mixed models. Springer. 

Morales, D., Krause, J. and Burgard, J.P. (2022). On the use of aggregate survey data for 
estimating regional major depressive disorder prevalence. Psychometrika, 87, 4. 

Ortiz-Ospina, E. (2019). The rise of living alone: How one-person households are be-
coming increasingly common around the world. Our World in Data. 

Park, B.Y., Kwon, H.J., Ha, M.N. and Burm, E.A. (2016). A comparative study on 
mental health between elderly living alone and elderly couples: Focus on gender and 
demographic characteristics. Journal of Korean Public Health Nursing, 20, 195-20. 

Pfeffermann, D., Terryn, B. and Moura, F.A.S. (2008). Small area estimation under a 
two-part random effects model with application to estimation of literacy in developing 
countries. Survey Methodology, 34, 2, 235-249. 

Sadik, K., Anisa, R. and Aqmaliyah, E. (2019). Small area estimation on zero-infated 
data using frequentist and Bayesian approach. Journal of Modern Applied Statistical 
Methods, 18, 1, eP2677. 

Snell, K.D.M. (2017). The rise of living alone and loneliness in history. Social History, 
42, 1, 2-28. 

Sugasawa, S., Kubokawa, T. and Ogasawara, K. (2017). Empirical uncertain bayes meth-
ods in area-level models. Scandinavian Journal of Statistics, 44, 3, 684-706. 

Torabi, M. and Rao, J.N.K. (2014). On small area estimation under a sub-area level 
model. Journal of Multivariate Analysis, 127, 36-55. 



Marı́a Bugallo Porto, Domingo Morales González and Marı́a Dolores Esteban Lefer 151 
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