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1. INTRODUCTION

In this paper, we introduce the PLR (proportional likelihood ratio) order as a new sto-
chastic order among continuous random variables, and two classes of probability dis-
tributions, the IPLR and DPLR classes, based on this order. Throughout this paper,
the termincreasing meansnon-decreasing but not identically equal to a constant and
decreasing has an analogous meaning.

The PLR order is related to the likelihood ratio order, which is defined as follows (see,
e.g., Ross, 1983).

Definition 1. Let X and Y be continuous random variables with densities f and g,
respectively, such that
F ()

I decreases over the union of the supports of Xand'Y
(herea/0is taken to be equal to o whenever a > 0). Then X is said to be smaller than
Y in the likelihood ratio order (denoted by X <, Y).

Many properties of the likelihood ratio order are listed in Section 1.C of Shaked and
Shanthikumar (1994). The ordet|, can be used to characterize random variables
whose logarithms have log-concave (log-convex) densities (see Shaked and Shanthiku-
mar,1994, Theorem 1.C.22). It can be shown that

1) X+t <y X+t forall t <t' <= log f (x) is concave.

The characterization (1) shows that log-concavity of densities can be interpreted as an
ageing notion in reliability theory. In this sense, we have the following definition (see
Ross, 1983).

Definition 2. The continuous random variable X having density f is said to have the
ILR (increasing likelihood ratio) property if log f () isconcave and is said to have the
DLR (decreasing likelihood ratio) property if log f (x) is convex.

In Section 3 we introduce the IPLR (increasing proportional likelihood ratio) and DPLR
(decreasing proportional likelihood ratio) classes. The basic properties of these classes
are proven. In particular we show that the IPLR (DPLR) property can be used to charac-
terize non-negative random variables whose logarithms have log-concave (log-convex)
densities. A purpose of this Section is to find conditions under which a continuous
random variable is said to have the IPLR (DPLR) property.
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In Section 4 we apply the IPLR and DPLR properties to comparisons of truncated ran-
dom variables according to the Lorenz order. The Lorenz order is closely connected to
the so-called Lorenz curve, defined as follows. Supose is the distribution func-
tion of a non-negative random variabewith finite meary. LetF ~* denote the inverse
of F defined by

FY(p) =inf{x: Fx(X) > p}, pe€[0,1],

then the Lorenz curve correspondingdaan be defined (Gastwirth, 1971) as:

1 /P
@) L(p)=; [TF'mat o<p<i

0
The Lorenz curve is used in economics to measure the inequality of incom&s. If
represents annual incomey (p) is the proportion of total income that accrues to indi-
viduals having the 108 lowest incomes. The Lorenz curve provides the next partial
ordering between random variables with finite means (see Arnold, 1987).

Definition 3. Wesay that X <| Y < Lx(p) > Ly(p) for every0O< p< 1.

Let S(f) be the number of sign changes of the functi@r). The next theorem, from
Arnold (1987), will be used in Section 4 to show that IPLR and DPLR properties are
sufficient conditions to obtain orderings of the truncated distribution by the Lorenz
order.

Theorem 1. Let X and Y be two non-negative random variables with finite means py
and py, respectively, and let F and G be the corresponding distribution functions. If
S(F (xpyx) — G(xuy)) = 1 and the sign sequenceis —, +, then X < Y.

2. THE PROPORTIONAL LIKELIHOOD RATIO ORDER

A new order closely related to the likelihood ratio order will next be described.

Definition 4. Let X andY be non-negative and absol utely continuousrandomvariables
with supports supp(X) and supp(Y), respectively. Denote the density functions of X
andY by f and g, respectively. Suppose that

g(Ax)

®3) )

increases in x for any positive constark < 1
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over the union of the supports of X and Y (herea/0 is taken to be equal to c whenever
a> 0). Then, we say that X issmaller than'Y in the proportional likelihood ratio order
(denotedas X <pir Y).

Examplel. Let X; be, i = 1,2, the exponential random variable with parameter ;. Its
probability density function is f; (X) = a;j exp{—aix}, x> 0. Then, it is easy to see that
X2 <pir X1 whenever o < Q5.

A consequence of definition 4 is shown next. SupposeXhtetdY are random varia-
bles whose supports are intervals with non-empty intersection, ahg feinf {x: x €
supp(X)} andux = sup{x: x € supp(X)}. Definely anduy similarly.

Theorem 2. If X < Y, thenlx <ly and ux < uy.

Proof. Suppose thdk > ly. Letty, t; be such thalty <t; <Ix <t < min{ux,uy} and
letA € (0,1) such thaty < Aty < Ix < Atz < min{ux,uy}. Theng(Aty) /f (t1) = o0 >
g(At) /f (t2) , in contradiction to (3). Therefore we must hdye< ly. Similarly, it can
be shown thatix < uy. O

If X andY are two random variables with respective supp@risux ) and(ly, uy) such
thatlx < ly andux < uy, it should be noted here that in (3) it is sufficient to consider
only f andg such thag(Ax) / f (x) increases ix over

A(A) = {x € supgX) such thatx € supgY)},
for all A € (0,1) rather than over the union of the supports<aiindY.

The next result shows that thper order has the property of ordering by size.

Theorem 3. Let X andY be non-negativeand absol utely continuousrandomvariables.

Proof. Let f andg be the density functions oX andY, respectively, and for each
A €(0,1) let g% denote the density function of the random varia§IeSuppose, by

contradiction, thafly > [ . Since

gy (X)

1<

>

g(Ax) =
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it follows from the assumptions that
4 g%(x)/f(x) is increasing ixx forall A in (0,1).

Hence
S(g% - f) = 1foreach\ € (0,1),

that is, X and% are stochastically ordered for eakln (0,1). In particular, by taking

A=W
Hx
it follows that the random variable$é and ﬁ—>Y<Y are stochastically ordered. Singkeand
By have the same mean, ordinary stochastic order is only possible if they have the

same distribution. This contradicts (4) and hepge< py holds. O

The following result characterizes the proportional likelihood ratio order by means of
the order<;, .

Theorem 4. Thetwo absolutely continuousrandomvariables X and Y satisfy X < i Y
if and only if X <;; aY for all a> 1.

Proof. Note that
Jav(X) _9(X/a) _,9(Ax) , 1
i afm e MTa<t

and the result holds. O

Theorem 5. Let X andY be non-negativeand absolutely continuousrandomvariables.
Supposethat Y has a log-concave density function. Then

() X<irY = X<prY.

Proof. It is well known that if a non-negative random variaiehas a log-concave
density anch > 1, thenY <, aY (see, for example, Section 1.C. in Shaked and Shant-
hikumar, 1994). SincX <, Y by assumption and the relatiefy; is a transitive order,

it follows thatX <, aY. From Theorem 4 we obtain (5). O
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3. INCREASING AND DECREASING PROPORTIONAL LIKELIHOOD
RATIO

Definition 5. Let X be a continuous non-negative random variable with density f. It
will be said that X isincreasing proportional likelihood ratio (IPLR) if

f (AX)
f(x)
It will be said that X is decreasing proportional likelihood ratio (DPLR) if
f (AX)
f(x)

(By convention, § = +oco whenever a > 0).

(6)

isincreasing in x for any positive constant A < 1

is decreasing in x for any positive constant A < 1.

The study of the increase 6fAx) / f(x) can be restricted to the case of both arguments
are in the support oK, as the next result shows. The proof is easy and is therefore
omitted.

Theorem 6. Let X be a continuous non-negative random variable with density f and
suppose that the support of X isan interval. Then, X isIPLRif and only if

f (AX)
f(x)

isincreasing inxover A (A)for all A € (0,1)

where
A(N) = {x € supgX)such that Ax € supgX)}.

From Theorem 4 we have the following characterization of IPLR random variables in
terms of the<y; and<;, orders. O

Theorem 7. Let X be a non-negative and absolutely continuous randomvariable. The
following conditions are equivalent:

a) Xis IPLR.

C) X Splr X.

Now, combining Theorem 7 with the argument used in the proof of Theorem 5, we
obtain the following sufficient condition for the property IPLR.
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Theorem 8. Let X be a non-negative and absolutely continuous random variable with
a log-concave density function. Then, X is IPLR.

In other words, using Definition 2 we have that
XisILR = Xis IPLR.

The class of IPLR (DPLR) random variables can be used to characterize random varia-
bles, whose logarithms have log-concave (log-convex) densities. This is shown in the
following results.

Theorem 9. Let X be an absolutely continuous non-negative random variable with
density f. Then, X isIPLR (DPLR) if and only if f(€*) islog-concave (log-convex).

Proof. We will prove the result for the IPLR case; the DPLR case can be proven in a
similar way. Denotg(x) = f(€*) and suppose thafx) is log-concave, that is,
g(ax+(1-a)y) >g(¥*g(y) ™, 0<a<l

for all x andy in the domain ofj or, equivalently,

g(y2—X2)g(y1 —X1)
7 >1, VX <X, Vy1 <YYo
(7) 9y —x) g(y1—x) = 1 2, VY1 <Y2

LetA < 1 and select; andt, such that 6< t; < tp. By takingy; = log t1, y» = log to,
X1 =0, %2 = —log A in (7), one obtains

f (Aty) < f (Atp)
ft) = ftz)’

that is,X is IPLR. Conversely, assume thétis IPLR and leta > b. Since

flat) _ f(ght) _ f(A)

f(bt)  f(bt)  f(t)’ A=a/b< 1t =ht,

the ratiof (at)/ f (bt) increases in, that is,

f (aty
f (bty

~

f (at2
f (btz)

~

(8)

<

, Vi <tp, Va< b

~—

Now, letx; < x2 andy; < y». By takingt; = €72, tp = €4, a= e, b=¢&"2in (8) we
obtain (7) and the result holds. O
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The next result follows from Theorem 9. The proof is obvious and it is omitted.

Corollary 1. Let X be an absolutely continuous non-negative random variable with
density f. Then, X isIPLR (DPLR) if and only if logX has a log-concave (log-convex)
density. Equivalently, using Definition 2, we can say that

X isIPLR (DPLR) <= logX isILR (DLR).

Let X andY be two absolutely continuous non-negative random variables.<f; Y,
then it is not necessarily true thét<, Y. However, if one of these random variables
is IPLR, then the relationship is verified (wh&nhandY have the same suppdit™).
Since
fA) fAX) f(x) f(AX) g(Ax)
= = , VX, AX € RT,
9 (¥ gx) g(x) g(x

it is easy to prove the next result.

Theorem 10. Let X and Y be two non-negative and absolutely continuous random
variables having the same support R*. If X <;; Y and X or Y isIPLR, then X < Y.

The next result yields random variables with the IPLR property by means of a simple
factorization of the density function.

Theorem 11. Let X be a continuous non-negative random variable with finite mean,
the support of whichisan interval. If f, the density function of X, satisfies that

9 f(AX) =A(A)-B(x)-exp{C(A)-D(x)}, VA

whenever x,Ax € supp(X), where:
A(A) and C (M) are independent of x,
(x) and D (x) are independent of A,
(M) decreasesinA,

(X) increasesin x,

then X isIPLR.

B
C
D

Proof. LetA be a positive constank,< 1. Consider the ratio

ncA) = S = 20 explic () - CID (0} >0
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then

a%h(x,)\) =[C(A\)—C(1)]-D'(X)-h(x,A) >0
by assumption. It follows thdt(x,A) is increasing, that is is IPLR. O

Remark 1. Notethat if C(A) increasesin A, then X is DPLR.

In many distributions, (9) is very easy to verify. As an example, consider the three-
parameter Amoroso distribution, with density function

__ak pgy 1 p
f(X)—WX eXp{ ax }, x>0, p>0a>0, - #0
Then -
a P P4 11
f(AX) = “As Xs t.-expd —aAsxs
M= 19r ) p{-ahixt )
By taking
_ aP 4 B2 2
AA) = |S|r(p))\ , B(X) =x )
1
—aAs if s>0
CA) = 1
aAs if s<O

1
xs if s>0
D(x) =
) {—xéifs<0

it follows that f (x) satisfies the property (9).

The Amoroso family includes the standard Gamne: 1, s= 1), March(s= 1), Vin-
ci (s=—1), Weibull (p=1), Exponential(p=1,s= 1), Rayleigh (p=1,s=3),
Chi-Square(A = 3, p=§), Half-Normal ()\ =55, P=3,5= %) and Maxwell dis-
tributions (p= 3,s=3).

Similarly, the Dagum type |, Singh-Maddala, Generalized Beta of second kind, Three-
Parameter Generalized Gamma, Log-Gomperz and Lognormal distributions have the
property of IPLR. On the other hand, the random variableaving density function

f(x) =€, 0<x<log2

is an example of DPLR distribution.
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4. APPLICATIONS

Several authors have studied the effects of truncation of the random variable upon the
Lorenz curve. Bhattacharya (1963) showed that under certain conditions on the support
of the distribution, the Lorenz curve of a left truncated income distribution is indepen-
dent of the point of truncation if, and only if, the incomes follow the Pareto law. For the
right truncation case, Moothathu (1991) showed that the Lorenz curve is independent of
the point of truncation if, and only if, incomes follow a power distribution. For random
variables with absolutely continuous distributions, @ra@l. (1983) obtained an orde-

ring in the Lorenz sense of the left truncated random variables, in terms of the mean resi-
dual life. Also for absolutely continuous random variables, Belzahek (1995) gave

some conditions in terms of the proportional failure rate and the elasticity of the ran-
dom variable to obtain orderings of the truncated random variables by the Lorenz order.

Consider a continuous non-negative random varizbhgth distribution functior- and
survival functionF = 1— F. The left truncated random variableXfin t is

o) = {X|X>1}, tesuppX),
and the corresponding survival function is given by

1 X<t

=
8
~~
R
I
T

X)

(t
The right truncated random variableXfint is

X >t.

T

X —op) = {X|X<t}, tesuppX),
whose survival function is given by

FO-F(X)
E F(t)

x<t
Flowt (X) =

0 X>t.

Before obtaining the main results of this section, we need to state the following defini-
tion.

Definition 6. We say that X isan increasing failure rate (IFR) randomvariableif F is
log-concave and we say that it is a decreasing failure rate (DFR) random variableif F
islog-convex on its support.

The IFR or DFR random variables are of interest in reliability theory. It can be shown
(see, for example, Bryson and Siddiqui, 1969; Barlow and Proschan, 1975; Ross, 1983)
thatX is IFR (DFR) if and only if
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(10) F(ﬁx(;)c) is decreasing (increasingpn> 0 forallc > 0.

Ifwe Ietlf(x) ff(ex) , itfollows from (10) that the random variable I¥gs IFR (DFR)
if and only if F (x+c) /F () is decreasing (increasing) kfor all ¢ > 0. Substituting
e =titis seen that loX is IFR (DFR) if and only if

(12) F_(CX) is decreasing (increasingpine supp(X) forall ¢ > 1.

F ()

Theorem 12. Let X be a non-negative continuous random variable. If the random
variablelogX isIFR (DFR) then X, .y <L X(ae) (>1) for all a< b, a,b € supp(X).

Proof. We give the proof for the IFR case; the proof for the DFR case is similar.

Denote byu(&w) the mean o5 ). It is easy to see thart(a@) < M) foralla<b

and since
_ = H(b,eo)
F(44pe) _ F[X“‘_a“’“’(“(a-m)] _
F(ae)) F(%am)
_ EO) ¢ _ Hbw)
- ﬁ(y) ) t= (a.oo)’ y= Xu(apo),

it follows that if logX is IFR thenF xu(b@)) E(xp(a@)) decreases irforalla< b.
Now consider the ratio

Flao (Haw)
)

(12) rab(X) = ,Xx>0,a< b, (a,be supp(X))

F (b,00) (Xu(b,oo)

where . )

= 1 if x<t/c

Fite) (@) = { F(cx)/F(t) if x>t/c
(in (12), k/0 is taken to be equal t® wheneverk > 0 ). If logX is IFR then the
ratioF (xu(@w)) /F (xu(bpo)) is increasing ik and we have thaty, (x) > 1 for everyx
wheneveb/p, ) < a/Ha.e), ANAS(rap (X) — 1) < 1 with the sign sequence beirg +,
when equality holds whenevey |y, ) > a/Ha.)- ThereforeS(rap (X) — 1) < 1with
sign sequence, + in the case of equality. On the other hand,

S(rap(x) —1) = S(Ea,oo) (X“(&w)) ~Fiow) (’%bm)))

= S(F(b,m) (XU(b,oo)) — Fam) (Xu(@m))) foralla<b
and from Theorem 1 it follows tha¥ ) <i X(a.00)- O
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Theorem 13. Let X be a non-negative continuous random variable. If F (e*) is log-
concave (log-convex) then X g o) <L X(op) (>1) for alla< b, a,b € supp(X).

Proof. SinceF (€¥) is log-concave (log-convex) if and only if

F (cx)
F(x)

the result can be proven in the same way as the proof of Theorem 12. O

is decreasing (increasing)n> O for allc > 0,

The previous results will allow us to show that the IPLR and DPLR properties (sa-
tisfied for many income distributions, as can be seen from Theorem 11) are sufficient
conditions for the ordering of truncated distributions.

Coroallary 2. Let X be a non-negative and absolutely continuous random variable. If
X isIPLR, then X(a,m) >L X(b,m) and X(O,a) <L X(O,b) for all a< b, a,b € SUp}XX) .

Proof. If X is IPLR, it follows from Theorem 9 that Iog has a log-concave density.

It is well known (see, e.g., Prekopa, 1973) that the hypothesis of logconcavity of the
density function implies the logconcavity of the distribution function and the survival
function. Now, the result follows by applying Theorems 12 and 13. O

The following corollary can be proven in an analogous way to the previous.

Corollary 3. Let X be a non-negative and absolutely continuous random variable. 1f
X isDPLR, then Xaw) <L X(b,w) and X0,2) =L X(0,b) for all a< b, a,b € supp(X).
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