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SMALL-AREA ESTIMATION USING ADJUSTMENT
BY COVARIATES

N.T. LONGFORD*

Linear regression models with random effects are applied to estimating the
population means of indirectly measured variables in small areas. The
proposed method, a hybrid with design- and model-based elements, takes
account of the area-level variation and of the uncertainty about the fitted
regression nodel and the area-level population means of the covariates.
The method is illustrated on data from the U. S. Department of Labor Li-
teracy Surveys and is informally validated on two states, Mississippi and
Oregon, for which statewide surveys have been conducted.

Keywords: Effective sample size, linear regression, random effect. sam-
pling variation.

1. INTRODUCTION

Large-scale educational surveys, such as the U.S. Department of Labor and Na-
tional Adult Literacy Survey, the National Education Longitudinal Survey, and the
National Assessment of Educational Progress in the United States. often provide
abundant information about their target populations and certain subpopulations, but
cannot be used directly for inference about small areas, such as states, counties. or
census tracts. States or smaller administrative units often contract out smaller-scale
surveys for their jurisdictions. Such surveys often do not utilize any information from
the national surveys. As a result, some duplication in collection of information takes
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.-place. Considerable savings could be achieved and more information extracted if
information about a small area contained in the national and.small-area surveys could
be combined, or indeed, if inference about a small area. based on the national sample.
would use information (‘borrow strength’) from the other small areas.

This paper explores the extent to which information from national surveys can be
used for inference about smaller units. We discuss in detail inference for states but
the approach is equally applicable to other jurisdictions.

In a typical setup, a regression equation is fitted to the outcome variable v in the
survey data. using an appropriately selected vector of covariates x. yielding an estimate
[3 of the vector of regression parameters B. Let the mean vector of the covariates X
for small area j be x/). and let %) be its estimate, obtained not necessarily from the
same survey. When no values of the outcome variable in area j are available.

is the obvious estimator (predictor) of the mean of the outcome variable v in area ;.
When area j is represented in the survey, an estimator of the area mean, ), based
solely on the data from the area, can be combined with the synthetic estimator U

= a4 (1= a))i

with the area-specific coefficient a; chosen so as to minimize the mean squared error
of the combined estimator )75:').

This paper gives details of the prediction procedure outlined above and describes
an application to the Job Training Partnership Act (JTPA) and the U. S. Employment
Service and Unemployment Insurance (ES/UI) surveys administered by the U.S. De-
partment of Labor in 1989-90. For details of these surveys, see Kirsch and Jungeblut
(1992). The prediction procedure is an application of the approach of Battese, Har-
ter, and Fuller (1988), and is here extended to account for sampling weights and
uncertainty about the population mean of the covariates.

Section 2 summarizes the two-level (random-effects) regression model on which
the predictions are based. Section 3 describes the adaptation of this model and its
model fitting algorithms for sampling weights. Sections 4 and 5 give the minimal
details of the datasets and the variables used. The methods are illustrated in Section
6 on examples .that compare the prediction for Mississippi and Oregon based on
the national surveys, with the estimates of the population means from the statewide
sample surveys. Section 7 summarizes the paper, outlines a way of assessing the
information about a small area in the national sample, and discusses how estimators
for a small area can be combined.
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2. LINEAR REGRESSION AND ITS USE IN PREDICTION

- : : -

For an outcome variable y consider the random-effects regression model
2 vij = xijB+8;+¢;,

where the subscripts i and j denote the elementary unit (subject) i = 1,... ,n; within
area (e.g., state) j = 1,...N,; the random terms ; and g;; are mutually independent
random variables with centered normal distributions and respective variances 63 and
o%. Zero expectation of §; is not a restrictive assumption because a non-zero mean
would be confounded in the regression xB. Let p be the number of regression pa-
rameters (i.e., the length of the vector of covariates x;;). It is assumed throughout
that the first component of x is equal to unity for each subject. The choice of the
variables in x is a well-appreciated problem involving balancing the requirements of
model parsimony and adequacy.

The random term 8, can be interpreted as the deviation of area j from the national
mean, after an adjustment for the covariates. The area-level variance 0’% 1s a summary
measure of the (adjusted) differences among the areas and it plays an important role
in prediction for a state. To illustrate this, suppose the regression parameters [3 are
known exactly. The synthetic predictor for area j with the known population mean

vector of x equal to x| is xU)B. This predictor is not exact, though, because the
‘true’ value of the mean 7\ is

. 1
3) x)B + o+ - Zﬁijv
J i

where m; is the population size of area j (m; > n;, unless a full census is taken in
area j). When the area is not represented in the data (n; = 0), no information about
d; is available. Then the mean squared error of the predictor in (3) is 5} +o7/mj,
and so its lower bound (approximate value for large m;) is 83. The expectation of
this lower bound over the small areas, q’%, represents a component of uncertainty
about the prediction for each area. If prediction based on a random-effects model is
to be used for areas not represented in the data, the variables x should be selected
so that the adjusted area-level variance 0‘% is as small as possible. When an area is
represented in the survey, the data for area j, but also the data for the other areas,
contain information about J;.

2.1. Sampling variation of the prediction

Suppose the sampling variance matrix of ﬁ is X5, and it is estimated by £,. Details
of estimating B and X, are given in Section 3.
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v Let ) be an estimator of the mean vector of the covariates x for area j, with its
sampling.variance. matrix Zg estimated by £5. -In the illustration in Section , xY) s
the ratio estimator and its sampling variance matrix is derived assuming a weighted
random sampling design. The predictor $U) given'in (1) mvolves products of random
variables (parameter estimates and sample means). If X %) were subject to no error,
that is, Zs = 0, the sampling variance of the predictor would be

@ Var():m) — X Zb( )

When the mean %) is based on data not used in estimating B, X'/ and B are inde-
pendent. Then

(5 var (i(f)) = w(ZsZ,) +xU'E, (xm) i + BTZSB,

which may be much greater than the variance in (4); poorer information about the
covariates causes poorer prediction.

Next, suppose [3 and &) are both normally distributed, and let ;5 be their cova-
riance matrix. Then

var (y‘(j)) = tr(ZsZp) + xx, (x(-j)) ! + BTZSB

6 .
© +tr (Zgg) + 2xU TP

See Appendix for proof. Equation (5) is obtained from (6) by setting Zy5 = 0. Esti-
mating the covariance matrix Zyg is a problem, especially when the data for the small
area is used for estimating B and the estimator B has a complex form. Typically, no
area constitutes a large proportion of the data, and so the correlations of B and %V
are small. Then the terms involving ;s in (6) can be ignored and (5) applies.

When %) and [3 are unbiased the expectation of the estimator 1) is x\)B +
tr (Zps), and so the conditional mean squared error of 74, given 9, is

@) E{(y( B !)) |, } = var(i“’) +{5j—tr(2;,s)}2.

" When Zps is not known the size of the bias and mean squared error can be inferred
by substituting a range of plausible values for the matrix Zps and for the deviation §;.
When the small area is not represented in the survey sample X5 = 0, and there is no

information about 8;. Then the typical mean squared error is obtained by averaging
over the marginal distribution of §;:

(8) E [E{()‘z(-i) —ym)z |8.,-}] = var (9( )) +03.
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For a cluster represented in the survey, the deviation 8, can be estimated as its
estimated conditional expectation given the data. see Section 3:1.

3. SAMPLING WEIGHTS

The sampling weights are an important feature of the sampling design of a sarvey.
Inferences based on data from such a survey have to take account of the weights.
For instance. the commonly used estimator of the mean of a simple random sample
vii=1,...N,is y=N"'T,v;. Its counterpart for independent data with sampling
weights w; is the ‘weighted’ mean, or the ratio estimator,

Foo= 2iWivi
- W - ~ . -
' Ziwi

Similarly, the regression parameter vector B, estimated for independent observations
with equal weights as

-1
B = (me,~T > 2 ViXi.

has the ‘weighted’ version
-1
A T
B, = Ewixixi > wa)"ixi~
i i

For estimation of the variances 63 and o2, as well as of the sampling variance
matrix for 8, , it is essential to use an appropriate normalization of the weights.
Potthoff, Woodbury, and Manton (1992) show that the normalization in which the
total of weights and the total of their squares are equal is appropriate. That is. the
weights w; are replaced by

* 2w
W, = w; 5 .
zi’ W;; .

It is assumed throughout that the weights have been normalized in this fashion, and
the asterisk- * on w is dropped. The total of the normalized weights, N, = X, w;, can
be interpreted as the effective sample size, that is, the size of a simple random sample
that would contain the same amount of information about the population mean as
the sample at hand. It can be shown that N,, < N, and equality holds only when the
weights are constant.
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When G% =0, the linear regression model in (2) simplifies to the ordinary re-
gression. Then the estimators of-the residual variance and the sampling variance of

B,

N 1
52

= §oo 2o xBY

-1
var(f) = &° <Zwixix;r> .

are approximately unbiased.

Strictly speaking, the assumptions about the sampling weights listed in Potthoff
et al. (1992) are not satisfied because the weights are random variables (owing to
poststratification). However, we concur with Potthoff et al. that the consequences
of randomness are not severe. Although the poststratified weights are derived by
a complex process of adjustment for a number of background variables aggregated
at various levels, the absolute changes of the weights are insubstantial relative to
variation of the design weights.

3.1. Fitting random-effects models

The random-effects model in (2) can be fitted by the Fisher scoring algorithm.
We list the relevant equations for the case of equal weights, and then describe the
adaptation for unequal sampling weights.

Let y be the N x 1 vector of outcomes, X the N x p matrix of regressors, e =y — Xf
the vector of residuals, and V = var(y) the variance matrix of the outcomes.

The first and second-order partial derivatives of the log-likelihood

1
©) 1:-—E{nguny+mgmaV)+eTv-%}
with respect to the regression parameters are
3l
. = XTv-—l
B ¢
N
9 lT = -X'V7'X.
dpap

An iteration of the Fisher scoring algorithm updates a current estimate BO,‘, to obtain
the ‘new’ estimate

N ~ -1
Ty-1 Ty—1
Bnew = Bald + (X anzlx) X V()Ide”ld7
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where V4 and e,y are equal to V and e evaluated for the current values of the
parameter estimates. Substitution for e,y and elementary algebra yield

~ -1
(10) Buow = (XTVLIX) XV by

the Fisher scoring and Newton-Raphson algorithms coincide with the generalized least
squares.

In evaluating (10), inversion of large matrices is avoided by exploiting the pattern
of the variance matrix V. First, V is block-diagonal, with blocks

I I
v/ = GTIHI +G§Ju,

correspoding to areas (I,, and is the m x m unit matrix and J,, = 1,,1,, the m x m
matrix of ones). Next,

deqV;) = o"(1+n)

2 T

Some advantage is gained by using the variance ratio T instead of 0'%. Letting
W= 0‘1_2V, the variance Gf can be separated out in the log-likelihood /,

<
L
I

where T = 63/07.

1 ) ,
(11) | = —5{Nlog(znc;)+1og(dezW)+o,‘~eTw—‘e}.

The first-order partial derivative with respect to Gf has the root

T -1
€otd wold €old

A2 _
(12) 6} = ke

Finally, noting that oW /dt = diag, {J,, },

ol 1 _ 1 _ B
- —E;ILWI.'1,1j+%?2(e}—wjll,,j)

J
0%l 1 “1g \?
5(5) - 72 (W)
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where e; is the subvector of e corresponding to area j and W; = o7 V;. At each
iteraticn the current.estimate of T is updated as--

: - R\ a
(13) r,,ew_:,,,d_{E<F)} 2

with the right-hand side evaluated at the current solution (B”M,G}_”ld, %o14).- The
iterations, consisting of (10), (12), and (13), are terminated when a convergence
criterion is satisfied. Such a criterion can be based on the change of the log-likelihood.
Lyew — Loig, on the size of the corrections for the estimates, thé norm of the score vector,
or a combination of these criteria.

The algorithm requires the following statistics: the totals of squares and cross-
products, (y,X)T (y,X), and within-area totals (y;, X,)Tl,,l.. The algorithm is adap-
ted for sampling weights by replacing these summaries by their weighted versions,
(y,,Xv,')Tw,- and (y,X)'diag(w)(y,X), where w; is the n; x 1 vector of sampling
weights for area j, and w is the N x 1 vector of weights for the entire sample. Note
that the area-level sample size n; is replaced by the total weight 3;wi;.

An integral part of the algorithm is estimation of the realized values of ; as the
conditional expectations and of their precision as the conditional variances of 6; given
the data and the parameter estimates:

te)—l,,,
E®,|y,) = Tenn
j
, o3
var(d; | yj) = 3 +;z~t'
j

The weighted versions of these equations are obtained by replacing e}_l,, ; with
Yieijwij and n; with ¥, w;;.

The Fisher scoring algorithm can be straightforwardly adjusted for restricted ma-
ximum likelihood estimation (REML), see Harville (1974). The log-likelihood in (11)
is adjusted by the term

Alg = %mg_{det (x7v-'x)},

and the scoring vector and information matrix by the corresponding partial derivatives.
For instance, in the equation for 6%, (12), the denominator is reduced from N to N — p,
taking account of the uncertainty about the p regression parameter estimates. The
approach based on the best linear unbiased prediction (BLUP, Kackar and Harville,
1984) can also be adapted for sampling weights. These approaches rely on normality
of the random terms and on linearity. For alternative approaches, see Beran and Hall
(1992) and references therein.
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4. DATA

Data from two national surveys of adult literacy, ES/UI and JTPA, administered by
the U.S. Department of Labor, and data from surveys from the states of Mississippi
and Oregon are available. The surveys are designed to assess the nature and extent
of the literacy skills of the U.S. adult population aged 16 and over.

The survey instrument. common to all four surveys, consists of a 15-minute back-
ground questionnaire and a 45-minute set of exercises. The design of each survey is
that of a stratified multi-stage clustered sample. The target population in the national
surveys was stratified to seven geographical regions and U. S. states were drawn from
each region with replacement as the primary sampling units. There were some minor
differences in the definitions of the clusters between the two national surveys. The
sampling weights were derived by adjustment of the design weights due to poststrati-
fication. For the purposes of illustration we treat the poststratified weights as if they
were the design weights, and we ignore all levels of clustering except state level.

The sample sizes and the effective sample sizes (N,;) are given in Table 1. The
coefficient of variation of the weights, given in the third row of the table, is defined
as the ratio of the sample variance and the square of the sample mean of the weights.

var(w.)

= —
Table 1
Raw and effective sample sizes in the adult literacy surveys

Survey

ES/UI JTPA Mississippi  Oregon

Sample size 3277 2501 1804 1993
Effective sample size 1403 1046 1629 1854
Coefficient of variation 1.34 1.39 0.11 0.08

It is a useful indicator of how much smaller the effective sample size is compared
to the raw sample size. Constant weights correspond to p = 0. In the national
surveys (ES/UI and JTPA) the weights vary considerably; for instance, the ratio of
the largest and smallest weights is 86.5 and 53.5 in ES/UI and JTPA, respectively. In
the statewide surveys, these ratios are only 10.6 (Mississippi) and 3.9 (Oregon). The
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histograms of the normalized sampling weights are drawn in Figure 1. Each national
survey dataset contains less information. in the: sense of-the-effective 'sample size.
than either dataset from the state surveys, even though the former have greater (raw)
sample sizes.
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Figure 1. Histograms of the normalized sampling weights for the four surveys.
The same scale for the horizontal axis is used in all four panels.

‘The principal outcome variable, called the (literacy) proficiency score, is defined on
a scale common to all four surveys. The probability of correct response of subject i
with proficiency score 8; to question k with item parameters (ay, by, cx) is modelled
as

exp(ax+bi8i)
1+exp(ax+bi®;) ’

the parameters ay, by, and ¢, can be interpreted as the difficulty, the discrimination,
and the probability of guessing, respectively. In the item response model applied, the

P(Zy = 1| 0iak,br,ck) = ci+ (1 —cx)
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responses Zjx are assumed to be conditionally independent given 6;, and a normal prior
distributian is imposed for {8;}. Note that the proficiency.scores.{8;} are confounded
with the item parameters {a;} and {b;}, and so the mean and variance of the prior
distribution for {6;} are set merely to ensure identifiability. The proficiencies as

well as their estimates are in the range (—oo, +oo); the value of zero is of no special
significance.

The survey subjects’ scores on this scale are estimated using a marginal maximum
likelihood approach (Bock and Aitkin, 1981, and Mislevy and Bock. 1983). Inferences
about the proficiency scores derived by regarding the estimates 6; as the true values 6;
are likely to underestimate the precision because they ignore the substantial sampling
variance of each estimate ;. To take account of the uncertainty associated with the
estimated proficiency scores, a set of five imputed values are randomly drawn from
the approximation to the posterior distribution of the proficiency scores. The decision
to use five imputed values was based on extensive simulations. Any analysis of the
proficiency scores (e.g., regression) involves identical analyses using each set of the

five imputed values. Let B,, h=1,....5. be a quintet of such estimates. Then the
estimate that refers to the proficiency scores is

« 1« A

B = g ZBh'

The standard errors for the parameters that refer to the proficiency scores are obtained
similarly, but they have to be inflated by the variance of the estimates across the five
analyses. Suppose sh is the estimated sampling variance of Bh Then the sampling
variance of B is estimated as

The main purpose of the study is to validate the outlined method; improvement in
the estimation of population means for the particular two states is of lesser importance.
For this purpose, we estimate the population means for the two states based on the
national survey data and the covariates for the state-wide surveys, treating the within-
state data on y as a ‘hold-out’ dataset. These estimates and their standard errors
are then compared with their counterparts based solely on the imputed values for

the within-state samples. In the concluding section we discuss how such pairs of
estimators can be combined.

The histograms of the first sets of imputed values are displayed in Figure 2. The
mean of the sample for Oregon is somewhat higher than that for Mississippi, and
the sample variances in the state surveys are smaller than their national counterparts.
There is a perceptible difference in the distributions for the national surveys (JTPA
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.has smaller variance than ES/UI), although it may be accounted for by the varying
weights. These comparisons .carry over from the.imputed. values to the proficiency
scores. ‘
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Figure 2. Histograms of the first sets of imputed values for the four surveys. The
same scale for the horizontal axis is used in all four panels.

5. ANALYSIS

For illustration, we describe the prediction for Mississippi and Oregon using the
following set of predictor variables:

Sex (dichotomous);
Ethnicity (six nominal categories);
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Educational level (five ordinal categories);
Age category (five ordinal. categories); -
More English (dichotomous);

More Mathematics (dichotomous);
Mother’s education (quantitative);

Father’s education (quantitative);

Personal income (quantitative),

Household income (quantitative):

C.Age (quantitative, in years);

Q.Age (quantitative, in years>/1000).

The variable Sex is coded O for men and 1 for women. The other dichotomous
variables have values 2 (‘thinks more English/Mathematics would be useful’) and 1
(‘does not think so’). The variables related to income and parents’ education are
defined on the integer scale 1-11. See Kirsch and Jungeblut (1992) for details. The
variable C.Age is the subject’s age in years, and Q.Age is defined as C.Age?/1000.
For parsimony, they are used as quantitative variables, so that they are represented
only by one parameter each.

The means and proportions (as applicable) for the covariates and for the four
datasets are given in Table 2. The regression model fit for the ES/UI data using the
first set of imputed values and the set of covariates listed above, is summarized in Table
3. For comparison, the ordinary least squares fit (OLS) and the maximum likelihood
(MLE) fit are given. The likelihood ratio test statistic, equal to the difference of the
OLS and MLE deviances (the values of
—2log-likelihood), can be used to assess the significance of the state-level variance 0'%.
The value of this statistic is 3380.50 — 3354.89 = 25.61; its approximate (asymptotic)
null-distribution is x%. Thus, the state-level variation is highly significant. Note
however, that the t-statistic for 0% is nominally not significant at the 5 per cent level.

To avoid problems with missing data, listwise deletion was applied; all records
which contain a missing observation for at least one of the covariates were deleted.
This reduced the sample size for the ES/UI data from 3277 to 3219, and the effective
sample size from 1402.5 to 1378.4. Listwise deletion for the same covariates in the
JTPA dataset resulted in reduction of the effective sample size from 1047.6 to 1023.9.

A model-based method for full use of incomplete data in random effects models
is described in Longford (1995). Its implementation requires specification of a model
for the process that gives rise to missing data. It may reduce the bias due to the
informative nature of this process, but improvement in efficiency of the prediction is
likely to be insubstantial because of the low proportion of missing data. The means
and proportions in Table 2 refer to the entire sample; the corresponding figures for
the listwise deleted samples differ insubstantially.
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Table 2
Weightéd sample means and propottions of the covariates

Survey
ES/UI JTPA Mississippi Oregon
Variable Proprt'n Count Proprt'n Count Proprt'n Count Proprt'n Count
or mean or mean or mean or mean
Sex | 0.56 1756 0.41 1008 047 761 0.50 1064
2 0.44 1515 0.58 1484 0.53 1043 0.50 929
Ethnicity 1 0.63 2394 0.69 1556 0.66 1300 0.92 1845
2 0.12 375 021 663 032 473 0.01 16
3 0.20 384 0.06 159 0.01 20 0.03 57
4 0.02 40 0.00 17 0.00 2 0.02 28
5 0.01 48 0.03 76 0.00 5 0.02 28
6 0.02 36 0.01 30 0.00 4 0.01 19

Education 1 003 135 0.07 202 0.13 217 0.02 34
0.18 619 033 871 0.19 349 0.15 282
0.59 2006 0.55 1295 048 872 0.56 1104
0.19 513 0.06 130 0.19 362 0.27 570
0.00 4 0.00 3 0.00 1 0.00 1

1 0.10 314 0.17 489 0.09 140 0.09 138
2 0.18 616 0.19 485 0.11 173 0.12 183
3 0.22 727 0.21 505 0.13 238 0.17 301
4
5

w AW

Age categ.

0.32 1059 031 733 0.27 477 035 778
0.17 546 0.10 259 040 776 0.28 593

‘More Engl. 1 0.57 1792 0.66 1717 0.52 889 039 745
2 042 1461 033 762 047 901 0.61 1246

More Maths | 0.69 2231 0.79 2002 0.61 1054 0.52 1003
2 030 1020 «0.20 473 0.38 732 048 983

Mother’s Ed. 3.77 3.67 4.38 4.31
Father’s Ed. 4.37 * 4,32 5.07 4.86
Pers. Income 3.29 229 3.99 3.86
Hous. Income 5.04 T 341 495 5.55
Age (years) ~ 33.84 " 30.67 42.64 37.91
Quadr. age 1287.91 1061.96 2113.72 1612.45

Note: For categorical variables the proportions are accompanied by the counts of
subjects in the category. The counts of all the categories of a variable do not add up
to the sample size because of missing data.
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Table 3
Regression model fits for ES/UI using OLS and MLE

OLS MLE

Parameter Estimate  St. error Estimate St. error
Intercept -1.148 (0.470 ) -1.171 (0.465 )
Sex 2-1 -0.199 (0.050 ) -0.204 (0.052 )
Ethnicity 2-1 -0.648 (0.080 ) -0.641 (0.064 )
3-1 —().522 (0.067 ) —0.449 (0.072 )
4-1 -0.702 (0.174 ) -0.679 (0.173 )
5-1 -0.575 (0.212) -0.592 (0.210 )
6—1 -0.124 (0.200 ) -0.102 (0.199 )
Educzui(.) 2-1 0.806 (0.155 ) 0.813 (0.153 )
3-1 1.184 (0.148 ) 1.187 (0.147 )
4-1 1.685 (0.158 ) 1.686 (0.157 )
5-1 -0.111 (0.689 ) -0.130 (0.681 )
Age category 2-1 -0.287 (0.117 ) -0.287 (0.116 )
3-1 -0.257 (0.172 ) -0.271 (0.170 )
4-1 -0.373 (0.250 ) -0.386 (0.247 )
5-1 -0.198 (0.322 ) -0.021 (0.318 )
More English 0.547 (0.063 ) 0.539 (0.063 )
More Maths -0.055 (0.067 ) -0.053 (0.067 )
Mother’s educ. 0.0190 (0.0093) 0.0187 . (0.0092)
Father’s educ. 0.0037 (0.0078) 0.0043 (0.0077)
Personal income 0.031 (0.014 ) 0.030 0.014 )
Household income 0.033 (0.011 ) 0.034 (0.011 )
Age (years) 0.02236  (0.02810) 0.02288 (0.02777)
Quadratic age  -0.00038  (0.00029) -0.00038 (0.00029)

o} 07414 0.7404
T 0.0098 (0.0083)

Deviance 3380.50 3354.89
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Table 4

-Regression model fits for JTPA using OLS and MLE

OLS MLE

Parameter Estimate  St. error Estimate St. error
Intercept  —-1.232 (0.470 ) —1.244 (0.465 )

Sex 2-1 -0.149 (0.052 ) -0.148 (0.052 )
Ethnicity 2-1 -0.620 (0.064 ) -0.621 (0.064 )
3-1 -0.699 (0.108 ) -0.703 (0.107 )

4-1 0.338 (0.380 ) 0.332 (0.375 )

5-1 -0.0036 (0.160 ) -0.0016 (0.159 )

6-1 -0.548 (0.313 ) -0.550 (0.310 )

Education 2-1 0.374 (0.105 ) 0.374 (0.104 )
3-1 0.839 (0.103 ) 0.832 (0.102 )

4-1 1.257 (0.149 ) 1.254 (0.148 )

5-1 0.545 (1.989 ) 0.547 (1.962 )

Age category 2-1 0.047 (0.110 ) 0.049 (0.109 )
3-1 -0.035 (0.172) -0.034 (0.170 )

4-1 0.032 (0.254 ) 0.029 (0.251 )

5-1 0.077 (0.334 ) 0.073 (0.330 )

More English 0.404 (0.062 ) 0.406 (0.062 )
More Maths  -0.157 0.072 ) -0.154 (0.071 )
Mother’s educ. 0.0176  (0.0089) 0.0178 (0.0088)
Father’s educ. 0.0018 (0.0074) 0.0018 (0.0073) -
Personal income  —0.022 0.011 ) -0.021 (0.011 )
Household income 0.003 (0.010 ) 0.0033 (0.0096)
Age (years)  0.03458 (0.03044) 0.03545 (0.03009)
Quadratic age -0.00046 (0.00034) -0.00047 (0.00033)

o7 0.5841 0.5838
T 0.0043 (0.0084)
Deviance 2297.88 2274.13

202



Some of. the estimated regression parameters in Table 3 are difficult to interpret.
For instance, the parameters associated with the categories of Education are not in
monotone order. However, this is of little importance since improved prediction is the
sole purpose of the fitted regression model. Note that some of the variables (e.g.. Age
category) can be deleted from the model without substantial deterioration of the fit.
Also, category 5 of Educarion is associated with very large standard error because it
is represented by very few subjects. The category could be collapsed with category 4.
For assessing the importance of a set of variables the likelihood ratio test is preferable

to separate t-tests for each variable. Refinement of the model is dealt with in Section
6.1.

Instead of the state-level variance G%, the variance ratio T = 0% /0’% and its standard
error are estimated. Thus, the estimated state-level variance is 63 = 0.7404 x 0.0098 =
0.00726, and the corresponding standard deviation is 6; = v/0.00726 = 0.085. This
can be interpreted as the expected difference between the regression for a randomly
drawn state and the ‘average’ regression given by the regression parameter vector p.
The state-level variance is a source of uncertainty of the prediction for each state not
represented in the survey.

The regression model fits for the JTPA data using the first set of imputed values are
given in Table 4, in the same format as in Table 3. To conserve space, the regression
model fits for the other sets of imputed values are not given. The estimated regression
parameters for the proficiency scores are obtained by averaging over the five analyses.
They are of little interest in the present context, because the predictions based on each
set of imputed values will be averaged to obtain the prediction based on the proficiency
scores. This way, uncertainty in estimation of the proficiency scores is allowed to
permeate through all the stages of prediction.

In general, there is a lot of variation in the estimated parameters across the im-
puted values, as well as between the datasets. This may be of little consequence,
though, because the substantially different regression parameter estimates may yield
very similar predictions.

From each MLE model fit the inverse of the information matrix is stored, because
it is used in estimation of the sampling variance of the prediction.

6. PREDICTION

In this section we describe prediction of the means of the proficiency scores for
Mississippi and Oregon, using the national surveys and the covariate information
from the surveys for these states. The equations for the predicted means and their
standard errors, assuming accurately observed proficiency scores, are given-by (1) and
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(5). The five predictions (one for each set of imputed values) are then combined to
_obtain estimates which take into account.the uncertainty. in estimating the proficiency
scores of the sampled individuals. The within-state means xU) were estimated by
the ratio estimator, and their standard errors were obtained under the assumption of
weighted random sampling design (we failed to obtain information that would identify
the clusters in the state-wide surveys).

The two panels in Table 5 summarize this prediction for Mississippi and Oregon.
Of principal interest is the right-most column, generated by the results based on the
sets of imputed values. For comparison, the weighted sample mean (‘observed’ mean)
and its sampling standard error from the respective statewide surveys are given in the
last two lines of each panel.

Table 5
Prediction of the means of the proficiency scores for Mississippi and Oregon

Mississippi
Imputed value Prof-cy
Survey 1 2 3 4 5 score
ES/UI Mean 0.135 0.112  0.169 0.154 0.161 0.146

St. error  0.065  0.068 0.062 0.060  0.058 0.067

JTPA Mean  0.067 0.084 0.099 0.109 -0.006 0.071
St. error  0.084 0.081 0.082 0.083  0.085 0.095

Miss. Obs. mean -0.117 -0.122 -0.108 -0.127 -0.124 -0.120
St. error  0.026 0.026 0.026 0.027  0.026 0.027

Oregon

ES/UI Mean 0.624 0.603 0.625 0.629 0.641 0.624
St. ecror  0.043  0.047 0.039 0.035 0.032 0.042

JTPA Mean 0.486 0516 0.539 0495 0.467 0.501
St. error  0.062  0.059 0.060 0.061 0.063 0.067

Oregon Obs. mean 0575 0.561 0.567 0579 0.572 0.571
St. error  0.019 0.019 0.019 0.019 0.019 0.020
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The weighted sample means for both Mississippi and Oregon are at the extremes
of the distribution for the within-state means of proficiency scores. - The weighted
within-state sample means in the ES/UI dataset are greater than that of Mississippi
for all states that are represented by 25 or more subjects. In the JTPA dataset only
Missouri (-0.29) has a lower weighted sample mean than Mississippi. All the within-
state means in the JTPA dataset are lower than the mean for Oregon: in the ES/UI
dataset Maryland (0.62) and Utah (0.63) have a slightly higher mean than Oregon,
and the mean for Massachussets is 0.89. The weighted (national) sample means in
ES/UI and JTPA are 0.30 and 0.04, respectively.

The predictions for Mississippi (0.146 and 0.071) are much higher than the ob-
served weighted mean (~0.120), and the estimated standard errors for the prediction
and the sample mean are too small to account for the discrepancy. For Oregon, the
prediction appears to be much more successful; the discrepancy of the prediction
from the observed mean is well within the estimated sampling error. Note that the
standard errors for the prediction for Oregon are smaller that those for Mississippi.
More detailed analysis of the sources of uncertainty in prediction can be carried out
by comparing the three components of the sampling variance in (5).

The standard errors for prediction take no account of the (estimated) state-level
variance. The estimates of the state-level variances for the respective surveys ES/UI
and JTPA, averaged over the five analyses, are 0.00322 (standard error 0.00480) and
0.00095 (0.00414). These variances, if taken at face value, are by no means ignorable.
Combined with the standard errors quoted in Table 5. on average. in the sense of (8),
they inflate the standard errors for Mississippi from 0.067 to 0.087 (prediction based
on ES/UI data), and from 0.095 to 0.099 (JTPA). The corresponding increases for
Oregon are from 0.042 to 0.070 (ES/UI), and from 0.067 to 0.074 (JTPA). Note that
the variance 0% is estimated with relatively little precision in both surveys.

6.1. Refinement of the model

The regression model given by the covariates x is a key element of the prediction
procedure. Adequate model fit and small state-level variation are likely to be achieved
by supplementing the covariates listed in Table 3 with further variables. Substantive
information about the descriptive power and small reduction of the data by listwise
deletion are two important criteria for selecting such variables.

First, we consider supplementing the regression model with the following cova-
riates (abbreviated names, and for categorical variables the number of categories, are
given in parentheses):

Enrolled in school? (Sch?, 2);
High school diploma? (H.S., 2);
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Military service? (Mil.S., 2);

Registered to vote? (RgVot, 2);

How often use math on the job? (MatU. 5);
Reading skills good enough for your job? (ReadJ, 3);
Writing skills good enough for your job? (WritJ, 3);
Math skills good enough for your job? (MathJ, 3);
Better job if more English training? (MorEn. 2);
Better job if more math training? (MorEn, 2);

How often read English newspaper? (ENws, 5);
How many people in household? (#Hhld);

How often read/use reports on the job? (Reps).
How often write memos on the job? (Mems).

A number of other variables. related to the use of English language, employment.
income, education, and housing, were not considered because they were either defined
only for a small fraction of the population (e.g., not applicable for many subjects), or
- they were not collected in the statewide surveys.

Listwise deletion using these variables led to a reduction of the dataset by about
900 subjects in both datasets; from 3277 to 2367 for ES/UI, and from 2501 to 1604 for
JTPA. Inclusion in the regression model of the variables listed- above resulted in small
changes of the state-level variance for both datasets: the within-state variance was
reduced by about 13 per cent for the ES/UI dataset, and by about 8 per cent for the
JTPA dataset. Most of the regression parameters are nominally statistically significant
(at the 5 percent level). For brevity, details of the regression fits are omitted.

The standard errors of the prediction based on these variables are slightly higher
than for the reduced model. Improvement in the model fit is negated by the reduced
effective sample size. The estimates for Mississippi are 0.278 (standard error 0.067)
based on the ES/UI survey, and 0.135 (0.105) based on JTPA. They are even more
distant from the weighted means based on the respective statewide surveys than the
estimates given in Table 5. The predictions for Oregon are changed only slightly
(0.665 for ES/UI and 0.513 for JTPA).

The 900 or so subjects discarded by listwise deletion for each dataset are infor-
mative subsamples of the respective datasets. For instance, the weighted mean for
the 1604 included subjects for Mississippi is —~0.021, while the weighted mean for the

entire sample of 2501 subjects is —0.124. The corresponding means for Oregon are
0.587 and 0.520.

Clearly, too high a price is paid for inclusion of many variables in the prediction
model. In the next round of refinement we drop the quadratic age term (it has a low
t-ratio for all model fits), collapse the categories 4 — 6 of Ethnicity (Native Americans,
Asian Americans, and ‘Other’, each with small counts), collapse the categories 4 and
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5 of Education (very few subjects in category 5), discard variables H.S.. Mil.S., MatU.
ReadJ, WritJ, MathJ, ENws, #Hhld. Reps, and Mems because their values are missing
for large numbers of subjects, and/or they are not important in the regression model.

Table 6
Regression model fits for ES/UI and JTPA; maximum likelihood estimates

ES/UI JTPA

Parameter Estimate  St. error Estimate  St. error
Intercept  -0.236 (0.245 ) —0.345 (0.264 )
Sex 2-1  -0.197 (0.050 ) -0.125 (0.069 )
Ethnicity 2-1  -0.703 (0.079 ) -0.689 (0.078 )
3-1  -0.510 (0.069 ) -0.555 (0.080 )
(>3)-1 -0.443 (0.116 ) 0.367 (0.145 )
Education 2-1 0.751 (0.159 ) 0.690 (0.171 )
3-] 1.091 (0.151 ) 1.051 0.151 )
(>3)-1 1.528 (0.160 ) 1.489 (0.168 )
Age category 2-1  -0.028 (0.106 ) -0.032 (0.104 )
3-1 0.060 (0.120 ) 0.089 (0.120 )
4-1 0.058 (0.163 ) 0.126 (0.171 )
5-1 0.198 0.262 ) 0.244 (0.269 )
In School? -0.259 (0.072 ) -0.212 (0.077 )
Reg. Voter? -0.234 (0.055 ) -0.181 (0.068 )
More English 0.461 (0.066 ) 0.437 (0.065 )
More Maths  -0.018 (0.067 ) -0.041 (0.071)
Engl. pps 2-1 0.062 (0.057 ) 0.067 (0.057 )
3-1  -0.140 (0.083 ) -0.127 (0.082 )
4-1  -0.231 (0.110 ) -0.165 (0.122 )
5-1 -0.329 0.175 ) -0.293 (0.178 )
Mother’s educ. 0.0163  (0.0093) 0.0176  (0.0086)
Father’s educ.  -0.0026 (0.0077) -0.0030 (0.0075)
Personal income 0.026 (0.014) 0015 (0.013 )
Household income 0.027 (0.011) 0.021 (0.011 )
Age (years) -0.0128 (0.0067) -0.0109  (0.0069)

o} 07332 0.5825
T 0.0068 (0.0078) 0.0039 (0.0078)
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Table 7
Predictions for Mississippi and Oregon based on the originat model (see Table 5)

and the refined model
State ES/UI JTPA State
Model Mean St. error Mean  St. error Mean St. error

Mississippi

Original 0.146 (0.067) 0.071 (0.095) -0.120 (0.027)

Refined 0.140 (0.060) 0.091 (0.084) -0.107 (0.027)
Oregon

Original 0.624 (0.042) 0.501 (0.067) 0.571 (0.020)

Refined 0.648 (0.039) 0.499 (0.067) 0.570 (0.021)

The new regression model contains 25 regression parameters (degrees of freedom).
The respective raw and effective sample sizes after listwise deletion are 3089 and
1323 for ES/UI, and 2364 and 991 for JTPA (compare with Table 1). Thus, the
selected model is a compromise of adequacy (more covariates), and small loss of
observations due to listwise deletion. ‘

Table 6 contains the maximum likelihood fits to the two national survey datasets
(averaged over the five sets of imputed values). Although the covariates included at
the last (refinement) stage are nominally significant, their impact on the model fit is
only marginal, especially for the JTPA dataset. The subject-level variance estimates

are reduced insubstantially, and the variance ratio is reduced only for ES/UI (by about
30 per cent).

The predictions for Mississippi and Oregon using the original and the refined
models are summarized in Table 7. The predictions of the state means, based on the
refined model differ from their counterparts based on the original model (Table 5)
only slightly, and the differences in predictions are trivial compared to the standard
errors. The standard errors are reduced somewhat, but the conclusions drawn using
the original model are not affected.

We see that even though the model fit can be improved without sacrificing a
large number of records the improvement in prediction is insubstantial and a large
apparent bias (for Mississippi) remains unexplained. This ‘robustness’ feature of the
prediction model is very desirable because model selection has to rely to a large
extent on expediency (availability of data) rather than familiarity with the subject
matter, underlying theory, or formal statistical procedures.
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7. CONCLUSION

A prediction method for estimating within-state means of literacy proficiency sco-
res from national surveys. based on a random-effects regression model. is presented
and illustrated on two states, Mississippi and Oregon. The method combines the ad-
vantages of the design-based and model-based approaches by incorporating sampling
weights, by imposing a model which captures the clustered structure of the data. and
by using linear regression to reduce the residual variation at both cluster and ele-
mentary levels. For the two states statewide survey data are available, and so the
predictions from national surveys can be compared with more reliable estimates from
the state-wide surveys. The estimated standard errors of the prediction can be compa-
red with the standard errors of the (weighted) sample means to assess the usefulness
of the prediction.

For instance, the predictions for Mississippi. based on the ES/UI and JTPA data,
have about 2.5 and 3.5 times greater standard errors than the sample mean. This can
be interpreted that information about Mississippi in the national surveys is equivalent
to that in a sample about (2.5 =) six times (ES/UI) and twelve times (JTPA) smaller
than the sample collected in Mississippi. The corresponding factors for Oregon are
smaller, about four for ES/UI and eleven for JTPA. These factors can be adjusted for
unequal (effective) sample sizes in the obvious manner. Although these conclusions
are contingent on the selected regression model, lhe prediction appears to be fairly
robust with respect to model specification.

The only iterative component of the prediction procedure is the fitting of the ran-
dom coefficient model. Using the ‘weighted’ version of the Fisher scoring algorithm
(Jennrich and Schluchter, 1986; Longford, 1987) no problems with convergence or
multiple local maxima arise; usually less than twelve iterations are required to achieve
convergence using any reasonable criterion for convergence.

The method can be extended to multiple layers of clustering (see Longford. 1987)
and to non-normally distributed data by application of generalized linear models with
random coefficients (Longford 1994). In the latter case it is assumed that the regres-
sion estimator B and the estimator X of the state’s mean are (approximately) normally
distributed. Owing to the asymptotic theory, this is a realistic assumption.

The predictions based on the two national surveys can be combined. The coef-
ficients of the convex combination of the predictions can be determined so as to
minimize the standard error of the combined estimator. The coefficients of this con-
vex combination are inversely proportional to the variances of the components. Thus,
the combined estimator for Mississippi has coefficients 0.67 (ES/UI) and 0.33 (JTPA),
and the resulting prediction for the state is 0.121 (standard error 0.054). Of course,
prediction from one or several national surveys can also be combined with an esti-
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mate based on the data from the state. In the case of Mississippi this would lead to
only a marginal improvement because the estimate- based on the Mississippi survey is
far superior to the prediction from either national survey, or their combination. The
combined prediction for Oregon is equal to 0.590 (standard error 0.035), very close
to the weighted sample mean of 0.571.
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APPENDIX: SAMPLING VARIANCE OF THE PREDICTOR /)

Suppose &) ~ A[(x), Zg), B ~ N (B, ) and cov(&"),B) = Zps. By conditioning
on B we obtain

var ()A,(j))

Eg {var ()‘(U)ﬁ | B)} + varg {E ()‘((j)B | ﬁ) }
By {B" (25— Zis%; ' us) B

+varg [{x‘f) + (B - B)Tz,;'z,,s} B] .

For an arbitrary p x p matrix of constants A we have the following identities:

E(GTA‘) = BTAB+tr(AZ)
cov (B, BTAG) = (A+AT)P
var (ﬁTAB) = w(ASAS,) +1r (A):,,ATZ,,)

+2BTAT,AB+2BTAZ,ATB.

The versions of these identities for a symmetric matrix A are well-known, see, e.g.,
Seber (1977, Ch. 2). Their general versions are derived by application of the ‘symme-

. . . AT A _ATATA o . ..
tric’ versions to A+AT, noting that B Ap=f AT B. Substitution of these identities

210



for appropriate matrices A yields

var()a(n) = BTEB+ur(5,%5) — B TiZ; ' Eysp—tr (Z;SZ,T 'Ehszh>
N (x(j) 3 BTE;IZM> 5, (1\.(1) _ BTZ;I}:hS) T
+2 (x“) - BTZ;ths) (Zhs +ET5sT; l) B
-+u(2%)+4r(Z;'ZMZhZ%)'+3BTZE]Z%B

+ ZBTZ; 'S ThZ sy ' B

from which equation (6) follows directly.
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