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RESUMEN

En este articulo se propone un método para el analisis no lineal de estructuras aporticadas
basado en los conceptos de la Mecdnica de la Degradacién (Continuum Damage Mechanics).
El método consiste en la introduccién de un conjunto de variables internas, los indices de daiio,
que miden la pérdida de rigidez de cada una de las barras de la estructura. La dependencia de
estas variables con respecto a la historia de deformaciones de cada barra se describe mediante
las leyes de evolucidén de los indices de dafio. El problema a resolver estd constituido por las
ecuaciones matriciales clasicas del cdlculo de estructuras y las leyes de evolucidn.

SUMMARY

In this paper an attempt is made to introduce the notions and methods of continuum
damage mechanics into the analysis of framed structures. In order to characterize the state of
damage of each element a new set of damage variables is introduced. The damage parameters
measure the loss of stiffness of each bar. A set of damage evolution laws is introduced too, they
characterize the dependence of the damage state on the loading history. This kind of nonlinear
analysis have similar characteristics of those of the elastic frame analysis.

INTRODUCCION

La mecdnica de la degradacién cldsica (M.D.), iniciada por Kachanov', fue
formulada en el marco de la mecanica de los medios continuos. La idea fundamental es
la introduccién de una nueva variable interna que mide el estado de degradacién local
del material: el {indice de dafio. La idea de base es tan simple y al mismo tiempo tan
general que ha podido ser aplicada al modelado del comportamiento, hasta la fractura
local, de una gran variedad de materiales tanto dictiles como frigiles (Ver por ejemplo
la referencia [2]).
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Sin embargo el formalismo de la mecanica de los medios continuos no siempre
es el mds adecuado para el analisis de las estructuras de la construccién civil.
Muchas estructuras suelen modelarse como pdrticos: o reticulados puesto que los
modelos continuos bi o tridimensionales sélo pueden aplicarse al estudio de estructuras
relativamente simples. A

Este trabajo constituye una tentativa para introducir los métodos y las nociones
de la M.D. en el andlisis de estructuras aporticadas. El enfoque empleado es similar al
de los modelos de plasticidad concentrada (Ver [3], [4] y las referencias alli citadas). Es
decir, se considera que el comportamiento ineldstico se concentra en los extremos de
las barras o elementos que constituyen la estructura. Estos puntos se modelan como
resorte de flexion.

En los articulos antes mencionados los resortes no lineales tienen un
comportamiento rigido-pldstico y no permiten por lo tanto la caracterizacién de
la pérdida de rigidez de la barra debido a fenémenos degradantes tales como el
agrietamiento. El objetivo fundamental de este trabajo es el de desarrollar una
metodologia que permita la simulacién numérica de este fenémeno. ,

Las variables de dafio que se obtienen de esta manera miden el estado de
degradacién de la barra que se convierte en la unidad fundamental (“el elemento de
volumen”) de la estructura. Estas variables se sitian por lo tanto a un nivel intermedio
entre la variable de dafio continuo de la M.D. cldsica y el indice de dafio global de la
estructura que definen algunos autores (ver por ejemplo [5]). En la referencia [5] se
demuestra ademds una relacién formal entre la varible de dafio continuo y el indice de
dafio global propuesto. El indice de dafio global es obtenido a fines de “evaluacién de
la estructura”. En otras palabras, este indice permite cuantificar la resistencia de la
estructura ante futuras solicitaciones.

El objetivo de este trabajo es diferente. Aqui se introducen variables de dafio
para la “simulacién de la estructura” es decir, para la representacién numérica del
comportamiento de la estructura. Es por ello que las variables aqui definidas pueden
considerarse como “variables internas” o “variables de estado”.

Existen en la literatura otros modelos que incluyen la degradacién de rigidez (ver
por ejemplo [6,7,8]). La diferencia entre estos y el trabajo aqui presentado consiste en la
expresa referencia a la M.D. clésica y a la termodindmica de medios continuos, en otras
palabras: definicién de variables de estado y sus fuerzas termodindmicas asociadas,
formulacién de leyes de estado, andlisis de la disipacién e identificacién de leyes de
evolucién. De esta manera tal vez se obtenga una mayor generalidad y simplicidad en
la formulacién de los modelos.

En este articulo, a diferencia de los ltimos tres citados, no se propone un modelo
concreto para un material particular. Por el contrario se pretende desarrollar un marco
teérico general en el que se pueda incluir cualquier modelo especifico de dafio.

MATRIZ DE RIGIDEZ DE UNA BARRA ELASTICA DEGRADABLE

Ley de comportamiento de una barra eldstica

En el andlisis eldstico de pdrticos y reticulados, la ley de comportamiento relaciona



MODELOS DE DANO CONCENTRADO 125

los elementos linealmente independientes del vector de fuerzas generalizadas de la barra
con el vector de deformaciones generalizadas. Por ejemplo en el caso de un pértico plano
y en las condiciones locales usuales, se tiene:

M| =[S} S% o ®; | es decir {M}y = [$%h-{®}s (1)
N 0 0 S%HiLé

donde M; y M; designan los momentos en los extremos ¢ y j de la barra, ®; y ®; los
giros medidos con respecto a la cuerda i — j desplazada, N es la fuerza axial y § el
alargamiento de la cuerda (ver Figura 1). A [5°], se le llama matriz de rigidez de la
barra b. Todos los elementos de la matriz de rigidez son positivos o nulos.
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Figura 1. Fuerzas y deformaciones en un elemento de un pértico plano.

Modelo mecanico de una barra eldstica-degradable

En el caso de un pértico eldstico los coeficientes S} permanecen constantes durante
toda la historia de carga y las fuerzas son siempre proporcionales a las deformaciones.
Sin embargo en una estructura real sometida a sobrecargas de gran intensidad (como por
ejemplo en el caso de un sismo) la rigidez de los elementos disminuye como consecuencia
del agrietamiento del concreto, el dafio del acero o cualquier otro fenémeno degradante
que esté teniendo lugar localmente en la estructura.

A fin de caracterizar globalmente este estado de deterioro se consideraran las
siguientes hipétesis:

a) Se supondrd que el dafio de flexién se concentra en los extremos de las barras.
b) No se tomara en cuenta la existencia de deformaciones o giros permanentes.

Para caracterizar el estado de degradacidn de la barra se utilizard un modelo similar
al empleado en los modelos de plasticidad concentrada®*, es decir: un elemento tipo
viga eldstica en el cual la no linealidad (es decir el dafio) se concentra en los extremos
del elemento. Estos se modelan como resortes degradables de flexién combinados con
un resorte axial (ver Figura 2). El comportamiento a flexién del elemento viga es
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descrito, como en el andlisis eldstico cldsico, mediante la relacién momento-curvatura.
El comportamiento de los resortes se representa mediante la ley momento-rotaciéon o
fuerza-desplazamiento. A esta representacién de la barra se le lamara “modelo de dafio
concentrado” por analogia con la terminologia empleada en el analisis de estructuras
elasto-plasticas.

resorte resorte
degradable i degradable |
viga elastica 7
; 7
%VV@+ : o)
é
resorte
degradable axial

Figura 2. Modelo de daifio concentrado.

El uso de este modelo significa que el estado de dafio de la estructura se mide
mediante un conjunto discreto de escalares y no por medio de funciones continuas. El
dafio sélo puede concentrarse en ciertos puntos del sélido que son predeterminados por
el analista al descomponer la estructura en “barras”. Los modelos aqui introducidos
pueden por lo tanto calificarse como pertenecientes a una “teoria de poérticos” por
contraposicién a la teoria de vigas. La misma observacién podria hacerse en referencia
al andlisis elasto-plastico de estructuras aporticadas. En la teoria de vigas se determina
una zona pléstica de volumen no nulo. Por el contrario los modelos elasto-pldsticos para
pérticos se basan en representaciones de la barra como la indicada en la Figura 2.
El concepto de zona plistica se substituye por el de “articulacién plistica” (las
articulaciones pldsticas que se definen en el modelo elasto-pldstico perfecto son de
hecho resortes de flexién de longitud nula). En la prictica este tipo de modelos es’
mucho mas empleado que aquellos basados en la teoria de vigas. - La-informacién
que se pierde al pasar de un modelo de tipo “viga” a un modelo de tipo “pértico”
no es, en la mayorfa de los casos, esencial. La nocidén de “articulacién plastica”
permite representar con suficiente exactitud los fendmenos que estdn ocurriendo en
la.estructura y se gana en simplicidad y facilidad de.implémentacién en los programas
de célculo existentes. Otro argumento adicional para justificar la validez del modelo
de dano concentrado es el fenémeno de “locahzaaon del dafio y la deformacién en
ciertas zonas de pequeiio volumen que se observa experimentalmente. Este fenémeno
puede caracterizarse matematicamente en modelos que presentan “ablandamiento por
deformacién” (strain-softening)® y es caracteristico de todos los modelos continuos
locales de la M.D. cldsicat®.

Por otra parte, en el caso del andlisis de pérticos elasto-pldsticos, el ingeniero
sabe descomponer la estructura en “barras” de tal manera que todos los lugares donde
las articulaciones plasticas pudieran aparecer, sean representados en el modelo como
resortes ineldsticos. Es razonable suponer que este serd-igualmente el caso cuando se
considere el dafio en lugar de la plasticidad.
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Ley de Hooke para un material degradado

En la teorfa cldsica de la degradacién, (ver por ejemplo [2], para una presentacién
general detallada de la M.D.) el indice de dafio se define como la relacién entre el area
de microfisuras o microcavidades y el drea total nominal de la cara orientada segin la
normal n del elemento de volumen:

§Aq
D, = A (2)

donde D, es la variable indice de dafio (en el sentido de la mecénica de los medios
continuos) §A44 el drea de microfisuras multiplicada por un factor de intensidad de
esfuerzos y A el drea total. Si no existen direcciones privilegiadas de degradacién, el
estado de dafio puede ser representado mediante un escalar:

D,=D Vn (3)

Esta variable puede tomar valores inicamente entre 0 (material intacto sin
microfisuras) y 1 (material completamente degradado o fisurado en el punto
considerado). En el caso de un medio continuo, la ley de elasticidad de un material
degradado se obtiene introduciendo la nocién del “esfuerzo efectivo” y mediante la
hipétesis de “equivalencias en deformacién™. De esta manera se obtiene la siguiente
relacion entre el esfuerzo y la deformacion:

o = (1-D)Ee (4)

donde o es el esfuerzo normal, D el indice de dafio, F el médulo de elasticidad inicial
y € la deformacién unitaria.

Ley de estado (relaciones fuerza-deformacién) de los resortes degradables

En el modelo considerado, el dafio se concentra en los resortes degradables. A fin
de caracterizar el estado de degradacion de cada uno de los resortes se introducira el
siguiente conjunto de indices de dafo:

{D}g = {da, di, d}'} (5)

donde d, caracteriza la degradacién del resorte axial, d; y d; el dafio de los resortes de
flexién.

La relacién fuerza axial-alargamiento para la barra degradada se obtiene ficilmente
a partir de la relacién (4):

N = (1-dy) S (6)

Sin embargo en el modelo considerado la barra estd compuesta por una viga eldstica
y un resorte degradable. Por lo tanto, para obtener el comportamiento descrito por
la expresion precedente, es necesario adoptar la siguiente ley de estado para el resorte
axial:
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.N—(da)5336 (M

donde 6, representa el alargamlento del resorte. Se puede observar que para dg = 0
se tiene un resorte infinitamente ngldo y las dnicas deformaciones experimentadas por
la barra son las de viga eldstica. d, = 1 caracteriza un resorte de rigidez nula. En
otras palabras, una barra completamente desconectada de la estructura en uno de sus
extremos.

Se admite que el indice de dafio d, varia continuamente entre 0 (o un valor inicial)
y 1. Esta variacién es caracterizada por la “ley de evoluc10n del indice de dafio” que
serd introducida en las préximas secciones. :

De la misma manera se adoptara la s1gu1ente relacién momento-rotacién para cada
uno de los resortes a flexion: '

(A—d) co g - (1-dj)
M; = $2,87; M; =
z, . r_ﬁdl, 1 . ,J,' dJ‘
d; = 0 representa de nuevo un resorte mﬁmta:mente I‘lgldO y d = 1 caracteriza a un
resorte completamente degradado sin rigidez alguna :

Este dltimo caso permite introducir la nocién de artlculacxon interna degradada
que es el equivalente del concepto de “articulacién plistica” que se define en el andlisis
elasto-pldstico perfecto de estructuras aporticadas.

Las articulaciones pldsticas se comportan como rétulas internas “verdaderas” sélo
cuando se considera el problema de estructuras en velocidades. Es decir, en una
articulacién pléstica la velocidad de incremento del momento flector es cero. Por el
contrario, una articulacién: “degradada” tiene el mismo efecto sobre el ‘comportamiento
de la estructura que una articulacién interna “real”. En otras palabras, en el punto de
la estructura donde el indice de dafio toma el valor 1 el momento flector debe ser nulo.

En este trabajo no se consideran las deformaciones permanentes, pero: puede
constatarse que éstas podrian incluirse en (7) y (8) simplemente substituyendo las
rotaciones y el desplazamiento de los resortes por sus equlvalentes elastlcos Es decir:

—di) = d;)
d; d;
donde 6P, P y ®; P representan las deformaciones generalizadas plasticas de los

resortes. En ese caso habria: que incluir igualmente las leyes  de evoluciéon que
corresponden a las nuevas variables internas mencionadas.

2 e ®

My = Lo g0 e amy, ;= LG sg@roe7) (o)

Cslculo de la matriz de rigidez

Para una barra danada, la matriz de rigidez se determina analizando la estructura
formada por la viga eldstica y los resortes (ver Figura 2), es decir resolviendo:

MY = (%% {2 . L
@h ={&Hw +{&L .. - (10
{M}y =[R]y - {2}
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donde {®"}; es el vector de deformaciones generalizadas de la viga eldstica. La primera
de las relaciones (10) es por lo tanto la ley de comportamiento de la viga eldstica.

La matriz {®"}; es el vector de giros y desplazamientos de los resortes degradables
y [R]p es una matriz diagonal que contiene los términos adecuados para poder describir
las relaciones fuerza-desplazamiento y momento-rotacién de los resortes definidas por
las expresiones (7) y (8). Los elementos no nulos. deé la matriz [R], son en consecuencia:

—d; 1- d - 1-d, -
Ry = d-d) S%1; Ry = (__J) 5923 R3; = d-d) 5%
d; dj da

La tercera de las ecuaciones (10) es por lo tanto la ley de comportamiento de los resortes
ineldsticos.

La segunda ecuacién de las relaciones (10) corresponde a la compatibilidad de
deformaciones de la barra, los resortes y la viga elastica.

Combinando estas tres ecuaciones se obtiene la “ley de estado dela barra, es decir
la relacién entre las fuerzas y deformaciones generalizadas de la barra:

| My =[SO -
donde: {S(D)l S%(0] + [R]; 1[$%)~ |

El simbolo [0] indica una matriz unitaria de dimensiones adecuadas.

La matriz [S (D)]b es por lo tanto la matriz de rigidez local de la barra degradada.

En la ecuacién (11) y en el célculo de estructuras posterior desaparecen las nociones
de “viga eldstica” y “resortes ineldsticos” y sélo se consideran las fuerzas las fuerzas
y deformaciones generalizadas clésicas. El efecto del dafio interviene en el célculo
mediante la modificacién de la matriz de rigidez de la barra.

LEYES DE EVOLUCION DE LA DEGRADACION

En la ley de estado (11) se introdujo una varable adicional, el vector {D};. Para
definir completamente la ley de comportamiento hace falta en consecuencia introducir
una ecuacién suplementaria. Esta dltima debe describir la evolucién de la degradacmn
de la barra en funcién de las solicitaciones que le han sido aplicadas. La ecuacion
suplementaria o “ley de evolucién de la degradacién” caracteriza el tipo de dafio que
se desea modelar: modelos independientes del tiempo para solicitaciones monoténicas
o de pocos ciclos, modelos de dafio por fatiga para solicitaciones ciclicas, modelos
dependientes del tiempo para la degradamon debida a efectos de fluencia o reIaJac1on

Restricciones a la evolucién de la degradacién

El método del estado local (ver por ejemplo [11]) permite determinar en forma
general las limitaciones impuestas a-la evolucién de las variables internas por los
principios de la termodindmica. Estos principios se expresan en funcién de los diferentes
términos de energia que intervienen durante el proceso de carga.
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En el caso que nos ocupa, la energia de deformacién acumulada en una barra de
la estructura se expresa como la suma de la energfa reversible de los resortes mas la
energia de la viga elastica:

Wi

i

L@VIRME Y + @@ ) = S@FISONEs (1)

Si se desprecian los términos relacionados con los efectos térmicos, los dos principios
de la termodindmica conducen a las siguientes relaciones:

dW, + d¥, = dT} (13)

d¥, > 0 (14)

donde ¥ representa la energia disipada durante el proceso y dI' el incremento en el
trabajo realizado sobre la barra en cuestién, es decir:

Ty, = {M)}¥ {d®}, (15)

Introduciendo la expresién de la energia eldstica (12) en la relacién (13) y teniendo
en cuenta que el vector de fuerzas {M}, es igual a la derivada parcial de la energia
eléstica con respecto al vector de deformaciones {®};, se obtiene:

d¥y, = {G}f . {dD}; > 0 (16)
donde:

b = - {3753}, (an)

En la terminologfa clasica del método del estado local, a las componentes de {G},
se les llama “variables asociadas” o “fuerzas termodindmicas asociadas” a los indices
de dafio. Esta variable es por lo tanto el equivalente de la “tasa de restitucion de
energia” o del “factor de intensidad de esfuerzos” que se definen en la M.D. clasica y
en la mecanica de la fractura.

Considerando la desigualdad (14) se observa que para que la evolucién del conjunto
{D} de indices de dafio sea termodindmicamente admisible, hace falta que el “producto
escalar” de los “vectores” {G}; y {D}s sea siempre positivo o nulo.

Si se expresa el vector {G}; en términos de los desplazamientos de los resortes se
obtiene:

1 T 1 T 1 T
Gi = 3S0(I/d)% G; = 3S%(®j/d) Ga = 5S%(EF /A (18)

Lo que demuestra que las fuerzas termodindmicas asociadas a los indices de dafio son
siempre positivas. En consecuencia una condicién suficiente para que la desigualdad
(12) sea respetada es:
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& >0 d; >0 d. >0 (19)
Si se admite que los mecanismos de degradacién axial y de flexién son
independientes entre si, entonces la condicién (19) es también necesaria. En ese .

caso las leyes de evolucién escogidas deben verificar las desigualdades (19) para ser
termodinamicamente admisibles. i

Modelos de dano independiente del tiempo

Para la obtencién de un modelo de degradacién independiente del tiempo basta
con repetir el formalismo elasto-plastico cldsico:
Se definen las siguientes funciones de elasticidad:

hg(G;,dg) =G; — If{(d,‘) <40
hi(Gjd;) =G — K;i(d;) < 0 (20}
ha(Ga, da) = Ga —I(a(da) <0

La evolucién de los indices de daiio se define ahora de la manera siguiente: - .

d~{:° sihi <0 o hi <0 o d =1 (21)
‘1 >0 sih,_Oyh,_Oyd<1 _

La ley de evolucién (20), (21) puede ser considerada como el equivalente al cntemo
de Griffith de la mecinica de la ruptdra. El estado de degradacién del resorte en
cuestion aumentard sdlo si la fuerza termodindmica asociada al dafio alcanza el valor
critico K. Este valot critico puede, en el caso general, depender del estado de la
barra representado por el indice de dafio. De esta manera es posible caracterizar la
influencia de fenémenos de endurecimiento por deformacién de los matena,les en el
comportamiento de la barra. .

Esta ley de evolucién puede también ser comparada con los modelos elasto-pldsticos
clasicos. En estos, las fuerzas termodindmicas asociadas a las deformaciones plasticas
son las fuerzas generalizadas representadas por el vector { M}y, y sélo hay evolucién de
las deformaciones plasticas si el momento alcanza un valor critico que en ese caso es el
momento de fluencia.

En la ley de evolucién (20), (21) se ha admitido implicitamente la hipdtesis de
desacoplamiento de los efectos axiales y de flexién que es usualmente aceptada en la
mecénica de pérticos. Probablemente en muchas aplicaciones el resorte ineldstico axial
puede ser ignorado sin cometer errores apreciables. Esta hipStesis no es, por supuesto,
esencial. El acoplamiento de efectos axiales y de flexién puede ser representado
modificando las funciones de elasticidad de la misma manera que en los modelos elasto-
plésticos clasicos. :

Las funciones K deben seridentificadas en base a resultados expenmenta.les como
por ejemplo los obtenidos en ensayos sobre uniones viga-columna como la mostrada en
la Figura 3. '

Escogiendo adecuadamente la expresién de K es posible representar pricticamente
cualquier curva momento-rotacién o fuerza—)despla,zamiento obtenida experimentalmen-
te. ' :
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S
M=(S,- ==) ¢
1" sa
d= K'(G)
Ensayo Modelo
Figura 3. Ensayo en una junta viga-columna para la identificacién de la ley de

evolucién.

Las funciones K dependen en general del tipo de material utilizado, de la seccién
transversal, del porcentaje y tipo de refuerzo en el caso de una estructura de concreto
armado, etc.. La formulacién de un modelo vilido para un material particular es por
lo tanto un problema complejo de naturaleza esencialmente experimental que no serd
considerado en este articulo.

Modelos de dafno por fatiga

Los modelos independientes del tiempo reproducen correctamente la irreversibili-
dad del fenémeno de la degradacién, sin embargo son inadecuados para caracterizar la
degradacién en el caso de cargas ciclicas. Para describir la degradacién por fatiga es
necesario emplear otro tipo de ley de evolucién. Por ejemplo:

di = Ai(Gi,d) (G;) di <1 (22)

donde el simbolo < = > indica la parte positiva de z y A; es una funcién suficientemente
regular que se determina en base a resultados experimentales. Al igual que para los
modelos independientes del tiempo, la identificacién de la funcién A para un material
particular no serd discutida en este articulo.

En este modelo el indice de dafio aumenta unicamente durante la “fase de carga”,
que se define como el conjunto de instantes durante los cuales la velocidad de incremento
de la fuerza termodindmica G; es positiva. El indice de dafio permanece constante
durante la “fase de descarga”.

La ley de evolucién puede ser determinada para que en el caso particular de
una solicitacién mondtona el comportamiento previsto sea similar al de los modelos
independientes del tiempo como es el caso en ciertos modelos de la M.D. clasica'?.
Para ello la velocidad de la degradacién debe tener la siguiente expresion:

d; = —(G;i/K;)P(0hi/dd;)™" (G:) (23)
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donde G; es la fuerza termodinamica asociada a d;, K; y h; son las funciones definidas
en la seccién precedente y p es un nuevo coeficiente que caracteriza el incremento de
la degradacién por ciclo. Para grandes valores de p puede demostrarse que el caso de
una solicitacién monotdnica, la ley de evolucién (23) tiende hacia el comportamiento
independiente del tiempo del modelo precedente!?. La ventaja de este tipo de modelos
consiste en que sélo seria necesario identificar un coeficiente adicional, la constante p,
para obtener un modelo de fatiga a partir de un modelo independiente del tiempo.

Modelos dependientes del tiempo

“En los dos casos anteriores los fndices de dafios permanecen invariables a carga.
constante. En otras palabras sdlo permiten caracterizar la degradacion “instantanea”.
Para evaluar los efectos diferidos en el tiempo como por ejemplo los efectos de fluencia
o relajacién basta con emplear leyes de evolucion del tipo siguiente:

d; = Bg(Gg,di) d; <1 o (24)

donde B; es una funcién suficientemente regular de la fuerza termodindmica G y del
indice de dafio.

MODELO MATEMATICO DE UNA ESTRUCTURA DEGRADABLE

El célculo de estructuras degradables consiste en resolver el sistema de ecuaciones
formado por la ley de comportamiento descrita en las secciones precedentes (ley de
estado y ley de evolucién), las ecuaciones de equilibrio de cada uno de los nudos y cada
una de las barras de la estructura y las ecuaciones de compatibilidad:

Después de efectuar el proceso de ensamblaje de la matriz de rigidez global
de la estructura (siguiendo el procedimiento tradicional del método de rigidez para
estructuras eldsticas lineales) y del vector de fuerzas nodales se obtiene un sistema de
ecuaciones diferenciales que puede ser escrito formalmente de la manera siguiente:

{F)e = [K(D)){X}.
{{D}e = {f(X,X,D)} (25)

donde {F}, es el vector de fuerzas nodales, [K(D)]e la matriz de rigidez global y {X}.
el vector de desplazamientos generalizados de los nudos de la estructura, todos ellos en
coordenadas globales. La matriz {D}. es la que contiene los indices de dafio de todas
las barras de la estructura y f(X ,X, D) es la expresién que describe la evolucién de
cada indice de dafio en funcién de las incégnitas X y D. El sistema (25) se resuelve
empleando algin método numérico adecuado.
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EJEMPLO NUMERICO

Un programa de cdlculo ha sido desarrollado para el anélisis de estructuras
aporticadas en base al método descrito. En el programa se implement6 una ley de
evolucién independiente del tiempo como la descrita en una seccién anterior. Para las
funciones K se escogieron (arbitrariamente) expresiones del tipo siguiente:

K(d) = md® + ko (26)

donde m,n y ko son constantes de la barra. No se considerd el dafio axial (d, = 0Vt.).

El programa fue probado con el ejemplo mostrado en la Figura 4. (Los valores de
los pardmetros utilizados se indican en el pie de la Figura 4). El pértico allf indicado
es solicitado por una fuerza F aplicada en el extremo superior de la barra 1. El célculo
fue “pilotado” por el desplazamiento horizontal de ese nudo. Los resultados del cilculo
se ilustran en las Figuras 5,6 y 7.

v
i barra 2 j
F i
barra 3 25m

barra 1 :

777777
o7
Sm.

Figura 4. Pértico plano sometido a una fuerza horizontal, pardmetros utilizados en
la simulacién: £ = 2000 t/cm, I = 166 cm?, A = 200 cm*, m = 9,91 t-cm,
n=1,k0=0,85 t-cm.
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F/F max.

0.4 la primera articulacion
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0 — . [
0 0.4 0.8 1.2
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Figura 5. F/F max en funcién de U/U1.
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Figura 6. Evolucién de los indices de dafio de las barras de la estructura en el tiempo.

En la Figura 5 se muestra el grafico F/F max en funcién de U/U1. Donde F es la
fuerza externa (ver Figura 4), F max la fuerza méxima aplicada, U es el desplazamiento
horizontal (ver Figura 4) y U1 es el desplazamiento que corresponde a la aparicién de
la primera articulacién degradada. Puede observarse que la estructura pasa por una
fase eldstica, una zona de “endurecimiento” hasta que la fuerza alcanza el valor F'max
que es la carga de ruptura del pértico y finalmente por una fase de “ablandamiento”.

La evolucidn de los indices de dafio de cada una de las barras en funcién del tiempo
se indican en la Figura 6.

En la Figura 7 aparece la evolucién de la distribucién de momentos flectores en
el curso del tiempo. En la Figura 7a se indica el diagrama de momentos para el
instante ¢ = 4,2 (U1 = 4,2 cm) en el que el comportamiento es puramente eldstico.
En la Figura 7b se muestra la distribucién de momentos después de la aparicién de
la primera articulacién degradada (U1 = 13,1 cm). Comparando las Figuras 7a y 7b
puede observarse el efecto de “redistribucién de esfuerzos” debido a la evolucién del
dafio en la estructura y a la aparicién de la primera articulacién degradada.

Las Figuras 7c y 7d indican la distribucién de momentos para ¢t = 16,9 (U1 =
16,9 cm) y t = 19,4 (U1 = 19,4 cm), es decir inmediatamente depués de la aparicién
de la segunda y la tercera articulacién degradadas respectivamente.

Puede observarse que el comportamiento de la estructura estudiada es mucho
més estable (numéricamente) que el obtenido en andlisis estructurales utilizando la
M.D. clasica. En estos tltimos, al igual que en muchos de los modelos que presentan
ablandamiento por deformacién, aparecen fenémenos de pérdida masiva de unicidad
de la solucién, lo que permite afirmar a algunos autores!® que la M.D. clésica puede
conducir a problemas matemadticos “mal formulados” (ill-posed) y sélo es vélida hasta
la iniciacién dela zona completamente degradada. Ninguna de estas dificultades ha sido
observada en este ejemplo elemental ni en otros similares. Ello es debido probablemente
a que el modelo propuesto no es continuo y a que la discretizacién de la estructura en
barras es uno de los datos del problema a resolver.

Por supuesto no puede afirmarse que en el caso general los modelos aqu{ propuestos
no presentardn dificultades numéricas sin un anilisis matemadtico completo.
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CONCLUSIONES

El método presentado en este articulo puede considerarse como una M.D.
simplificada para el anslisis de pérticos y reticulados. La adaptacién de la M.D.
cldsica a la teoria de porticos se hace, al igual que para la teoria de la plasticidad,
mediante el uso del modelo de dafio concentrado. El uso de los conceptos de la
M.D. cldsica y de la termodindmica de los medios continuos permite definir los
modelos de comportamiento de pérticos en términos de “variables de estado” y “fuerzas
termodindmicas”, “ecuaciones de estado” y “leyes de evolucion”. En particular en los
modelos aqui propuestos se define una nueva variable interna: el indice de daflo. Se
introduce igualmente la fuerza termodindmica que le es asociada. Este dltimo concepto
es similar al de “tasa de restitucién de energia” que se introduce en la M.D. clasica y
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en la mecanica de la fractura. En este articulo se propone la formulacién de leyes de
evolucién del dafio en funcién de esta fuerza termodindmica.

En el ejemplo de aplicacién presentado en este articulo asi como en otros similares
no se observaron los problemas numéricos usuales de la M.D. cldsica. Una explicacién
posible para ello es el caricter discreto del problema a resolver y el hecho de que los
lugares donde podria eventualmente localizarse el dafio forman parte de los datos del
modelo.

Para una aplicacién industrial hace falta identificar las funciones definidas en
los diferentes tipos de ley de evolucién. Este problema de caricter esencialmente
experimental, no presenta a primera vista dificultades teéricas insuperables. De hecho
existen numerosas referencias tanto de la M.D. cldsica como del andlisis no lineal de
estructuras aporticadas que describen los pasos a seguir en este caso. El tipo de modelo
a escoger depende del problema particular que se desea simular: para solicitaciones
monotdnicas o de pocos ciclos es preferible emplear el modelo independiente del tiempo
que es el mas facil de identificar y el mas “econémico” desde el punto de vista
computacional. Para solicitaciones ciclicas (o sismicas) y para modelar los efectos
diferidos en el tiempo es necesario utilizar modelos como los descritos en secciones
anteriores.
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ANEXOS
1. Expresiones de la matriz de rigidez S.

a) En funcién de los coeficientes de la matriz de rigidez inicial:

S13 =83 =0
— (l‘di)(djS?zs?z _ 5?1532)5?1

Su didjs?zsgz - 591532

Sy = (- di)(dé - 1)5915?2532
didjS%S?z - 5?1532

Sy = (1—dj)(di5?25?2 — 5?1582)582

of;d}-S?zS& - 5?1532

b) En el caso de una barra recta de seccién constante A, de momento de inercia I,
longitud ! y médulo de elasticidad E, sin articulaciones internas iniciales:
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 (1-d)@d-d)) _a(1-d)(1-dy)
Su = S AR S = ST QEI/Z
_ o _ (1-d;)(4-di)
- S13 =0 : Sy = 41— did; 4EI]/l
Smo= 0 | Sz = (1—d,)AE/I

" II. Expresiones de las fuerzas termodindmicas asociadas a los indices de dafio.

o a,)lEn funcién de las deformaciones de los resortes:
‘ A 1‘”0 P 2 - T 1 1] 7 | 2 |
Gi = 551(®i/di)’s Gj =" 552(®5/ds)";
R DO
Gd :—2'533(5 /da)2 )

+ “b) En funéién de los coeficientes de la matriz de rigidez inicial y las deformaciones
generalizadas de la barra:

([®:57, + &; 5 21d; 8Ty — S%159,8: — $7159,8;)°5%
T 9(did, S0, = S9,89
([®:5% + @ §%1diS% — 8D.80, @ — 59,59,8;)%5%,
A 2(d,-d3-5§)2' - 5%5?2 2

G; =

e 1 ] -

c) En el caso de una barra recta de seccién constante A, de momento de inercia I,
longitud ! y médulo de elasticidad £

(dj@i + de@j — 40, - 2@1')2 2FE1

G; =
(did; — 4)* l
G = (d:®; + 2d;9; — 49; — 2@,’)2 2ET
I (didj - 4)2’ l
AFE , L
G, = 57 —¢
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