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with  auxiliary  information  in  a  

complex  survey  sampling  
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Abstract  

In this paper, we consider the problem of estimating the fnite population cumulative 
distribution function (CDF) in a complex survey sampling, which includes two-stage and 
three-stage cluster sampling schemes with and without stratifcation. We propose two 
new families of CDF estimators using supplementary information on a single auxiliary 
variable. Explicit mathematical expressions of the biases and mean squared errors of 
the proposed CDF estimators are developed under the frst order of the approximation. 
Real datasets are also considered to support the proposed theory. 
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1.  Introduction  

An important problem in the inferential statistics is to estimate the cumulative distri-
bution function (CDF) of a fnite population. This problem frequently arises when the 
underlying interest is to determine the proportion of values of a study variable that are 
less than or equal to a certain value. For instance, for a nutritionist, it is important to 
know the proportion of a population that consumes 25% or less of the calories from a 
saturated fat. Likewise, the policy makers, in a developing country, are mostly interested 
in knowing the proportion of people living below the poverty line. In the context of sur-
vey sampling, it is common to develop CDF estimators with different sampling schemes, 
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68 Estimation of fnite population distribution function with auxiliary information... 

which include simple random sampling (SRS), stratifed random sampling, cluster sam-
pling (CS), ranked-set sampling, to name a few. For more details, see Francisco and 
Fuller (1986), Haq (2017a), Stokes and Sager (1988) and the references cited therein. 

A common approach in survey sampling is to increase the precision of an estimator 
with suitable use of auxiliary information. The ratio, regression and product-type estima-
tors are prime examples as these estimators require supplementary information on one or 
more auxiliary variables along with the information on a study variable to increase their 
relative effciencies. For example, when estimating the total household income, the age 
and total expenditure may be used as two auxiliary variables. A signifcant amount of re-
search work has been done in the literature of survey sampling to develop new improved 
estimators of the population parameters, which include the population mean, total, CDF, 
median, etc. Here, our focus is on the estimation of the fnite population CDF with the 
auxiliary information. Chambers and Dunstan (1986) considered estimation of the pop-
ulation CDF and quantiles with the model-based approach. On similar lines, Rao, Kovar 
and Mantel (1990) proposed ratio and difference/regression estimators for estimating 
the CDF under a general sampling scheme. Singh, Singh and Kozak (2008) considered 
the problem of estimating the CDF and quantiles with the use of auxiliary information 
at the estimation stage of a survey. To our knowledge, recent works on the CDF esti-
mation with auxiliary information may be seen in Tarima and Pavlov (2006), Martı́nez 
et al. (2010), Berger and Muñoz (2015), Mayor-Gallego, Moreno-Rebollo and Jimenez-´ 
Gamero. (2019), Hussain et al. (2020), Yaqub and Shabbir (2020) and Martı́nez, Rueda 
and Illescas (2022), to name a few. 

In survey sampling, when the available population is in the form of clusters, that 
is, households in villages and their members, then it is useful to employ CS instead of 
SRS. In CS, clusters are randomly selected (with a sampling scheme) from a population, 
and the data pertaining to a study variable are then collected from all of the units of the 
selected cluster. However, CS is less effcient than SRS when estimating a population 
parameter and the former restricts the spread of sampling units across the population. 
One possible solution is to increase the number of clusters in the sample, and then select 
representative samples via a sampling scheme from the sampled clusters. This sampling 
scheme has two stages. It is thus called two-stage CS (2SCS), where the frst-stage 
and second-stage units are called primary stage units (PSUs) and secondary stage units 
(SSUs), respectively. The 2SCS method is an improvement over CS when it may not be 
possible or diffcult to enumerate all the units of the selected clusters, thereby reducing 
the cost of the survey. A natural extension of a 2SCS is a three-stage CS (3SCS), where 
third-stage units are called tertiary stage units (TSUs). This scheme is adopted for inpa-
tients’ care cost estimation, where hospitals are selected at the frst stage, the selection 
of wards at the second stage, and the patients at the third stage. Moreover, in large-
scale health and demographic surveys, where the population is not only heterogeneous 
but also more graphically spread, both 2SCS and 3SCS schemes may be combined with 
the stratifed random sampling to get more representative samples, where the stratifying 
variable may be regions, rural and urban, plan and hilly regions, agro-climatic zones, 



      

             
             

       
            

             
           

              
          

             
            
            
           

            
             

             
             

             
           

           
              

  
                

          
               

         
           

             
           

              
         

                
            

            
              

            
            

             
  

69 Mohsin Abbas and Abdul Haq 

etc. For more details see, Cochran (1977), Deville and Särndal (1992), Hansen and Hur-
witz (1943), Lee, Lee and Shin (2016), Murthy (1967), Nafu, Oshungade and Adewara 
(2012), Rustagi (1978) and references cited therein. 

In the survey sampling literature, several authors have considered estimation of the 
population parameters under 2S and 2SCS schemes. Sukhatme et al. (1984) and Sahoo 
(1987) considered the estimation of the fnite population mean using regression-type es-
timators in 2S sampling. Smith (1969) studied the ratio estimator for estimation of the 
fnite population mean under multi-stage sampling. Särndal, Swensson and Wretman 
(2003) considered a regression estimator using 2S sampling under a variety of options. 
In another study, Nematollahi, Salehi and Aliakbari (2008) developed a new estimator 
of the population mean using 2SCS, where ranked-set sampling (RSS) was considered 
in the secondary sampling frame. Srivastava and Garg (2009) used multi-auxiliary infor-
mation for estimating the population mean in 2S sampling, and they proposed separate-
type general class of estimators. Following Nematollahi et al. (2008), Haq (2017b) has 
considered a hybrid RSS scheme in the secondary sampling frame for developing an 
improved estimator of the population mean in 2SCS. Recently, Haq, Abbas and Khan 
(2021) have considered estimation of the fnite population CDF under a complex survey 
sampling scheme, which includes 2SCS, 3SCS, stratifed 2SCS (S2SCS) and stratifed 
3SCS (S3SCS). Under these sampling schemes, they have derived unbiased CDF esti-
mators along with their variances, and the unbiased estimators of the variances of these 
CDF estimators. 

In this study, on the lines of Haq et al. (2021), we consider estimation of the f-
nite population CDF with auxiliary information under 2SCS/3SCS and S2SCS/S3SCS 
schemes. Following the works of Khoshnevisan et al. (2007) and Singh et al. (2009), we 
propose two families of classical ratio/product and exponential ratio/product-type esti-
mators for estimating the population CDF under the aforementioned sampling schemes. 
Moreover, on the lines of Sukhatme et al. (1984) and Sahoo (1987), regression/difference 
estimators CDF are also developed. Explicit mathematical expressions are obtained for 
the biases and mean squared errors (MSEs) of the proposed estimators. Real datasets are 
also considered for the application of the proposed estimators. 

The rest of the paper is as follows: In Section 2, CDF estimation is reviewed under 
2SCS and 3SCS schemes. In Section 3, we develop explicit mathematical expressions 
for the covariances of the CDF estimators based on 2SCS/3SCS and S2SCS/S3SCS. 
In addition, the unbiased estimators of the covariances of the CDF estimators are also 
derived. In Section 4, two families of estimators, say ratio/product and exponential 
ratio/product, are proposed for estimating the population CDF. An empirical study is 
conducted in Section 5. Finally, Section 6 summarizes the main fndings and concludes 
the paper. 



          

             
        

               
                 
                  

               
     

 
  

 
 

 
 

       
   

              
                

                    
               

              
   

  
   

     

                
              

 
    

 
 

 

      
 

 
 

 
       

 

  

   
   

       
    

     
 

        
      
   

  
       

    

70 Estimation of fnite population distribution function with auxiliary information... 

2.  Estimation  of  the  population  CDF  

In this section, we briefy review the CDF estimators under 2SCS/S2SCS and 3SCS/S3SCS, 
which will be used in the subsequent sections. 

2.1.  Two-stage  cluster  sampling  

The 2SCS uses two stages to select a sample. Assume that the target population, denoted 
by U , comprises N PSUs, where the ith PSU contains Mi SSUs for i = 1,2, . . . ,N. Let 
Yi, j denote the jth SSU that is present in the ith PSU, where j = 1,2, . . . ,Mi with Mi 

being the total number of SSUs within the ith PSU. Under 2SCS, the population CDF, 
F(y), may be written as 

N1
F(y) =  (1)

NM ∑ MiFi(y), 
i=1 

where 
N Mi 

M = 
1 ∑ Mi and Fi(y) =  

1 ∑ I(Yi, j ≤ y)
N i=1 Mi j=1 

are the average cluster size and the CDF computed from the ith PSU, respectively. 
In order to estimate F(y) under 2SCS, let n denote the number of PSUs selected in 

the frst stage, and let mi be the number of SSUs selected from the ith PSU. It is to be 
noted that, with the 2SCS scheme, the samples under both stages are selected using SRS 
without replacement. An estimator of F(y) under 2SCS, developed by Haq et al. (2021), 
is given by 

n n mi1 1 MiF̂2S(y) =  ∑ MiF̂i(y) =  ∑ ∑ I(Yi, j ≤ y), (2)
nM nM mii=1 i=1 j=1 

where I(·) is an indicator variable. It can be shown that F̂2S(y) is an unbiased estimator 
of F(y). The variance of F̂2S(y) along with its unbiased estimator are given by 

N 2λσY 
2 
,2b 1 ζiMi 

2σY,2iV (F̂2S(y)) = + ∑ and (3) 
nM2 nNM2 

i=1 mi 

ˆ 2 n ˆ 2λσY,2b 1 ζiMi 
2σY,2iṼ (F̂2S(y)) = + ∑ , (4) 

nM2 nNM2 
i=1 mi 

respectively, where 

1 N ° ˛2σ2 2 
Y,2b = ∑ MiFi(y) − MF(y) , σY,2i = Fi(y)(1 − Fi(y)),N − 1 i=1 

n1 ° ˛2 Mi(mi − 1)
σ̂Y 

2 
,2b = ∑ MiF̂i(y) − MF̂2S(y) , σ̂Y 

2 
,2i = F̂i(y)(1 − F̂i(y)), n − 1 i=1 mi(Mi − 1) 

˝ n ˙ (Mi − mi)λ = 1 − , and ζi = .
N (Mi − 1) 
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In an 2SCS scheme, two types of variations may be considered. The frst is the varia-
tion between the clusters, and the second is the variation within the clusters. In 2SCS, 

2 2σY,2b denotes the variance between clusters and σY,2i denotes the variance within the ith 
2 2cluster. Moreover, σ̂Y,2i is an unbiased estimator of σY,2i. 

2.2.  Three-stage  cluster  sampling  

The 3SCS requires samples to be selected in three different stages. In the frst stage, 
samples are selected from the PSUs; in the second stage, samples are selected from the 
SSUs of the selected PSUs; and, in the third stage, the tertiary units are selected from 
the selected SSUs. Similar to 2SCS, the SRS scheme may be used to select samples at 
three different stages of the 3SCS. 

Suppose that the target population U consists of N PSUs, where each PSU contains 
Mi SSUs, and each SSU has Ti j  TSUs. Let Yi j,k denote the kth TSU with the jth SSU 
of the ith PSU, where i = 1,2, . . . ,N, j = 1,2, . . . ,Mi, and k = 1,2, . . . ,Ti j. Under 3SCS, 
the population CDF, F(y), may be written as 

N Mi 

F(y) =  
NT 

1 

i 
∑ ∑ Ti jFi j(y), (5) 
=1 j=1 

where 
N Mi Ti j  

T = 
1 ∑ ∑ Ti j  and Fi j(y) =  

1 ∑ I(Yi j,k ≤ y).
N i=1 j=1 Ti j  k=1 

Here, T denotes the average cluster size and Fi j(y) be the CDF computed from the jth 
SSU of the ith PSU. 

In order to estimate F(y) under 3SCS, let n denote the number of PSUs selected in 
the frst-stage, let mi be the number of SSUs selected from the ith PSU, and let ti j  be the 
number of tertiary units selected from the jth SSU. An estimator of F(y) under 3SCS, 
developed by Haq et al. (2021), is given by 

n mi ti j  n mi1 Mi Ti j  1 MiF̂3S(y) =  ∑ ∑ ∑ I(Yi j,k ≤ y) =  ∑ ∑ Ti jF̂i j(y) (6)
nT mi nT mii=1 j=1 ti j  k=1 i=1 j=1 

It can be shown that F̂3S(y) is an unbiased estimator of F(y). The variance of F̂3S(y) 
along with its unbiased estimator are given by 

N 2 2λσY 
2 
,3b 1 λiMi 

2σY,3i 1 N Mi 
Mi ζi jTi j  

2σY,3i jV (F̂3S(y)) = + ∑ + ∑ ∑ and (7) 
nT 2 nNT 2 

i=1 mi nNT 2 
i=1 mi j=1 ti j  

ˆ 2 n σ2 n mi 2σ2λσY,3b 1 λiMi 
2 ˆY,3i 1 Mi ζi jTi j  ˆY,3i jṼ (F̂3S(y)) = + ∑ + ∑ ∑ , (8)
minT 2 nNT 2 

i=1 nNT 2 
i=1 mi j=1 ti j  



          

  

      
 

       
     

     
 

        
     

  
 
 

     
 

    
   

 

 
 

      
  

 
  

         
     

  
   

 
   

 
       

 
   

    
    

 
   

 
      

 
   

  
         

               
              

              
                 

                
      

     
   

 

   
    

 

        
   

      
              

               
            

           

 

   
 

72 Estimation of fnite population distribution function with auxiliary information... 

respectively, where 

N n ˜1 ˜ ° 2 1 ° 2σY 
2 
,3b = ∑ MiFi(y)− T F(y) , σ̂Y 

2 
,3b = ∑ MiF̂i(y)− T F̂3S(y) ,

N − 1 n− 1i=1 i=1 

Mi mi1 1 ˜ ° 22σY 
2 
,3i = ∑ (Ti jFi j(y)− Fi(y)) , σ̂Y 

2 
,3i = ∑ Ti jF̂i j(y)− F̂i(y) ,

Mi − 1 mi − 1j=1 j=1 

2 2 ti j(Ti j  − 1)
σY,3i j  = Fi j(y)(1 − Fi j(y)) , σ̂Y,3i j  = F̂i j(y)(1 − F̂i j(y)) , ,Ti j(ti j− 1) 

Mi mi 

Fi(y) =  
1 ∑ Ti jFi j(y) , F̂i(y) =  

1 ∑ Ti jF̂i j(y),Mi mij=1 j=1 ˙ ˆ˛ n ˝ mi Ti j  − ti jλ = 1 − , λi = 1 − , ζi j  = ,
N Mi Ti j  − 1 

2 2 2 2where σY,3b, σY,3i and σY,3i j  have their usual meanings. Moreover, σ̂Y,3i j  is an unbi-
2 2 2 2 2ased estimator of σY,3i j. But, σ̂Y,3b and σ̂Y,3i are biased estimators of σY,3b and σY,3i, 

respectively. For more detail, see Haq et al. (2021). 

2.3.  Stratifed  two-stage  cluster  sampling  

Suppose that the target population Y may be partitioned into L strata, where the hth 
stratum contains Nh units for h = 1,2, . . . ,L. In addition, there are Nh PSUs within the 
hth stratum, where the ith PSU contains Mi,h SSUs for i = 1,2, . . . ,Nh. Let Yi, j,h denote 
the jth SSU that is present in the ith PSU of the hth stratum, where j = 1,2, . . . ,Mi,h with 
Mi,h be the total number of SSUs within the ith PSU. Then the population CDF, F(y), 
under S2SCS, may be written as 

L L 

F(y) =  ∑ WhFh(y) =  
1 ∑ NhMh Fh(y), (9)

∑L 
h=1 h=1 NhMh h=1 

where 
NhNhMh 1

Wh = , Fh(y) =  ∑ Mi,hFi,h(y),
∑L 

h=1 NhMh NhMh i=1 

Mi,h Nh 

Fi,h(y) =  
1 ∑ I(Yi, j,h ≤ y), Mh = 

1 ∑ Mi,h, (10)
Mi,h j=1 Nh i=1 

are computed for the hth stratum. 
In order to estimate F(y) under S2SCS, a two-stage cluster sample of size nh is 

selected from the hth stratum, where the sample sizes nh may be allocated using an 
allocation scheme, like proportional, equal or Neyman allocation. An estimator of F(y) 
under S2SCS, developed by Haq et al. (2021), is given by 

L 

F̂S2S(y) =  ∑ WhF̂2S,h(y), (11) 
h=1 



      

 

  

  
  

 

    
  

                
        

 

    
 

 

 
 

 
 

 

          
              

              

               
                

              

                 
                 

                
      

 

      

    
   

 

 

     
     

  

       
    

      
              

                 

73 Mohsin Abbas and Abdul Haq 

where 

ˆ ˆF2S,h(y) =  
1 ∑ 

nh 

Mi,hFi,h(y) and (12)
nhMh i=1 

F̂i,h(y) =  
1 m 

∑ 
i,h

I(Yi, j,h ≤ y). 
mi,h j=1 

It can be shown that F̂S2S(y) is an unbiased estimator of F(y). The variance of F̂S2S(y) 
along with its unbiased estimator are given by 

L 

V (F̂S2S(y)) = ∑ Wh 
2 V (F̂2S,h(y)) and (13) 

h=1 

L 
2Ṽ (F̂S2S(y)) = ∑ Wh Ṽ (F̂2S,h(y)), (14) 

h=1 

respectively. Note that the mathematical expressions of V (F̂2S,h(y)) and Ṽ (F̂2S,h(y)) 
(given in Eqs. (3) and (4)) are similar to V (F̂2S(y)) and Ṽ (F̂2S(y)), respectively, with 
the exception that the former are computed from the hth stratum for h = 1,2, . . . ,L. 

2.4.  Stratifed  three-stage  cluster  sampling  

Suppose that the target population U is partitioned into L strata, where the hth stratum 
contains Nh units for h = 1,2, . . . ,L. In addition, there are Nh PSUs in the hth stratum, 
where the ith PSU contains Mi,h SSUs for i = 1,2, . . . ,Nh. Moreover, each SSU contain 
Ti j,h TSUs for j = 1,2, . . . ,Mi,h. Let Yi j,k,h denote the kth TSU that is present in the jth 
SSU of the ith PSU within the hth stratum, where k = 1,2, . . . ,Ti j,h, and Ti j,h be the total 
number of TSUs within the jth SSU of the ith PSU. Then the population CDF, F(y), 
under S3SCS, may be written as 

L L 

F(y) =  ∑ WhFh(y) =  
∑L 

1 ∑ NhT h Fh(y), (15) 
h=1 h=1 NhT h h=1 

where 

Nh Mi,hNhT h 1
Wh = , Fh(y) =  ∑ ∑ Ti j,hFi j,h(y),

∑L 
h=1 NhT h NhT h i=1 j=1 

Ti j,h Nh Mi,h 

Fi j,h(y) =  
1 ∑ I(Yi j,k,h ≤ y), T h = 

1 ∑ ∑ Ti j,h. (16)
Ti j,h k=1 Nh i=1 j=1 

are computed for the hth stratum. 
In order to estimate F(y) with S3SCS, a stratifed three-stage cluster sample of size 

nh is selected from the hth stratum, where the sample size nh may be allocated with an 
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allocation scheme, like equal, proportional or Neyman allocation. An estimator of F(y) 
under S3SCS, developed by Haq et al. (2021), is given by 

L 

F̂S3S(y) =  ∑ WhF̂3S,h(y), (17) 
h=1 

where 

nh mi,h ti j,h1 Mi,h Ti j,hF̂3S,h(y) =  ∑ ∑ ∑ I(Yi j,k,h ≤ y), 
nhT h i mi,h j ti j,h k=1 =1 =1 

nh mi,h nh1 Mi,h 1 
= ∑ ∑ Ti j,hF̂i j,h(y) =  ∑ Mi,hF̂i,h(y), (18)

nhT h i=1 mi,h j=1 nhT h i=1 

and 
ti j,h mi,h 

F̂i j,h(y) =  
1 ∑ I(Yi j,k,h ≤ y), F̂i,h(y) =  

1 ∑ Ti j,hF̂i j,h(y). (19)
ti j,h k=1 mi,h j=1 

It can be shown that F̂S3S(y) is an unbiased estimator of F(y). The variance of F̂S3S(y) 
along with its unbiased estimator are given by 

L 

V (F̂S3S(y)) = ∑ Wh 
2 V (F̂3S,h(y)) and (20) 

h=1 

L 

Ṽ (F̂S3S(y)) = ∑ Wh 
2 Ṽ (F̂3S,h(y)), (21) 

h=1 

respectively. Note that the mathematical expressions of V (F̂3S,h(y)) and Ṽ (F̂3S,h(y)) 
(given in Eqs. (3) and (4)) are similar to V (F̂3S(y)) and Ṽ (F̂3S(y)), respectively, with the 
exception that the former are computed from the hth stratum for h = 1,2, . . . ,L, which 
can be found in Haq et al. (2021). 

3.  Covariance  computation  and  estimation  under  a  complex  survey  
sampling  

In this section, we develop explicit mathematical expressions for the covariances of the 
CDF estimators based on aforementioned complex survey sampling schemes. In addi-
tion, the unbiased estimators of these covariances of the CDF estimators are also derived, 
which may be used to develop regression-type estimators of the population CDF. 

3.1.  Two-stage  and  stratifed  two-stage  cluster  sampling  

Let Y be the study variable and let X be an auxiliary variable in a fnite population 
U . In order to estimate (F(y),F(x)) under 2SCS and S2SCS, let (F̂2S(y), F̂2S(x)) and 
(F̂S2S(y), F̂S2S(x)) be the respective CDF estimators that are based on (Y,X), respectively. 
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Lemma 1. Under 2SCS scheme, the covariance between F̂2S(y) and F̂2S(x), along with 

its unbiased estimator are given by 

N λiMi 
2σXY ,2iλσXY ,2b 1

C(F̂2S(y), F̂2S(x)) = ∑ and (22)+ 
nM2 nNM2 mii=1 

2σλiMi ˆXY,2i 

mi 

λσ̂XY,2b 
n1

C̃(F̂2S(y), F̂2S(x)) = ∑ 
i=1 

(23)+ , 
nM2 nNM2 

respectively, where 

N ° ˛ 
σXY,2b = 

1 ∑ (MiFi(y) − MF(y))(MiFi(x) − MF(x)) , (24)
N − 1 i=1 

n ˝ ˙1 
F̂i(y) − MF̂2S(y))(MiF̂i(x) − MF̂2S(x))n − 1 i=1 

Mi ° ˛ 
∑ 

∑σ̂XY,2b = (Mi (25), 

1
σXY,2i Mi − 1 j=1 

(I(Yi, j ≤ y) − Fi(y))(I(Xi, j ≤ x) − Fi(x)) , (26)= 

m ˝i 

∑ (I(Yi, j ≤ y) − F̂i(y))(I(Xi, j ≤ x) − F̂i(x))mi − 1 j=1 

˙1
σ̂XY,2i = . (27) 

Proof. Here, σXY,2b and σXY,2i have their usual meanings. The proof of this Lemma may 
be seen in the Appendix. 

Lemma 2. Under S2SCS scheme, the covariance between F̂S2S(y) and F̂S2S(x), along 

with its unbiased estimator are given by 

L 

W 2 
h C(F̂2S,h(y),C(F̂S2S(y), F̂S2S(x)) = ∑ F̂2S,h(x)) and (28) 

h=1 

L 

Wh 
2C̃(F̂S2S(y), F̂S2S(x)) = C̃(F̂2S,h(y), F̂2S,h(x)),∑ (29) 

h=1 

respectively, where Wh is given in Eq. (10). 

Proof. The proof of Lemma 2 is similar to that of Lemma 1. Note that the mathemat-
ical expressions of C(F̂2S,h(y), F̂2S,h(x)) and C̃(F̂2S,h(y), F̂2S,h(x)) are similar to those of 
C(F̂2S(y), F̂2S(x)) and C̃(F̂2S(y), F̂2S(x)), respectively, with the exception that the former 
are computed from the hth stratum for h = 1,2, . . . ,L. 

3.2.  Three-stage  and  stratifed  three-stage  cluster  sampling  

In order to estimate (F(y),F(x)) under 3SCS and S3SCS, let (F̂3S(y), F̂3S(x)) and (F̂S3S(y), 
F̂S3S(x)) be the respective CDF estimators that are based on (Y,X), respectively. 



 

 

         

             

      

          
 

  

   
 

 
 

 
 

 
   

 

 

      
    

    
 

 
 

 
 

 
    

 

  

 

       
    

  
        

    

 
       

 

  
    

  
        

    

 

           
    

 

           
    

    

               
     

            

       

 

      
 

 

     
 

        

76 Estimation of fnite population distribution function with auxiliary information... 

Lemma 3. Under 3SCS scheme, the covariance between F̂3S(y) and F̂3S(x), along with 

its unbiased estimators are given by 

N N Mi˜ ° λσXY ,3b 1 λiMi 
2σXY ,3i 1 Mi λi jTi j  

2σXY ,3i j
C F̂3S(y), F̂3S(x) = + ∑ + ∑ ∑ , 

minT 
2 nNT 

2 
i=1 nNT 

2 
i=1 mi j=1 ti j  

(30) 

and 

˜ n 2σ n mi 2σ° λσ̂XY ,3b 1 λiMi ˆXY ,3i 1 Mi λi jTi j  ˆXY ,3i j
C̨  F̂3S(y), F̂3S(x) = + ∑ + ∑ ∑ , 

nT 
2 nNT 

2 
i=1 mi nNT 

2 
i=1 mi j=1 ti j  

(31) 

respectively, where 

N ˝ ˙ 
σXY,3b = 

1 ∑ (MiFi(y) − T F(y))(MiFi(x) − T F(x)) , (32)
N − 1 i=1 

1 ° 
σ̂XY,3b = ∑ 

n ˜ 
(MiF̂i(y) − T F̂3S(y))(MiF̂i(x) − T F̂3S(x)) , (33)

n − 1 i=1 

Mi ˝ ˙ 
σXY,3i = 

1 ∑ (Ti jFi j(y) − Fi(y))(Ti jFi j(x) − Fi(x)) , (34)
Mi − 1 j=1 

1 mi ˜ ° 
σ̂XY,3i = ∑ (Ti jF̂i j(y) − F̂i(y))(Ti jF̂i j(x) − F̂i(x)) , (35)

mi − 1 j=1 

Ti j  ˝ ˙ 
σXY,3i j  = 

1 ∑ (I(Yi j,k ≤ y) − Fi j(y))(I(Xi j,k ≤ x) − Fi j(x)) , (36)
Ti j  − 1 k=1 

1 ti j  °˜ 
σ̂XY,3i j  = ∑ (I(Yi j,k ≤ y) − F̂i j(y))(I(Xi j,k ≤ x) − F̂i j(x)) , (37)

ti j  − 1 k=1 

and λi j  = (1 − ti j/Ti j). 

Proof. Here, σXY,3b and σXY,3i have their usual meanings. The proof of this Lemma may 
be seen in the Appendix. 

Lemma 4. Under S3SCS scheme, the covariance between F̂S3S(y) and F̂S3S(x), along 

with its unbiased estimator are given by 

L 

C(F̂S3S(y), F̂S3S(x)) = ∑ Wh 
2 C(F̂3S,h(y), F̂3S,h(x)) and (38) 

h=1 

L 
2˛ ˛C(F̂S3S(y), F̂S3S(x)) = ∑ Wh C(F̂3S,h(y), F̂3S,h(x)), (39) 

h=1 

respectively, where Wh is given in Eq. (16). 



      

                
           

          
          

           
          

       
               
          

     
     

  

        

  
     

        
  

  

      
       

      
       

 
   

 
   

 

     
   

                 
   

              
         

 
   

     

                  
              

                

77 Mohsin Abbas and Abdul Haq 

Proof. The proof of Lemma 4 is similar to that of Lemma 3. Note that the mathemat-
ical expressions of C(F̂3S,h(y), F̂3S,h(x)) and C̃(F̂3S,h(y), F̂3S,h(x)) are similar to those of 
C(F̂3S(y), F̂3S(x)) and C̃(F̂3S(y), F̂3S(x)), respectively, with the exception that the former 
are computed from the hth stratum for h = 1,2, . . . ,L. 

4.  The  CDF  estimation  with  auxiliary  information  

In this section, we develop two auxiliary-information-based families of estimators, say 
ratio/product and exponential ratio/product, for estimating the population CDF F(y) un-
der the aforementioned complex survey sampling schemes. 

In order to obtain the biases and MSEs of the proposed families of estimators of 
F(y), we may consider the following relative error terms: Let 

F̂S(y) − F(y) F̂S(x) − F(x)
ξ0 = and ξ1 = ,

F(y) F(x) 

such that E(ξ0) =  E(ξ1) =  0. Let us denote 
°˛ ˙˝r ˛ ˝sF̂S(y) − F(y) F̂S(x) − F(x)

Vrs = E (ξ0 
rξ1 

s) =  E , (40)
F(y) F(x) 

which gives 

˛ ˆ ˝2FS(y) − F(y) V (F̂S(y))V20 = E(ξ0)
2 = E = ,

F(y) (F(y))2 

˛ ˆ ˝2FS(x) − F(x) V (F̂S(x))V02 = E(ξ1)
2 = E = ,

F(x) (F(x))2 

ˆ˛ ˝˛  ˝ˇ 
F̂S(y) − F(y) F̂S(x) − F(x) C(F̂S(y), F̂S(x))V11 = E(ξ0ξ1) =  E = ,

F(y) F(x) F(y)F(x) 

where F̂S denotes an CDF estimator based on an S sampling scheme, where S = 2S, S2S, 
3S and S3S. 

4.1.  First  proposed  family  of  CDF  estimators  

On the lines of Khoshnevisan et al. (2007), we propose a family of ratio/product-type 
estimators for estimating the population CDF F(y), given by 

˛ ˝gaF(x)+  b
F̂R(y) =  F̂S(y) , (41)

α(aF̂S(x)+  b)+(1 − α)(aF(x)+  b) 

where a ̸= 0 and b are either real numbers or functions of the known parameters of the 
auxiliary variable X such as coeffcient of variation (CX ), correlation coeffcient (ρXY ), 
coeffcient of skewness (β1,X ) and coeffcient of kurtosis (β2,X ) etc. Here, g ∈ {−1,1} 



 

               
                

                
             

            
           

     

               
   

 
  

           

  
 

     

    

    

 

   

   

  
 

 
   

 

78 Estimation of fnite population distribution function with auxiliary information... 

and ˜ (0 ˜ ˜ ˜ 1) are suitably chosen scalars which make the MSE of F̂R(y) minimum. 
It is possible to develop different estimators of F̂R(y) with suitable choices of a, b, g and 
˜ . In Table 1, some members of F̂R(y) are given for different values of a, b, ˜ , and g. 

In order to derive approximate mathematical expressions for the bias and MSE of 
F̂R(y), we can write F̂S(y) = F(y)(1 +° 0) and F̂S(x) = F(x)(1 +° 1). Express the right-
hand side (RHS) of (41) in terms of ° s to get: 

F̂R(y) = F(y)(1 +° 0)(1 +˜˛°1)
−g, (42) 

where ˛ = aF(x)/(aF(x)+b). Expand the RHS of Eq. (42) and retain terms up to 2nd 
power of ° s, we have 

˜ 
g(g +1) 

˜
F̂R(y) ˛ F(y) 1+° 0 − ̃ ˛g° 1 + ˜2˛2° 1

2 − ̃ ˛g° 0 ° 1 (43)
2 

Take expectation on both sides of Eq. (43) after subtracting F(y) on both sides to get the 
bias of F̂R(y) up to the frst order of approximation, which is given by 

°
g(g +1) 

˜ 

Bias(F̂R(y)) ˛ F(y) ˜2˛2V02 − ̃ °gV11 . (44)
2 

From Eq. (43), we can write 

F̂R(y)− F(y)° F(y)(˛0 − ̃ °g˛1) (45) 

Take square on both sides of Eq. (45) and then taking its expectation to get the MSE of 
F̂R(y) under frst order of approximation, which is given by 

MSE(F̂R(y)) ° F2(y)
˛
V20 +˜2°2g2V02 − 2˜°gV11

˝
, (46) 

The minimum MSE at the optimum value of (˜°g), say (˜°g)opt =V11/V02, is given by 

2 ˜° 
V11MSEmin(F̂R(y))° F2(y) V20 − (47)
V02 

° F2(y)V20 (1 − ̋ 2), (48) 

where ˝ =V11/ 
˛ 

V20V02 is the correlation coeffcient between F̂S(y) and F̂S(x) with an S 
sampling scheme. 

4.2.  Second  proposed  family of  CDF  estimators  

On the lines of Singh et al. (2009), we propose another family of exponential ratio/product-
type estimators for estimating the population CDF F(y), given by 

°
(agF(x)+b)− (agF̂S(x)+b)

˜
F̂E (y) =  F̂S(y) exp , (49)

(aF(x)+b)+(aF̂S(x)+b) 
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where a = 0 and b are either real numbers or functions of the known parameters of the 
auxiliary variable X , but g ° {−1,1}. In Table 1, some members of F̂E (y) are given for 
different values of a, b, ˜ , and g. 

In order to obtain the bias and MSE of F̂E (y), express F̂E (y) in terms of ° s to get 
˜ 

agF(x) −agF(x)(1 + ° 1) 
° 

F̂E (y) =  F(y)(1 + ° 0) exp 
aF(x)+  2b + aF(x)(1 + ° 1) 

= F(y)(1 + ° 0) exp
˛
−˛g° 1(1 + ̨ °1)

−1˝ , (50) 

where ˛ = aF(x)/(2aF(x)+  2b). After expanding the RHS of Eq. (50) up to 2nd power 
of ° s, we have 

˜ 
g(g + 1) 

° 

F̂E (y) ˜ F(y) 1 + ̃ 0 − °g˜1 + ° 2˜1
2 − °g˜0˜1 . (51)

2 

Take expectation after subtracting F(y) on both sides of Eq. (51) to get the bias of F̂E (y), 
which under the frst order of approximation is given by 

˜
g(g + 1) 

° 

Bias(F̂E (y)) ˜ F(y) ˜ 2V02 − ̃ gV11 . (52)
2 

From Eq. (51), we can write 

F̂E (y) − F(y) ˜ F(y)(° 0 − ̃ g° 1). (53) 

Take square on both sides of Eq. (53), and then take it expectation to get the MSE of 
F̂E (y) under the frst order of approximation, which is given by 

MSE(F̂E (y)) ˜ F(y)2 ˛V20 + ̃ 2g2V02 − 2˜ gV11
˝
. (54) 

The minimum MSE at the optimum value of (˜ g), say (˜ g)opt = V11/V02, is given by 

MSEmin(F̂E (y)) ˜ F2(y)V20 (1 − ̨ 2), (55) 

which is equivalent to that of F̂R(y). 
In addition to these estimators a  large number of estimators can also be generated 

from the proposed families of estimators F̂R(y) and F̂E (y) given in Eq. (41) and Eq. (49) 
respectively, just by putting values of a, b, ˜ , and g. 

It is observed that the expression of the frst order approximation of bias and 
MSE/Variance of the given member of the families F̂R(y) and F̂E (y) can be obtained 
by mere substituting the values of ˜ , g, a and b in (Eq. (44) and Eq. (46)) and (Eq. (52) 
and Eq. (54)), respectively. It is to be noted that, based on S  scheme, the proposed fam-
ilies of estimators, F̂R(y) and F̂E (y), are more precise than F̂R(y) when the following 
conditions hold in practice: 

2V11MSE(F̂R(y)) < V (F̂S(y)) =̃  ° < ,
(˜gV02) 
2V11MSE(F̂E (y)) < V (F̂S(y)) =̃  ˛ < . (56)
(gV02) 



          

          

       

    
              

    
             

    
              

    
             

    
                 

    
                 

    
                 

    
            

     

    
             

                

              

             
           

                
     

                
       

   
  

                
              

         
 

        

80 Estimation of fnite population distribution function with auxiliary information... 

Table 1. Some members of proposed families of CDF estimators. 

F̂R(y) 

F̂(1)
(y) =  F̂S(y)R 

F̂(2)
(y) =  F̂S(y)R 

F̂(3)
(y) =  F̂S(y)R 

F̂(4)
(y) =  F̂S(y)R 

F̂(5)
(y) =  F̂S(y)R 

F̂(6)
(y) =  F̂S(y)R 

˜ 

˜ 

˜ 

˜ 

˜ 

˜ 

° 
F(x) 
F̂S(x) 

° 
F(x)+ρXY 
F̂S(x)+ρXY 

° 
F(x)+CX 
F̂S(x)+CX 

° 
F(x)+β2,X 

F̂S(x)+β2,X 

CX F(x)+β2,X 

CX F̂S(x)+β2,X 

β2,X F(x)+CX 

β2,X F̂S(x)+CX 

° 

° 

F̂E (y) 

F̂(1)
(y) =  F̂S(y) exp E 

F̂(2)
(y) =  F̂S(y) exp E 

F̂(3)
(y) =  F̂S(y) exp E 

F̂(4)
(y) =  F̂S(y) exp E 

F̂(5)
(y) =  F̂S(y) exp E 

F̂(6)
(y) =  F̂S(y) exp E 

˜ 

˜ 

˜ 

˜ 

˜ 

˜ 

° 
F(x)−F̂S(x) 
F(x)+F̂S(x) 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2ρXY 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2CX 

° 
F(x)−F̂S(x) 

F(x)+F̂S(x)+2β2,X 

CX (F(x)−F̂S(x)) 
CX (F(x)+F̂S(x))+2β2,X 

β2,X (F(x)−F̂S(x)) 
β2,X (F(x)+F̂S(x))+2CX 

° 

° 

g α 

1 1  

1 1  

1 1  

1 1  

1 1  

1 1  

a 

1 

1 

1 

1 

CX 

β2,X 

b 

0 

ρXY 

CX 

β2,X 

β2,X 

CX 

˜ ° ˜ ° 
F̂(7) ρXY F(x)+CX F̂(7) ρXY (F(x)−F̂S(x))(y) =  F̂S(y) (y) =  F̂S(y) exp 1 1  ρXY CXR ρXY F̂S(x)+CX E ρXY (F(x)+F̂S(x))+2CX 

˜ ° ˜ ° 
F̂(8) CX F(x)+ρXY F̂(8) CX (F(x)−F̂S(x)) 

R (y) =  F̂S(y) E (y) =  F̂S(y) exp 1 1  CX ρXYCX F̂S(x)+ρXY CX (F(x)+F̂S(x))+2ρXY 

˜ ° ˜ ° 
F̂(9) F(x)+β1,X F̂(9) F(x)−F̂S(x)(y) =  F̂S(y) (y) =  F̂S(y) exp 1 1 1R F̂S(x)+β1,X E F(x)+F̂S(x)+2β1,X 

β1,X 

ρXY is correlation coeffcient between X and Y , CX is coeffcient of variation of X 

β1,X is coeffcient of skewness of X , β2,X is coeffcient of kurtosis of X 

4.3.  Difference  and  regression  CDF  estimators  

It is possible to further enhance the precision of the aforementioned families of esti-
mators (F̂S(y), F̂S(x)) when the supplementary information in terms of the covariance 
between the CDF estimators based on Y and X , and on the variance of the CDF estima-
tor of X are utilized. 

Under a sampling scheme S, let β denote the ratio of the covariance of F̂S(y) and 
F̂S(x) to the variance of F̂S(x), i.e. 

C(F̂S(y), F̂S(x))βS = . (57)
V (F̂S(x)) 

In addition, it is also possible to have information available on the population CDF of X , 
say F(x). The difference estimator of the population CDF F(y), say F̂D(y), that requires 
information on βS, F̂S(y) and F̂S(x) is given by 

˛ ˝ 
F̂D(y) =  F̂S(y)+  βS F(x) − F̂S(x) , (58) 



      

                 
       
                 

      

       

                 
     

         

               
     

       

            
                  

                    
               

            
 

   
 

               
          

              
 

            
         

 
        

                 
   

         

              
              

  

81 Mohsin Abbas and Abdul Haq 

where F̂D(y) is a linear combination of F̂S(y) and F̂S(x). It can easily be shown that the 
F̂D(y) is an unbiased estimator of F(y). 

In order to obtain the variance of F̂D(y), we express F̂D(y) in terms of ξ s, i.e. 

F̂D(y) =  F(y)(1 + ξ0) − βSF(x)ξ1 

F̂D(y) − F(y) =  F(y)ξ0 − βSF(x)ξ1. (59) 

Take square on both sides of Eq. (59) and then apply expectation to get the variance of 
F̂D(y), which is given by 

V (F̂D(y)) = F2(y)V20 + βS
2F2(x)V02 − 2βSF(x)F(y)V11. (60) 

The simplifed expression for the variance of F̂D(y), after replacing the value of βS into 
V (F̂D(y)), is given by 

V (F̂D(y)) = F2(y)V20(1 − ρ2), (61) 

which is equivalent to the minimum MSE of F̂R(y) and F̂E (y). 
It is to be noted that the value of βS may be taken from previous studies, surveys or 

census. In case the value of βS is not known, then it is possible to estimate it with a large 
sample size. The estimated value of βS may be obtained by replacing the covariance of 
(F̂S(y), F̂S(x)) and the variance of F̂S(x) by their respective unbiased estimators, which 
gives 

C̃(F̂S(y), F̂S(x))β̂S = . (62)
Ṽ (F̂S(x)) 

It is a well-known fact under SRS that the sample covariance C̃(F̂S(y), F̂S(x)) and sample 
variance Ṽ (F̂S(x)) are weakly-consistent estimators of C(F̂S(y), F̂S(x)) and V (F̂S(x)), 
respectively. Thus, for a large sample size, β̂S is also a weakly-consistent estimator of 
βS. 

In the survey sampling literature, the difference estimator F̂D(y) with estimated value 
of βS is called a regression estimator, given by 

° ˛ 
F̂Reg(y) =  F̂S(y)+  β̂S F(x) − F̂S(x) . (63) 

It can be shown that F̂Reg(y) is a biased estimator of F(y). Moreover, for a large sample 
size, we have 

MSE(F̂Reg(y)) ≈ V (F̂D(y)) = F2(y)V20(1 − ρ2). (64) 

5.  Empirical  Study  

In this section, real datasets are considered and the relative effciencies (REs) of the 
proposed CDF estimators of F(y) are computed with respect to F̂S(y) based on sampling 
scheme S. 
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5.1.  Population  I  

This dataset is taken from Social & Household Integrated Economic Survey (HIES), con-
ducted in Pakistan during the years 2011-12, which comprises 14722 households (after 
removing the missing observations). The entire dataset is partitioned into two strata, 
where Stratum-I and Stratum-II correspond to Urban and Rural (U-R) areas. These 
areas are further partitioned into four provinces of Pakistan, namely Punjab, Khyber 
Pakhtunkhwa (KPK), Sindh and Balochistan, where (Punjab - KPK) and (Sindh - Balochis-
tan) belong to Stratum-I and Stratum-II, respectively. Moreover, where each province is 
further partitioned into different enumeration blocks (EBs). This dataset may be down-
loaded from the Pakistan Bureau of Statistics web-page via the link: https://www.pbs. 
gov.pk/content/microdata. The study variable Y and the auxiliary variable X are total 
income and total expenditure of a household (HH), respectively. Here, our objective is 
to estimate the proportion of HH whose yearly total income is less than or equal to y = 
$1.9 × 365, which is considered as the poverty line for Pakistan according to the World 
bank’s website: https://data.worldbank.org/indicator/SI.POV.NAHC?locations=PK. The 
yearly total income is converted from USD to PKR by multiplying 1.9 × 365 × 86.3198 
PKR. For example, if the total income of a HH is less than or equal to 59862.7813 
PKR, it is then considered on or below the poverty line using auxiliary variable X while 
x = 226386.0582 (yearly average expenditure of a HH). Note that (province and yearly 
total income of a HH) and (province, EB and yearly total income of a HH) are taken as 
(PSU and SSU) and (PSU, SSU and TSU) for 2SCS/S2SCS and 3SCS/S3SCS, respec-
tively. The values of the population parameters are given below: 

F(y) = 0.0474,F(x) = 0.6587,CX = 0.8161, 

ρXY = 0.7662,β1,X = 4.5387 and β2,X = 43.4005. 

The values of Vrs based on an S sampling scheme are computed and then reported in 
Table 2, where 

˝˜° ˛r ° 
F̂S(y)− F(y) F̂S(x)− F(x) ̨ s 

Vrs = E (ξ0 
rξ1 

s) =  E ,
F(y) F(x) 

where r,s = 0, 1, 2. 

Table 2. The Vrs values based on scheme S using Population-I. 

S Str − Variable PSU SSU TSU n mi ti j  V20 V02 V11 

2SCS 

S2SCS 

3SCS 

S3SCS 

−− 

U/R 

−− 

U/R 

Province 

Province 

Province 

Province 

HH 

HH 

EB 

EB 

−− 

−− 

HH 

HH 

3 

1 

3 

1 

40 

40 

15 

15 

−− 

−− 

4 

4 

0.31145 

0.44729 

0.27805 

0.39719 

0.03899 

0.12185 

0.04275 

0.12749 

0.04976 

0.10904 

0.05609 

0.11854 

Note: Stratifying is abbreviated as Str. 

https://data.worldbank.org/indicator/SI.POV.NAHC?locations=PK
https://www.pbs
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5.2.  Population  II  

Another dataset is taken from Center of Disease Control (CDC), which is related to the 
Second National Health and Nutrition Examination Survey (NHANES-II). The NHANES 
sample (comprising 10351 units) represents the total non-institutionalized civilian (NIC) 
US population that resides in 50 states and the district of Columbia. This dataset is 
divided into four regions (REGs), namely southern, western, mid-western and north-
eastern, where each REG is further divided into different locations (LOCs). The en-
tire dataset is stratifed into two strata, which are formed by generating random num-
bers from Bernoulli distribution with 0.50 as the probability of success, where 0 and 
1 correspond to Stratum-I and Stratum-II, respectively. This dataset is available at 
the https://www.stata-press.com/data/r15/svy.html. Here, the body mass index (BMI) 
is taken as the study variable Y and weight is taken as the auxiliary variable X . Our 
objective is to estimate the proportion of people (in the NIC US population) that are 
under-weight, i.e., an individual is classifed as under-weight if the BMI values are less 
than or equal to y = 18.50 using auxiliary variable X while x = 71.8975 (average weight 
of NIC US population) under sampling scheme S. Note that the (REG and BMI) and 
(REG, LOC and BMI) are taken as (PSU and SSU) and (PSU, SSU and TSU) for the 
2SCS/S2SCS and 3SCS/S3SCS, respectively. The values of the population parameters 
are given below: 

F(y) = 0.0318,F(x) = 0.5401,CX = 0.2136, 

ρXY = 0.8338,β1,X = 0.7364 and β2,X = 4.0614. 

The values of Vrs based on an sampling scheme S are computed and then reported in 
Table 3, where 

˝˜° ˛r ° ˛sF̂S(y)− F(y) F̂S(x)− F(x)
Vrs = E (ξ0 

rξ1 
s) =  E ,

F(y) F(x) 

where r,s = 0, 1, 2. 

Table 3. The Vrs values based on scheme S using Population-II. 

S Str − Variable PSU SSU TSU n mi ti j  V20 V02 V11 

2SCS 

S2SCS 

3SCS 

S3SCS 

−− 

0/1 

−− 

0/1 

REG 

REG 

REG 

REG 

BMI 
BMI 
LOC 

LOC 

−− 

−− 

BMI 
BMI 

3 

3 

3 

3 

50 

50 

3 

3 

−− 

−− 

50 

50 

0.20634 

0.10207 

0.07641 

0.03714 

0.00721 

0.00359 

0.00892 

0.00476 

0.00766 

0.00386 

0.00937 

0.00478 

Using the aforementioned datasets, the REs of the CDF estimators based on a sam-
pling scheme S are computed with different values of n, mi and ti j. The REs of the 

https://www.stata-press.com/data/r15/svy.html
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proposed CDF estimators of F(y) with auxiliary information with respect to usual unbi-
ased CDF estimator of F̂S(y) without auxiliary information are given by 

V (F̂S(y)) V (F̂S(y)) V (F̂S(y))RER = , REE = , RED = , (65)
MSE(F̂(t)

(y)) MSE(F̂(t)
(y)) V (F̂D(y))R E 

where t = 1,2, . . . ,9. The REs of these CDF estimators are reported in Tables 4 and 5. 

Table 4. REs of proposed CDF estimators with respect to F̂S(y) using Population-I. 

F̂R(y) 2SCS S2SCS 3SCS S3SCS F̂E (y) 2SCS S2SCS 3SCS S3SCS 

F̂(1) F̂(1)
(y) 1.2412 1.2741 1.3328 1.3810 (y) 1.1474 1.2131 1.1952 1.2791R E 

F̂(2) F̂(2)
(y) 1.1376 1.2007 1.1815 1.2616 (y) 1.0720 1.1088 1.0929 1.1374R E 

F̂(3) F̂(3)
(y) 1.1335 1.1953 1.1758 1.2540 (y) 1.0697 1.1053 1.0898 1.1329R E 

F̂(4) F̂(4)
(y) 1.0048 1.0073 1.0060 1.0089 (y) 1.0024 1.0036 1.0030 1.0045R E 

F̂(5) F̂(5)
(y) 1.0039 1.0060 1.0049 1.0073 (y) 1.0020 1.0030 1.0025 1.0037R E 

F̂(6) F̂(6)
(y) 1.2381 1.2764 1.3279 1.3829 (y) 1.1438 1.2087 1.1902 1.2728R E 

F̂(7) F̂(7)
(y) 1.1158 1.1717 1.1517 1.2213 (y) 1.0599 1.0908 1.0770 1.1140R E 

F̂(8) F̂(8)
(y) 1.1242 1.1830 1.1631 1.2369 (y) 1.0645 1.0976 1.0830 1.1228R E 

F̂(9) F̂(9)
(y) 1.0400 1.0609 1.0512 1.0758 (y) 1.0201 1.0307 1.0256 1.0379R E 

F̂D(y) 1.2562 1.2790 1.3600 1.3841 

Table 5. REs of proposed CDF estimators with respect to F̂S(y) using Population-II. 

F̂R(y) 2SCS S2SCS 3SCS S3SCS F̂E (y) 2SCS S2SCS 3SCS S3SCS 

F̂(1)
(y)R 1.0409 1.0421 1.1473 1.1488 F̂(1)

(y)E 1.0292 1.0299 1.1030 1.1072 

F̂(2)
(y)R 1.0244 1.0249 1.0850 1.0887 F̂(2)

(y)E 1.0134 1.0137 1.0457 1.0479 

F̂(3)
(y)R 1.0365 1.0375 1.1309 1.1349 F̂(3)

(y)E 1.0226 1.0231 1.0786 1.0821 

F̂(4)
(y)R 1.0083 1.0085 1.0279 1.0293 F̂(4)

(y)E 1.0043 1.0043 1.0142 1.0149 

F̂(5)
(y)R 1.0020 1.0021 1.0067 1.0071 F̂(5)

(y)E 1.0010 1.0010 1.0034 1.0035 

F̂(6)
(y)R 1.0402 1.0413 1.1448 1.1473 F̂(6)

(y)E 1.0273 1.0279 1.0958 1.0999 

F̂(7)
(y)R 1.0355 1.0364 1.1269 1.1310 F̂(7)

(y)E 1.0216 1.0221 1.0749 1.0783 

F̂(8)
(y)R 1.0086 1.0088 1.0289 1.0303 F̂(8)

(y)E 1.0044 1.0045 1.0147 1.0154 

F̂(9)
(y)R 1.0258 1.0264 1.0903 1.0942 F̂(9)

(y)E 1.0143 1.0146 1.0489 1.0513 

F̂D(y) 1.0410 1.0424 1.1477 1.1488 



      

             
             

                 
             

              
              

               
                
    
                

               
           

                
             

    

              
             

        
            

            
              

             
    

                
              

             
             

              
            
              

 

              
           

85 Mohsin Abbas and Abdul Haq 

It can be seen that the proposed CDF estimators under complex survey sampling 
with auxiliary information are slightly more effcient than those that are without the 
auxiliary information, that is, all values of the REs are greater than one. It can also be 
seen that the proposed CDF estimators under a sampling scheme S with stratifcation 
are slightly more effcient than those without stratifcation and the REs tend to increase 
with increasing the sampling stages. Generally, with an increase in the sample size at 
the primary, secondary or tertiary stage of sampling, the REs may tend to increase and 
vice versa. Among all estimators, as expected, the REs of F̂D(y) are higher than those of 
other considered CDF estimators. 

It is to be noted that the proposed families of estimators, F̂R(y) and F̂E (y), are condi-
tionally better than F̂S(y), i.e. when the conditions given in Eq. (56) hold. However, the 
difference and regression estimators, F̂D(y) and F̂Reg(y), respectively, are always more 
precise than F̂S(y), F̂R(y) and F̂E (y). In usual practice, if no information is available to 
check these conditions, it is preferable to use F̂Reg(y) when estimating the population 
CDF under scheme S. 

6.  Conclusion  

In this paper, we have considered the problem of estimating the fnite population CDF 
in 2SCS and 3SCS schemes with and without stratifcation. Two families of classical 
ratio/product-type and exponential ratio/product-type CDF estimators have been pro-
posed that require supplementary information on a single auxiliary variable. In addition, 
difference and regression estimators of the CDF have also been proposed. Explicit math-
ematical expressions of the biases and MSEs of the proposed CDF estimators have been 
developed under frst order of the approximation. Real datasets were also considered to 
support the proposed theory. 

Along the lines of Nematollahi et al. (2008) and Haq et al. (2021), it is also possi-
ble to increase the precision of proposed families of the CDF estimators by employing 
RSS and double RSS schemes in the secondary and tertiary sampling frames. Moreover, 
the current work may be extended to develop new CDF estimators that require supple-
mentary information on two or more auxiliary variables. In addition, it may be possible 
to develop the CDF estimators when using probability proportional to size sampling 
to select units at the frst stage of sampling under the 2SCS/3SCS and S2SCS/S3SCS 
schemes. 
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Appendix  

In this Appendix, we present the proofs of the Lemmas in Section 3. 

1:  Proof  of  Lemma  1  

Here, the indices 1 and 2 are used for the frst-stage and second-stage of sampling under 
2SCS, respectively. 

1. The covariance between F̂2S(y) and F̂2S(x) can be written as: 

C(F̂2S(y), F̂2S(x)) = C1[E2(F̂2S(y), F̂2S(x))] + E1[C2(F̂2S(y), F̂2S(x))]. (66) 

It can be shown that E2(F̂2S(y)) = ∑n
i=1 MiFi(y)/(nM). Based on this result, we 

have ˛ ˝ ° n n˜ 1 1 λσXY,2bC1 E2(F̂2S(y), F̂2S(x)) = C1 ∑ ∑ MiFi(x) = ,MiFi(y), (67)
nM i=1 nM i=1 nM2 

˙ ˆ 
n˜ ° 1

E1 C2(F̂2S(y), F̂2S(x)) = E1 ∑ Mi 
2 C2(F̂i(y), F̂i(x)) , 

n2M2 
i=1 

N1 λiMi 
2σXY ,2i 

= ∑ , (68)
nNM2 

i=1 mi 

which completes the proof. 
ˇ ˘ 

2. An unbiased estimator of C F̂2S(y), F̂2S(x) is given by 

∑ 
n �ˇ ˘ λσ̂XY,2b 1 λiMi 

2σ̂XY,2iC F̂2S(y), F̂2S(x) = + , (69) 
nM2 nNM2 

i=1 mi 

From Eq. (25), we can write 
˙ ˆ 

n 

σ̂XY,2b = 
n 1 ∑(MiF̂i(y)MiF̂i(x)) − MF̂2S(y)MF̂2S(x) . (70)

n − 1 n i=1 

Consider the mathematical expectation on the RHS of Eq. (70) to get: 
˙ ˆ ˙ ˆ 

n n1 ˇ ˘ 1 ˇ ˘ 
E ∑ MiF̂i(y)MiF̂i(x) = E1 ∑ E2 MiF̂i(y)MiF̂i(x)n ni=1 i=1 ˙ 

n1 ˇ ˘ 
= E1 ∑ C2(MiF̂i(y),MiF̂i(x))n i=1 ˆ 

n1 ˇ ˘ 
+ ∑ E2(MiF̂i(y))E2(MiF̂i(x))n i=1 



      

    
  

   
  

   
  

   

 

 
 

  
 

  

   
 

  

   
  

              
  

 
  

    
  

          

      

 
  

 

    

 
      

 
     

 

            

 
  

            
   

 
 

  
 

  

      
 

             

    

           

             
       

 
 

   

    

87 Mohsin Abbas and Abdul Haq 

n ˛˝˜
1 

°
˜iMi 

2° XY ,2i 
= E1 n ˜ mi 

+ MiFi(y)MiFi(x) 
i=1 

N N1 ˜iMi 
2° XY ,2i 1 

= ˜ + ˜ MiFi(y)MiFi(x), (71)
N mi Ni=1 i=1 

and 

E 
˙ˆ

MF̂2S(y)MF̂2S(x)
ˇ˘ 

= C 
ˆ
MF̂2S(y),MF̂2S(x)

ˇ 
+ E(MF̂2S(y))E(MF̂2S(x)) 

N˜°XY ,2b 1 ˜iMi 
2° XY ,2i 

= + ˜ + MF(y)MF(x). (72)
n nN i=1 mi 

Using Eqs. (71) and (72) and then take the mathematical expectation of Eq. (25) 
to get: 

N1 ˜iMi 
2° XY ,2iE(°̂XY,2b) =  ° XY ,2b + ˜ , (73)

N i=1 mi 

which shows that °̂XY,2b is a  biased estimator of ° XY,2b. 

Similarly, from Eq. (27), we have 

°̂XY,2i = 

˜ 
1mi 

mi − 1 mi 

mi 
˝ ° 

I(Yi, j ° y)I(Xi, j ° x)
˛ 
− F̂i(y)F̂i(x) .˜ 

j=1 

(74) 

Consider the mathematical expectation on the RHS of Eq. (74) to get: 
˜ 

1 mi 
˝ 

E2 =˜ (I(Yi j  ° y)I(Xi j  ° x))
mi j=1 

1 
Mi 

Mi 

˜ 
j=1 

(I(Yi j  ° y)I(Xi j  ° x)) (75) 

E2 
˙
F̂i(y)F̂i(x)

˜ 
= C2 

°
F̂i(y), F̂i(x)

˛ 
− E2(F̂i(y))E2(F̂i(x)) 

˜i ° XY ,2i 
= − Fi(y)Fi(x). (76)

mi 

Using Eqs. (75)-(76) and then take the expectation of Eq. (27) to get 

E2(°̂XY,i) =  ° XY ,2i, (77) 

which shows that °̂XY,2i is an unbiased estimator of ° XY,2i. 

Now take the mathematical expectation of Eq. (69), and use the results given in 
Eqs. (73) and (77) to show that 

E 
˝
C
°
F̂2S(y), F̂2S(x)

˛ˆ 
= C

°
F̂2S(y), F̂2S(x)

˛
, (78)˙ 

which completes the proof. 
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2:  Proof  of  Lemma  3  

Here, the indices 1, 2 and 3 are used for the frst stage, second stage and third stage of 
sampling under 3SCS, respectively. 

1. The covariance between F̂3S(y) and F̂3S(x) can be written as: 

˜ ° ˛ ˝ ˛ ˝ 
C F̂3S(y), F̂3S(y) = C1E2E3 F̂3S(y), F̂3S(x) + E1C2E3 F̂3S(y), F̂3S(x)˛ ˝ 

+E1E2C3 F̂3S(y), F̂3S(x) . (79) 

iIt can be shown that E3(F̂3S(y)) = ∑n 
=1(Mi/mi)∑m

j=1 Ti jFi j(y)/nT . Based on thisi 
result, we have 

˙ ˆ 
n mi n mi˛ ˝ 1 Mi 1 MiC1E2E3 F̂3S(y), F̂3S(x) = C1E2 ∑ ∑ Ti jFi j(y), ∑ ∑ Ti jFi j(x) nT mi nT mii=1 j=1 i=1 j=1 ˙ ˆ 

n n1 1 λσXY ,3b 
= C1 ∑ MiFi(y), ∑ MiFi(x) = . (80) 

nT i=1 nT i=1 nT 2 

˙ ˆ ˝ n mi n mi˛ 1 Mi 1 MiE1C2E3 F̂3S(y), F̂3S(x) = E1C2 ∑ ∑ Ti jFi j(y), ∑ ∑ Ti jFi j(x) nT mi nT mii=1 j=1 i=1 j=1 ˙ ˆ 
n mi mi ˘1 ˇ 1 1

M2 = E1 ∑ i C2 ∑ Ti jFi j(y), mi 
∑ Ti jFi j(x) 

n2T 2 
i=1 mi j=1 j=1 ˙ ˆ 

n1 λiMi 
2σXY ,3i 

= E1 ∑ 
n2T 2 mii=1 

N1 λiMi 
2σXY ,3i 

= ∑ . (81)
nNT 2 

i=1 mi ˙ ˆ ˛ ˝ 1 n Mi 
2 mi ˜ ° 

ˆ ˆ T 2 ˆ ˆE1E2C3 F3S(y),F3S(x) = E1E2 ∑ ∑ i j  C3 Fi j(y),Fi j(x) 
n2T 2 m2 

i=1 i j=1 ˙ ˆ 
n 2 mi1 Mi λi jTi j  

2σXY ,3i j  
= E1E2 ∑ ∑ 

n2T 2 
i=1 m

2 
i j=1 ti j  ˙ ˆ 

n Mi 

= E1
1 Mi λi jTi j  

2σXY ,3i j∑ ∑ 
n2T 2 

i=1 mi j=1 ti j  

N Mi1 Mi λi jTi j  
2σXY ,3i j  

= ∑ ∑ . (82)
minNT 2 

i=1 j=1 ti j  

Add Eqs. (80)–(82), which completes the proof. 
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2. An unbiased estimator of C(F̂3S(y), F̂3S(x)) is given by 

n 2σ n mi 2σλσ̂XY ,3b 1 λiMi ˆXY ,3i 1 Mi λi jTi j  ˆXY ,3i j
C̃(F̂3S(y), F̂3S(x))= + ∑ + ∑ ∑ , 

nT 2 nNT 2 
i=1 mi nNT 2 

i=1 mi j=1 ti j  

(83) 
From Eq. (33), we can write 

° ˙ 
nn 1 ˛ ˝ ˛ ˝ 

σ̂XY,3b = ∑ MiF̂i(y)MiF̂i(x) − T F̂3S(y)T F̂3S(x) . (84)
n− 1 n i=1 

Consider the mathematical expectation of the RHS of the above equation to get: 
° ˙ ° ˙ 

n n ˝ 
E 

1 ∑(MiF̂i(y)MiF̂i(x)) = E1E2
1 ∑ E3 

˛ 
MiF̂i(y)MiF̂i(x)n ni=1 i=1 

° 
n1 ˛ ˛ ˝˝ 

= E1E2 ∑ C3 MiF̂i(y),MiF̂i(x)n i=1 

˙ 
1 ˇ 

+ ∑ 
n ˆ 

E3(MiF̂i(y))E3(MiF̂i(x))n i=1 

° ˘ � 
n 2 mi1 ˛ ˝Mi = E1E2 ∑ ∑ C3 F̂i j(y), F̂i j(x)m2n i=1 i j=1 

� �˙ 
n mi mi1 Mi Mi 

+ ∑ ∑ E3(Ti jF̂i j(y)) ∑ E3(Ti jF̂i j(x))n mi mii=1 j=1 j=1 

° ˘ � 
n 2 miMi λi jTi j  

2σXY ,3i j1 ∑= E1E2 2 ∑n i=1 mi j=1 ti j  

� �˙ 
n mi mi1 Mi Mi 

+ ∑ ∑ Ti jFi j(y) ∑ Ti jFi j(x)n mi mii=1 j=1 j=1 

° ˘ � 
n MiMi λi jTi j  

2σXY ,3i j1 ∑= E1 ∑n i=1 mi j=1 ti j  

� ˘ ��˙ 
n mi mi1 Mi Mi 

+ ∑ E2 ∑ Ti jFi j(y) ∑ Ti jFi j(x)n mi mii=1 j=1 j=1 
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˜ ° ˛ 
n MiMi λi jTi j  

2σXY ,3i j  λiMi 
2σXY ,3i 

= E1
1 ∑ ∑ + 
n i=1 mi j=1 ti j  mi ˆ 

1 ˙ 
+ ∑ 

n ˝ 
MiFi(y)MiFi(x)n i=1 

N Mi1 Mi λi jTi j  
2σXY ,3i j  1 N λiMi 

2σXY ,3i 
= 

N ∑ ∑ + 
N ∑ 

i mi j ti j  i mi=1 =1 =1 

N 

+
N 
1 

i 
∑ MiFi(y)MiFi(x), and (85) 
=1 

ˇ˝ ˙˘ ˝ ˙ 
E T F̂3S(y)T F̂3S(x) = C T F̂3S(y),T F̂3S(x) + E(T F̂3S(y))E(T F̂3S(x)), 

N λiM2 N MiλσXY ,3b 1 i σXY ,3i 1 Mi λi jTi j  
2σXY ,3i j  

= + ∑ + ∑ ∑n nN mi nN mi ti ji=1 i=1 j=1 

+T F(y)T F(x). (86) 

Using Eqs. (85) and (86) in Eq. (33), and then take expectation to show that 

N N Mi1 λiMi 
2σXY ,3i 1 Mi λi jTi j  

2σXY ,3i j
E(σ̂XY ,3b) =  σXY ,3b + ∑ + ∑ ∑ , (87)

N i mi N i mi j ti j=1 =1 =1 

which shows that σ̂XY ,3b is a biased estimator of σXY ,3b. 

Similarly, we can write from Eq. (35): 
˜ ˆ 

mi 1 mi 

σ̂XY,3i = ∑ (Ti jF̂i j(y)Ti jF̂i j(x)) − (F̂i(y)F̂i(x)) . (88)
mi − 1 mi j=1 

Consider the mathematical expectation on the RHS of the above equation to get: 
˜ ˆ ˜ ˆ 

mi mi1 1 ˝ ˙
ˆ ˆ ˆ ˆE2 ∑ (Ti jFi j(y)Ti jFi j(x)) = E2 ∑ E3 Ti jFi j(y)Ti jFi j(x)mi mij=1 j=1 ˜ 

mi ˝ ˝ ˙˙ 
T 2 ˆ ˆ= E2

1 ∑ i j  C3 Fi j(y),Fi j(x)mi j=1 ˆ 
1 mi � ˝ ˙ ˝ ˙� 

+ 
mi 

∑ E3 Ti jF̂i j(y) E3 Ti jF̂i j(x) 
j=1 ˜ ° ˛ˆ 

mi λi jTi j  
2σXY ,3i j  

= E2
1 ∑ + Ti jFi j(y)Ti jFi j(x)mi j ti j=1 

Mi Mi1 λi jTi j  
2σXY ,3i j  1 

= ∑ + ∑ Ti jFi j(y)Ti jFi j(x)(89)
Mi j=1 ti j  Mi j=1 
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and 

E2 
˜
(F̂i(y)F̂i(x))

° 
= E2 

˜
E3

˛
F̂i(y)F̂i(x)

˝° 

= E2 
˜
C3

˛
F̂i(y), F̂i(x)

˝ 
+ E3

˛
F̂i(y)

˝
E3

˛
F̂i(x)

˜° 
˛ 

T 2 mi mi mi 
˜

i j  1 1
C3

˝ 
ˆ ˆ= E2 ˜ Fi j(y),Fi j(x)

˜ 
+ ˜ Ti jFi j(y) ˜ Ti jFi j(x) m2 mi mii j=1 j=1 j=1 

Mi mi mi1 ˜i jTi j  
2° XY ,3i j  1 1° 

= ˜ + E2 ˜ Ti jFi j(y) ˜ Ti jFi j(x)
˛ 

miMi j=1 ti j  mi j=1 mi j=1 ˝ 
Mi mi mi1 ˜i jTi j  

2° XY ,3i j  
˜ 1 1 

= ˜ +C2 ˜ Ti jFi j(y), ˜ Ti jFi j(x) 
° 

miMi j=1 ti j  mi j=1 mi j=1 ˛ 
mi mi 

ˆˇ 

+ E2
˝ 1 ˜ Ti jFi j(y)

˙
E2

˝ 1 ˜ Ti jFi j(x)
˙ 

mi mij=1 j=1 

Mi1 ˜i jTi j  
2° XY ,3i j  ˜i ° XY ,3i 

= ˜ + + Fi(y)Fi(x) (90)
miMi j=1 ti j  mi 

Using Eqs. (89) and (90) in Eq. (35), and then take expectation to show that 

Mi1 ˜i jTi j  
2° XY ,3i j

E2(°̂XY ,3i) =  ° XY ,3i + ˜ , (91)
Mi j ti j=1 

which shows that °̂XY ,3i is also a  biased estimator of ° XY ,3i. 

Similarly, we can write from Eq. (37): 

ti j  
ˇ˘ 

1ti j°̂XY,3i j  = ˜ (I(Yi j,k ° y)I(Xi j,k ° x)) − F̂i j(x)F̂i j(y) . (92)
ti j  − 1 ti j  k=1 

Consider the RHS of Eq. (92): 

ti j  
ˇ 

Ti j
˘ 

1 1
E3 ˜ 

˜
I(Yi j,k ° y)I(Xi j,k ° x) 

° 
= ˜ 

˝
I(Yi j,k ° y)I(Xi j,k ° x)

˙
, (93)

ti j k Ti j k=1 =1 

and 

E3 
�
( ˆ C3

˝ 
ˆ ˆFi j(x)F̂i j(y))

� 
= Fi j(x),Fi j(y)

˙ 
+ E3

˝
F̂i j(x)

˙
E3

˝
F̂i j(y)

˙ 

˜i j° XY ,3i j
= + Fi j(y)Fi j(x). (94)

ti j  

Use Eqs. (93) and (94) in Eq. (37), and then take expectation to show that 

E3(°̂XY ,3i j) =  ° XY ,3i j  (95) 

which show that °̂XY ,3i j  is an unbiased estimator of ° XY ,3i j. Now Eq. (83) follows 
from the results given in Eqs. (87), (91) and (95), which completes the proof. 
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