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Goodness-of-fit test for randomly censored data

based on maximum correlation

Ewa Strzalkowska-Kominiak1 and Aurea Grané2

Abstract

In this paper we study a goodness-of-fit test based on the maximum correlation coefficient, in

the context of randomly censored data. We construct a new test statistic under general right-

censoring and prove its asymptotic properties. Additionally, we study a special case, when the

censoring mechanism follows the well-known Koziol-Green model. We present an extensive sim-

ulation study on the empirical power of these two versions of the test statistic, showing their ad-

vantages over the widely used Pearson-type test. Finally, we apply our test to the head-and-neck

cancer data.
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1. Introduction

In many medical studies one encounters data which are not fully observed but censored

from the right. For example, in the head-and-neck cancer trial studied by Nikulin and

Haghighi (2006), one observes survival times for 42 out of 51 patients, whereas for the

remaining 9 patients only the time to follow-up is given. Let Y1, . . . ,Yn be the lifetimes

of interest, e.g., the survival times of head-and-neck cancer patients, coming from a

continuous distribution function F and let C1, . . . ,Cn be the censoring times (that is,

the times to follow-up) coming from a distribution function G. In the context of right-

censored data, for every i = 1, . . . ,n, we observe

Xi = min(Yi,Ci) and δi = 1{Yi≤Ci},
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where 1A denotes the indicator function, being equal to 1 if A is fulfilled and 0 oth-

erwise. The unknown distribution function of the lifetimes F can be estimated by the

well-known product-limit estimator introduced by Kaplan and Meier (1958). However,

if the shape of the distribution could be assumed, there would be a substantial gain in the

efficiency of statistical procedures. For instance, in the example of head-and-neck can-

cer data, Nikulin and Haghighi (2006) suggest that the lifetimes follow the Generalized-

Power Weibull family and that hypothesis is tested. Therefore, goodness-of-fit tests are

an important statistical tool when dealing with (right-)censored data. Under complete

data set-up we have a multitude of goodness-of-fit tests to select from. See, e.g., Dar-

ling (1957) or Massey (1951) for the historical literature on the subject and Torabi et

al. (2016) or Novoa-Muñoz and Jiménez-Gamero (2016), among many others, for the

most recent publications. Some widely used tests for complete data, like Kolmogorov-

Smirnov or Cramer-von Mises, are difficult to apply in the presence of censoring, since

the limit distribution depends on the censoring distribution G. See Balakrishnan et al.

(2015) for a recent overview on this kind of tests with randomly censored data. Other

classical approaches are Koziol and Green (1976) and Akritas (1988). The former is

more restrictive, since it is based on the assumption that the distribution function G

follows the so called Koziol-Green model, whereas the latter is a χ2 test applied to gen-

eral random censoring. This is the reason why the Pearson-type goodness-of-fit test

proposed by Akritas (1988) is so far the best option for randomly censored data with

unknown censoring distribution. Nevertheless, it requires a partition of the observations

into cells jointly with an adequate choice of number of classes, since the power of the

test may vary depending on the degrees of freedom. In this work we propose a new

goodness-of-fit test based on the maximum correlation coefficient, with normal limiting

distribution and, therefore, straightforward to apply.

We start by introducing the maximum correlation in a more general set-up. Let Y1

and Y2 be two random variables with finite second order moments, joint cumulative

distribution function (cdf) H and marginals F1 and F2, respectively. The Hoeffding

representation of the correlation coefficient is given by

ρ(F1,F2) =
1

σ1σ2

∫

R2

(H(x,y)−F1(x)F2(y))dxdy,

where σi denotes the standard deviation of Yi. Furthermore, the maximum correla-

tion of the pair of random variables (Y1,Y2) is defined as the correlation coefficient

ρ+(F1,F2) corresponding to the bivariate cdf H+(x,y) = min(F1(x),F2(y)), the upper

Fréchet bound of H(x,y). The cdf H+(x,y) is a singular distribution, having support

on the one-dimensional set {(x,y) ∈ R
2 : F1(x) = F2(y)}, and the maximum correlation

coefficient is given by

ρ+(F1,F2) =
1

σ1σ2

(
∫ 1

0

F−1
1 (p)F−1

2 (p)d p−µ1µ2

)

, (1)
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where F−1
i is the inverse of Fi and µi is the mean of Yi. This maximum correlation,

ρ+(F1,F2), is a measure of agreement between F1 and F2, since ρ+ = 1 if and only if F1 =

F2 up to a scale and location change. In particular, Cuadras and Fortiana (1993) proposed

the statistic based on ρ+(F,F0) as a measure of goodness of fit of an iid sample Y1, . . . ,Yn

with cdf F , to a given distribution F0. The goodness-of-fit test based on maximum

correlation was further studied by Fortiana and Grané (2003), Grané (2012) and Grané

and Tchirina (2013).

As in the latter publications, the present paper is devoted to testing uniformity, i.e.

F0 = FU , a [0,1] uniform distribution. As shown by Fortiana and Grané (2003) the

asymptotic approximation of ρ+(F,FU) is available, but convergence to its limiting law

is rather slow. This led to defining

Q =
σ

√

1/12
ρ+(F,FU) = 6

∫ 1

0

x(2F(x)−1)F(dx), (2)

where σ is the standard deviation of Yi ∼ F , which equals one if F = FU .

The goal of this paper is to study a test statistic based on Q when Y1, . . . ,Yn may

not be fully observed but censored from the right by censoring times C1, . . . ,Cn. More

precisely, we wish to test the hypothesis H0 : F = FU , where FU is the cdf of a [0,1] uni-

form random variable, based on the sample (Xi,δi)i=1,...,n, where Xi = min(Yi,Ci), with

Xi ∈ [0,1]. Nevertheless, our approach is not restricted to testing uniformity. We can

also consider a more general null hypothesis F0, since the transformed random variable

F0(Y ) follows a [0,1] uniform distribution under H0 : F = F0. That is, Ỹ = F0(Y ) ∼ FU

under the null hypothesis. Then, setting C̃ = F0(C) and since {Ỹi ≤ C̃i} = {Yi ≤ Ci},

leads us to testing uniformity based on the iid sample (X̃1,δ1), . . . ,(X̃n,δn), where

X̃i = min(Ỹi,C̃i) and δi = 1{Ỹi≤C̃i}.

Hence, testing for uniformity is equivalent to testing for a fully specified continuous

distribution. Even though it seems that we could extend the work of Fortiana and Grané

(2003) by setting Qn = 6
∫ 1

0
x(2Fn(x)− 1)Fn(dx), where Fn denotes the Kaplan-Meier

estimator for censored data, it is far from being true. In contrast to the empirical distri-

bution under completely observed data, the Kaplan-Meier estimator is biased (see Stute

(1994), for details). In Section 2 we show that such a plug-in estimator suffers from the

bias of the product-limit estimator and, therefore, E(Qn) = 1 does not hold under H0.

To avoid this problem we propose to re-write Q in such a way that it can be estimated

by U-statistics. This leads to significant bias (and variance) reduction. In Section 3 we

prove the asymptotic normality of the proposed estimator and in Section 4 we present

our new goodness-of-fit test. In Section 5 we present an extensive simulation study.

Finally, in Section 6 we adapt the test statistic to the case of composite null hypothesis

and apply our test to the head-and-neck cancer data from Nikulin and Haghighi (2006).
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2. Test statistic

In this section we propose our new goodness-of-fit statistic for randomly censored data,

based on the modified maximum correlation coefficient. Recall that, under H0 : F = FU ,

the quantity

Q =
σ

√

1/12
ρ+(F,FU) = 6

∫ 1

0

x(2F(x)−1)F(dx)

equals one. Hence in the following we prefer to work with

Q1 = Q−1 = 6

∫ 1

0

x(2F(x)−1)F(dx)−1 (3)

which equals zero if H0 is true.

First, we define a plug-in estimator of Q1 by replacing F in (3) with the well-known

Kaplan-Meier estimator. We obtain

Q1
n = 6

∫ 1

0

x(2Fn(x)−1)Fn(dx)−1, (4)

where Fn is defined as follows

Fn(x) = 1− ∏
Xi≤x

[

1− δi
∑n

k=1 1{Xk≥Xi}

]

. (5)

It turns out that, under the null hypothesis and for finite samples, the plug-in esti-

mator Q1
n suffers from significant bias and its convergence to the limiting distribution is

very slow.

To solve this problem, we propose to estimate Q1 with a U-statistic. For this, note

that if F is a continuous cdf and supp(F)⊆ [0,1], then

2

∫ 1

0

F(x)F(dx) = 1.

Hence

Q1 =

∫ 1

0

(6x(2F(x)−1)−2F(x))F(dx) =

∫ 1

0

[(6x−2)F(x)−6x(1−F(x))]F(dx)

=

∫ 1

0

∫ 1

0

[(6x−2)1{y≤x}−6x1{y>x}]F(dx)F(dy). (6)

Now we may replace the unknown quantities by their estimators. For this we intro-

duce the jumps of the Kaplan-Meier estimator by setting
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win = Fn(Xi)−Fn(Xi−),

where Fn(x−) is the left-continuous version of Fn(x), which is defined analogously as

(5) but with the product over all Xi < x.

Finally, the estimator of Q1 is given by

Q̃n =
n

∑

i=1

∑

j 6=i

winw jnh(Xi,X j), (7)

where

h(x1,x2) = (6x1 −2)1{x2≤x1}−6x11{x2>x1}.

To illustrate the advantages of using Q̃n over the plug-in estimator Q1
n, in panel (a)

of Figure 1, we present the bias and variance of those estimators under the null hypoth-

esis, that is, when the data come from the [0,1] uniform distribution. Additionally, in

panels (b)-(c) of Figure 1, we compare the kernel density estimators of the standardized

versions of Q̃n and Q1
n to that of the standard normal distribution. The standardiza-

tion is done using the estimated asymptotic variances, discussed later on. Clearly, the

U-statistic Q̃n exhibits much smaller bias (and variance) than Q1
n and, additionally, its

standardized version fits nicely the standard normal distribution for all the considered

censoring rates.

(a) Estimated bias (variance)

10% censoring

Q1
n Q̃n

n = 50 0.0338 (0.0081) −0.0010 (0.0047)

n = 100 0.0150 (0.0032) −0.0014 (0.0022)

20% censoring

Q1
n Q̃n

n = 50 0.0111 (0.0197) −0.0069 (0.0063)

n = 100 0.0047 (0.0074) −0.0026 (0.0026)

30% censoring

Q1
n Q̃n

n = 50 -0.0206 (0.0483) −0.0122 (0.0069)

n = 100 -0.0275 (0.0204) −0.0090 (0.0033)

(b) Kernel density of standardized Q̃n
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(c) Kernel density of standardized Q1
n
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Figure 1: Comparison between Q̃n and the plug-in estimator Q1
n: Estimated bias (variance) based on 5000

trials and kernel densities for n = 200.



124 Goodness-of-fit test for randomly censored data based on maximum correlation

3. Asymptotic properties

In this section we study the asymptotic properties of our test statistic Q̃n. Firstly, we

consider Q̃n under a general censoring mechanism, that is, without assuming any shape

for the distribution function of the censoring times G(x)=P(C ≤ x). Secondly, we apply

the results to the special case of the Koziol-Green model. Recall that F(x) = P(Y ≤ x)

is the cdf of the lifetimes of interest. We need the following assumptions A1-A2, which

assure that the asymptotic variance is bounded and censoring is not too heavy. These

conditions allow us to apply the limit theorems from Stute (1995) in order to prove the

asymptotic normality:

A1 :

∫ 1

0

F(du)

1−G(u)
< ∞

A2 :

∫ 1

0

|ϕ(u)|C1/2(u)F(du)< ∞

where ϕ(x) = 12xF(x)−6x−2−12
∫ x

0
yF(dy)+6

∫ 1

0
yF(dy) is a score function, C(x) =

∫ x

0

G(dy)

(1−G(y))2(1−F(y))
and F is continuous with support in [0,1].

Theorem 1 Under A1 and A2, we have

√
n(Q̃n −Q1)→N(0,σ2),

where

σ2 =

∫ 1

0

ϕ2(x)

1−G(x)
F(dx)−

[
∫ 1

0

ϕ(x)F(dx)

]2

−
∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2

and

ϕ(x) = 12xF(x)−6x−2−12

∫ x

0

yF(dy)+6

∫ 1

0

yF(dy).

Proof. See Appendix.

Consequently, we have that

Corollary 1 Under H0, A1 and A2, we have

√
nQ̃n →N(0,σ2).

The variance under H0 would not simplify, since it does depend on the distribution

function of the censoring times G, which is unknown. Nevertheless, under the Koziol-
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Green model, we have an explicit expression for σ2. First, recall that G follows a Koziol-

Green model if

1−G(x) = (1−F(x))β,

where β > 0 is an unknown parameter. However, we can see that

p := P(Y >C) =
β

β+1
and 1− p =

∫

(1−G(x))F(dx).

Hence β can be easily estimated using Kaplan-Meier estimators for F and G. Finally,

it is easy to check that assumptions A1 and A2 are fulfilled under the Koziol-Green

model with β ∈ (0,1), that is, if the censoring is not heavier than 50%, which is a very

reasonable assumption. So, as a consequence of Corollary 1, we get the following result.

Corollary 2 Under the Koziol-Green model with β ∈ (0,1) we have that, under H0,

√
nQ̃n →N(0,σ2

KG),

where

σ2
KG =

−β4 +4β3 −17β2 +38β−24

(β−1)(β−2)(β−3)(β−4)(β−5)
.

4. Goodness-of-fit test

Once the test statistic is proposed and its limiting distribution is established, we are

in the position to define the goodness-of-fit test. For this we estimate the asymptotic

variance σ2 using the plug-in principle, that is, by replacing the unknown quantities

with their estimators. First, we define the distribution function of the observed times

H̃(x) = P(X ≤ x) and set H̃n(x) =
1
n

∑n
i=1 1{Xi≤x} as its empirical counterpart. Moreover,

let

H0(x) = P(X ≤ x,δ = 0) =

∫ x

0

(1−F(u))G(du)

and

H1(x) = P(X ≤ x,δ = 1) =

∫ x

0

(1−G(u))F(du)

be the subdistributions related to the observed censored and uncensored lifetimes. Their

estimators are defined as follows

H0
n (x) =

1

n

n
∑

i=1

1{Xi≤x}(1− δi)
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and

H1
n (x) =

1

n

n
∑

i=1

1{Xi≤x}δi.

Hence

σ2
n =

1

n

n
∑

i=1

ϕ2
n(Xi)

(1−Gn(Xi−))2
δi −

[

1

n

n
∑

i=1

ϕn(Xi)

1−Gn(Xi−)
δi

]2

− 1

n

n
∑

i=1

1− δi

(1−Hn(Xi−))2





1

n

n
∑

j=1

ϕn(X j)

1−Gn(X j−)
δ j1{X j≥Xi}





2

,

where

ϕn(x) = 12xFn(x)−6x−2−12
1

n

n
∑

i=1

Xiδi

1−Gn(Xi−)
1{Xi≤x}+6

1

n

n
∑

i=1

Xiδi

1−Gn(Xi−)
.

and Gn is a Kaplan-Meier estimator given by

1−Gn(x) = ∏
Xi≤x

[

1− 1− δi
∑n

k=1 1{Xk≥Xi}

]

.

Before we may define the goodness-of-fit test, we need to show the consistency of

the variance estimator σ2
n . For this, we require an assumption which is stronger than A1.

In particular:

A3 : There exists ε> 0 such that

∫ 1

0

F(dx)

(1−G(x))1+ε
< ∞

Lemma 1 Under A3, we have

σ2
n

P→ σ2

Proof. See Appendix.

Finally, we have

Theorem 2 Under H0 and assumptions A2 and A3, we have that

Tn :=

√
nQ̃n

√

σ2
n

d→ N(0,1). (8)

Proof. The result follows from Corollary 1 and Lemma 1.This completes the proof.
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In view of Theorem 1, we reject H0 at level α if

Tn ≤ Φ−1(α/2) or Tn ≥ Φ−1(1−α/2),

where Φ−1 is the inverse of the standard normal cdf.

Additionally, under the Koziol-Green model and in view of Corollary 2, we define

T KG
n :=

√
nQ̃n

√

σ̂2
KG

, (9)

where

σ̂2
KG =

−β̂4 +4β̂3 −17β̂2 +38β̂−24

(β̂−1)(β̂−2)(β̂−3)(β̂−4)(β̂−5)

and

β̂ =

(
∫

(1−Gn(x))Fn(dx)

)−1

−1.

It is easy to see that

∫

(1−Gn(x))Fn(dx)
P→
∫

(1−G(x))F(dx).

Hence β̂
P→ β and σ̂2

KG

P→ σ2. Consequently, as before, we reject H0 at level α if

T KG
n ≤ Φ−1(α/2) or T KG

n ≥ Φ−1(1−α/2).

5. Simulation study

Here we conduct an extensive simulation study to show the behaviour of our test. In

the following subsection we consider only the null hypothesis, while in Subsection 5.2

we include the power study under different families of alternatives. In both subsections

we compare our method with the Pearson-type goodness-of-fit test proposed by Akritas

(1988). Following the notation of Section 4, we denote by Tn and T KG
n our test statis-

tics for the general censoring and under the Koziol-Green model, respectively. See,

equations (8) and (9) for details. Moreover, we denote by A(nc) the χ2 test proposed by

Akritas (1988), where nc denotes the number of cells.

5.1. Null hypothesis

In this section we present the results of the proposed methods under the null hypothesis

and at 5% significance level. As mentioned before, we consider our tests Tn and T KG
n ,
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together with the test presented by Akritas (1988). Following the latter work, we con-

sider nc = 2 and nc = 5 and denote these tests by A(2) and A(5), respectively. The results

are based on 5000 trials. From Table 1 we see that tests Tn and those from Akritas hold

very well the significance level. The test based on the Koziol-Green model holds the 5%

level when censoring is low. However, for more than 20% of missing data, the variance

σ2
KG does not captures the variability of our Q̃n correctly and, therefore, the significance

level is slightly overestimated for heavy censoring.

Table 1: Empirical level for testing null hypothesis.

10% censoring 20% censoring 30% censoring

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

n = 50 0.0508 0.0552 0.0538 0.0578 0.0450 0.0560 0.0558 0.0530 0.0496 0.0596 0.0560 0.0648

n = 100 0.0480 0.0582 0.0548 0.0532 0.0478 0.0530 0.0492 0.0560 0.0502 0.0568 0.0528 0.0708

n = 200 0.0468 0.0524 0.0574 0.0498 0.0522 0.0508 0.0508 0.0604 0.0494 0.0522 0.0468 0.0666

5.2. Power study

In order to study the power of our test we consider two different models:

Model 1: To test the uniformity (H0 : F = FU ) we choose three parametric families of

alternative probability distributions with support on [0, 1]:

(a) Lehmann alternatives,

Fθ(x) = xθ,0 ≤ x ≤ 1,θ ≥ 1;

where for θ = 1 we have Fθ = FU .

(b) compressed uniform alternatives,

Fθ(x) =
x− θ

1−2θ
, θ ≤ x ≤ 1− θ,

where 0 ≤ θ ≤ 1/2; and for θ = 0 we have Fθ = FU .

(c) centred distributions having a U-shaped density for θ ∈ (0,1), or wedge-shaped

density for θ > 1

Fθ(x) =

{

1
2
(2x)θ, 0 ≤ x ≤ 1/2

1− 1
2
(2(1− x))θ, 1/2 ≤ x ≤ 1

where for θ = 1 we have Fθ = FU .
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Model 2: An exponentiality test (with parameter λ = 1), where the alternatives are

Weibull distributions with parameters 1 and θ. More precisely, Fθ(x) = 1− e−xθ , where

θ = 1 gives us the exponential distribution of the null hypothesis.

Additionally, the censoring variable C is generated under the Koziol-Green model.

That is, 1−G(x) = (1−F(x))β, where β = p

1−p
and p = P(X > C) is the censoring

level.

In the following figures and tables we present the power study at a 5% significance

level. Panels (a1)-(c3) of Figure 2 contain the power of the test for Model 1 and panels

(d1)-(d3) of Figure 2 contain the power under Model 2, for different sample sizes (n =

50,100,200) and one censoring level of 20%. All those figures are based on 2000 trials.
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Figure 2: Power study for Model 1 (a1–c3) and Model 2 (d1–d3) for three different sample sizes and

censoring rate p = 0.2. Tn (solid line), A(5) (dashed line) and A(2) (dash-dotted line).
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Table 2: Power study for Model 1 and Model 2.

Model 1, Alternative a)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 1.5 0.5277 0.7107 0.8040 0.5547 0.4760 0.7220 0.8190 0.5167 0.3957 0.7093 0.8260 0.4570
θ = 2 0.9847 0.9997 0.9997 0.9873 0.9997 1 1 1 0.9070 0.9980 0.9995 0.9520
θ = 2.5 1 1 1 1 0.9997 1 1 1 0.9237 0.9990 0.9997 0.9607

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 1.5 0.8410 0.9823 0.9887 0.8540 0.8020 0.9830 0.9893 0.8200 0.7057 0.9833 0.9910 0.7517
θ = 2 0.9997 1 1 0.9997 1 1 1 1 0.9950 1 1 0.9990
θ = 2.5 1 1 1 1 1 1 1 1 0.9983 1 1 0.9997

Model 1, Alternative b)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.05 0.5987 0.3897 0.2940 0.5473 0.5370 0.3027 0.2297 0.5440 0.4563 0.2530 0.1803 0.5037
θ = 0.1 1 0.9837 0.8510 0.9987 0.9957 0.9413 0.7163 0.9950 0.9410 0.9000 0.5910 0.9820
θ = 0.15 1 1 0.9963 1 1 1 0.9797 1 0.9940 1 0.9500 1

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.05 0.9133 0.7517 0.5820 0.8830 0.8560 0.6003 0.4250 0.8313 0.7683 0.4870 0.3287 0.7973
θ = 0.1 1 1 0.9933 1 1 1 0.9570 1 0.9977 0.9987 0.8977 1

θ = 0.15 1 1 1 1 1 1 1 1 1 1 0.9993 1

Model 1, Alternative c)

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.75 0.6587 0.3623 0.3217 0.6803 0.5337 0.3410 0.2877 0.6117 0.3490 0.3167 0.2823 0.5133
θ = 1.25 0.4903 0.3090 0.3230 0.5347 0.4230 0.2667 0.2757 0.4957 0.3740 0.2323 0.2423 0.4720
θ = 1.5 0.9513 0.8050 0.7987 0.9643 0.8787 0.7287 0.7353 0.9333 0.7907 0.6720 0.6800 0.9110
n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

θ = 0.75 0.9337 0.7217 0.6167 0.9423 0.8933 0.6783 0.5860 0.9167 0.7307 0.6363 0.5423 0.8223
θ = 1.25 0.7920 0.5513 0.5537 0.8103 0.7280 0.4823 0.4993 0.7773 0.6243 0.4277 0.4437 0.7303
θ = 1.5 0.9993 0.9817 0.9750 0.9993 0.9980 0.9740 0.9623 0.9993 0.9613 0.9433 0.9233 0.9937

Model 2. Power study for θ = 1+Hn−0.5

n = 100 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

H =−4 0.9720 0.9960 0.9872 0.9914 0.9346 0.9928 0.9754 0.9844 0.7752 0.9822 0.9564 0.9328
H =−2 0.5580 0.4828 0.4746 0.6094 0.4236 0.4118 0.3966 0.5528 0.2354 0.3684 0.3510 0.4364
H = 2 0.4784 0.3112 0.3118 0.4954 0.4278 0.2608 0.2736 0.4730 0.3910 0.2194 0.2302 0.4578
H = 4 0.9594 0.8464 0.8296 0.9598 0.9160 0.7564 0.7430 0.9412 0.8204 0.6572 0.6478 0.9056

n = 200 p = 0.1 p = 0.2 p = 0.3

Tn A(5) A(2) T KG
n Tn A(5) A(2) T KG

n Tn A(5) A(2) T KG
n

H =−4 0.9876 0.9938 0.9856 0.9940 0.9704 0.9820 0.9604 0.9864 0.8664 0.9682 0.9306 0.9490
H =−2 0.5712 0.4390 0.4406 0.5976 0.4636 0.3870 0.3808 0.5312 0.2892 0.3370 0.3338 0.4268
H = 2 0.5108 0.3312 0.3354 0.5284 0.4562 0.2768 0.2818 0.4962 0.3998 0.2302 0.2410 0.4736
H = 4 0.9686 0.8946 0.8610 0.9676 0.9446 0.8216 0.7830 0.9550 0.8764 0.7330 0.7032 0.9316
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Moreover, the results on Table 2 are based on 5000 trials and show the power under

alternatives for two different sample sizes n= 100,200, censoring levels p= 0.1,0.2,0.3
and different values of parameter θ. In particular, for Model 2, we choose θ= 1+Hn−0.5

and H ∈ {−4,−2,2,4}. Both, tables and figures, include a comparison to the Pearson-

type test proposed by Akritas (1988). As before, we use the number of cells (nc) equal

to 2 and 5.

The goal here is to show the changes in power when varying both θ parameter and

the censoring rate p. In particular, Figure 2 is devoted to illustrate the changes in power

when considering a given range for θ ∈ Θ. That is, Figure 2 contains the power curves

of the statistic for all the alternatives, for n = 50 and a fixed moderate censoring rate of

p = 0.2. On the other hand, Table 2 is devoted to show the changes in power when con-

sidering different censoring rates. Therefore, Table 2 contains the power study for the

remaining sample sizes, n = 100,200, for three fixed values of θ and different censoring

rates p = 0.1,0.2,0.3.

Concerning the uniformity test (Model 1), it is clear that for alternatives (b) and (c)

our test outperforms that proposed by Akritas. Additionally, our test neither depends on

the number of cells nor on the choice of cell boundaries. The influence of the number

of cells in Akritas proposal is made obvious in panels (a1)–(c3) of Figure 2. While

A(2) gives better results than A(5) for alternative (a), the opposite can be observed for

alternatives (b) and (c). Unfortunatelly, the modification of the maximum correlation

coefficient exhibits also some weak points. That is, the alternative (a) for θ ∈ (0,1) does

not provide satisfactory results, since Q = 1 for θ = 0.5. Regarding the exponentiality

test (Model 2), we get better results than the competitive test of Akritas (1988) when the

alternative is Weibull with parameter θ > 1. For θ < 1, our test reaches the high power

of the Pearson-type test for big sample sizes. However, notice that in Model 2 and for all

the considered values of θ, the test statistic under the Koziol-Green model, T KG
n , gives

very good results independently on the sample size.

6. Further extensions and application

6.1. Composite null hypothesis

So far, our test Tn has been designed to test a fully specified null hypothesis. It does

strongly depend on the fact that the transformed lifetime F0(X) is [0,1] uniformly dis-

tributed under H0 : F = F0. In this section we consider a more general case, that is,

when the distribution function to be tested depends on an unknown parameter λ. Let

now consider the following null hypothesis

H0 : F ∈ {Fλ : λ ∈ R
d}.
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In this case, first we need to estimate the parameter λ using, e.g., a maximum-

likelihood estimator λ̂. Clearly, if Fλ is twice differentiable in λ and the estimator λ̂

is
√

n consistent, by the Taylor expansion we have that Fλ̂(X) =U +OP(n
−1/2), where

U = Fλ(X)∼U [0,1] under the null hypothesis H0. The test statistic Q̃n should still ad-

mit a normal limit but the error term enters the variance of our test statistic and hence the

asymptotic variance given in Theorem 1 is no longer valid. Even though the theoretical

properties of our test in the case of such a composite hypothesis are beyond the scope

of this paper, to test this kind of hypothesis we propose a modified test with a jackknife

estimator of the variance, which does take into account the estimation of the parameters

and works very well in practice. Preliminary simulation studies, as those given in Figure

3, confirm the normality of the statistic and adequacy of the variance. We proceed as

follows:

1. Based on the sample X1, . . . ,Xn, find the maximum-likelihood estimator (MLE) λ̂.

2. Define the pseudo-values X̃i = Fλ̂(Xi) for i = 1, . . . ,n.

3. Based on the sample X̃1, . . . , X̃n, compute the test statistic Q̃n defined in (7).

4. Compute the jackknife estimator of the variance following the steps:

• For every i = 1, . . . ,n, choose the subsample X1, . . . ,Xi−1,Xi+1, . . . ,Xn and

compute the MLE λ̂(−i).

• Define the pseudo-values X̃ j = Fλ̂(−i)(X j) for j = 1, . . . , i−1, i+1, . . . ,n.

• Based on the the sample X̃1, . . . , X̃i−1, X̃i+1, . . . , X̃n, compute the test statistic

Q̃
(−i)
n .

• Set

nVn(Q̃n) = (n−1)
n

∑

i=1

(Q̃(−i)
n − Q̄n)

2,

where Q̄n =
1
n

∑n
i=1 Q̃

(−i)
n .

5. Define the test statistic

Jn :=

√
nQ̃n

√

nVn(Q̃n)
.

6. Reject H0 if

Jn ≤ Φ−1(α/2) or Jn ≥ Φ−1(1−α/2).

In order to check the behaviour of this new jackknife-test Jn, we study the hypothesis

H0 : F ∈ {exp(λ) : λ ∈ (0,∞)}, where the alternatives come from the Weibull distribu-

tion. Our simulated sample comes from exp(λ = 1) and λ is estimated using maxi-

mum likelihood. In Figure 3 we compare the test based in Tn, defined in equation (8)
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Figure 3: Power study: Jn (solid line) and Tn (dashed line), where n = 50 (left), n = 100 (middle) and

n = 200 (right), censoring rate p = 0.2

of Section 4, with that based on Jn. As expected, the new test based on Jn gives very good

results: The variance estimator adapted to the composite hypothesis is performing very

well, leading to a more powerful test. The differences in power between both statistics

seem to decrease with the sample size. Nevertheless, the theoretical properties of Jn are

out of scope of the present paper.

6.2. Real data example

We illustrate the use of our test on the head-and-neck cancer data from Nikulin and

Haghighi (2006). These authors fitted the Generalized-Power Weibull distribution

F(x,σ,v,γ) to the data. Motivated by the boxplot in Figure 4, we remove several ob-

servations which could be considered as outliers. This gives us 44 observations with

around 11% censoring rate. We perform a goodness-of-fit test for the before-mentioned

Generalized-Power Weibull distribution Fa
0 (x,σ,v,γ) = F(x,σ,v,γ). Additionally, we

also consider the Weibull distribution Fb
0 (x,σ,v) = F(x,σ,v,1) and the Exponential dis-

tribution Fc
0 (x,σ) = F(x,σ,1,1), where

F(x,σ,v,γ) = 1− exp
(

1− (1+(x/σ)v)1/γ
)

.

First, we fitted the parameters using MLE under random censoring obtaining the esti-

mators (σ̂, v̂, γ̂) and the following distributions Fa
0 (x,4.63,1.82,1.91), Fb

0 (x,1.44,8.45)

and Fc
0 (x,8.33). Then we applied our test Jn and obtained the following p-values:

pa = 0.86, pb = 0.88 and pc = 0.01 for the Generalized-Power Weibull, Weibull and

Exponential, respectively. Hence, the results of the test confirm what Figure 4 shows,

that both Generalized-Power Weibull and Weibull fit the data very well, whereas the

Exponential distribution is not adequate to describe the head-and-neck cancer data.



134 Goodness-of-fit test for randomly censored data based on maximum correlation

0
1
0

2
0

3
0

4
0

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

KM estimator

Exponential

Power G. Weibull

Weibull

Figure 4: Boxplot (left) and Kaplan-Meier estimator (right) together with Fa
0 (x, σ̂, v̂, γ̂) (dashed),

Fb
0 (x, σ̂, v̂) (dotted) and Fc

0 (x, σ̂) (dot-dashed) for the head-and-neck cancer data.

7. Conclusions

In this work we developed and studied a goodness-of-fit test based on maximum cor-

relation under random censoring. The advantage of our test over other goodness-of-fit

competitors, like χ2 test proposed by Akritas (1988), is its simplicity. Our test is asymp-

totically normally distributed and neither the number of classes nor the class boundaries

have to be chosen. The proposed test outperforms that by Akritas (1988) for most of

the alternatives studied. Even though the test was designed to check uniformity, with a

simple transformation it can be applied to any, fully specified, continuous distribution.

Finally, it can be extended to composite hypothesis, that is, when the distribution in the

null hypothesis is known up to a parameter. A jackknife modification for the asymptotic

variance has been proposed. A theoretical study of the test under the composite null

hypothesis is out of the scope of the present paper and purpose of further research.

8. Appendix

Proof of Theorem 1

In view of (7), we can write Q̃n in the following way

Q̃n =

∫ 1

0

∫ 1

0

h̃(x,y)Fn(dx)Fn(dy), (10)
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where

h̃(x,y) = (6x−2)1{y<x}−6x1{y>x}.

In the fist step of the proof we write Q̃n as a sum of four terms as follows

Q̃n = Q̃1 + Q̃2n + Q̃3n + Q̃4n,

where

Q̃1 =

∫ 1

0

∫ 1

0

h̃(x,y)F(dx)F(dy)

Q̃2n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dx)−F(dx))F(dy)

Q̃3n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dy)−F(dy))F(dx)

Q̃4n =

∫ 1

0

∫ 1

0

h̃(x,y)(Fn(dx)−F(dx))(Fn(dy)−F(dy)).

By (6) and since F is continuous, we have that Q̃1 = Q1. As to Q̃2n + Q̃3n, we obtain

Q̃2n + Q̃3n =

∫ 1

0

ϕ(x)(Fn(dx)−F(dx)),

where

ϕ(x) =

∫ 1

0

h̃(y,x)F(dy)+

∫ 1

0

h̃(x,y)F(dy)

= 12xF(x)−6x−2−12

∫ x

0

yF(dy)+6

∫ 1

0

yF(dy).

It remains to show that Q̃4n = oP(n
1/2). For this, set τH̃ = inf{t : H̃(t) = 1}, where

H̃(t) = P(X ≤ t) is the cdf of the observed sample. Since the support supp(F) ∈ [0,1]
and G fulfills assumption A1, we have that τH̃ = 1. Moreover, by definition of h̃(x,y),

we can show that

Q̃4n =−12

∫ 1

0

x(Fn(x)−F(x))(Fn(dx)−F(dx))−2(Fn(1)−F(1))2 =: Q̃a
4n + Q̃b

4n.

Now, we may consider the two terms, Q̃a
4n and Q̃b

4n, separately. According to Theo-

rem 2 (7) in Ying (1989) and under A1, the process
√

n(Fn −F) converges weakly to a

Brownian process. See, also equation (11) in Wellner (2007). More precisely,
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√
n(Fn −F)→ (1−F)B(C), in D[0,τH̃ ],

where B(C) is a Brownian process and D[0,τH̃ ] denotes the Skorohod space. Further-

more, since F is continuous and D0 is a set of uniformly bounded functions, we have

that
√

n(Fn −F) ∈ D0 with probability exceeding 1− ε for every ε > 0. Additionally,

x ∈ [0,1] and supx∈[0,τH̃ ] |Fn(x)−F(x)| → 0 almost surely. Hence, using Theorem 2.1 in

Rao (1962) with g(x) =
√

n(Fn(x)−F(x))x, we obtain

√
nQ̃a

4n =−12

∫ 1

0

g(x)(Fn(dx)−F(dx)) = oP(1).

Additionally, under A1, Fn(1)−F(1) = OP(
√

n) and hence
√

nQ̃b
4n = oP(1). No-

tice that, Fn(1)−F(1) =
∫ 1

0
1(Fn(dx)−F(dx)). Hence we apply the results from Stute

(1995) for ϕ(x) = 1.

Finally, we obtain the following representation

Q̃n = Q1 +

∫ 1

0

ϕ(x)(Fn(dx)−F(dx))+oP(n
1/2).

The asymptotic normality is now a direct consequence of Stute (1995). More pre-

cisely, under A1 and A2, we obtain

√
n

∫ 1

0

ϕ(x)(Fn(dx)−F(dx))→N(0,σ2).

This completes the proof.

Proof of Lemma 1

Recall, that

σ2
n =

∫ 1

0

ϕ2
n(x)

1−Gn(x−)
Fn(dx)−

[
∫ 1

0

ϕn(x)Fn(dx)

]2

−

−
∫ 1

0

[
∫ 1

x

ϕn(y)Fn(dy)

]2
(1−Fn(x))Gn(dx)

(1−Hn(x))2

=: A1n −A2n −A3n.

where

ϕn(x) = 12xFn(x)−6x−2−12

∫ x

0

yFn(dy)+6

∫ 1

0

yFn(dy).
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By consistency of the Kaplan-Meier estimator, we have ϕn(x) → ϕ(x) in probability.

Let us consider the first term in the representation of σ2
n . Since |ϕn(x)| ≤ K1 = constant,

Gn(x)→ G(x) in probability,

max
i=1,...,n

1−G(Xi−)

1−Gn(Xi−)
= OP(1)

by Zhou (1991) and

1

1−Gn(x−)
=

1

1−G(x−)
+

Gn(x−)−G(x−)

(1−Gn(x−))(1−G(x−))

we have

A1n =

∫ 1

0

ϕ2(x)

1−G(x)
Fn(dx)+oP(1)

Finally, by Theorem 1.1. in Stute and Wang (1993),
∫

Φ(x)Fn(dx)→
∫

Φ(x)F(dx)

with probability 1 and hence in probability, provided that
∫

|Φ(x)|F(dx) < ∞. Hence,

by A3, we obtain

A1n
P→
∫ 1

0

ϕ2(x)

1−G(x)
F(dx).

Obviously, we have

A2n
P→
[
∫ 1

0

ϕ(x)F(dx)

]2

.

Finally, similarly as we have done for A1n, we may show that

A3n =

∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))Gn(dx)

(1−H(x))2
+oP(1)

By A3 and since |ϕ(y)| ≤ K2 = constant we obtain

∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2
≤ K2

2

∫ 1

0

[
∫ 1

x

F(dy)

(1−G(y))1+ε

]

G(dx)

(1−G(x))1−ε
< ∞.

Hence, by Theorem 1.1. in Stute and Wang (1993),

A3n →
∫ 1

0

[
∫ 1

x

ϕ(y)F(dy)

]2
(1−F(x))G(dx)

(1−H(x))2

in probability. This completes the proof.
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