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FITTING A LINEAR REGRESSION MODEL BY
COMBINING LEAST SQUARES AND LEAST
ABSOLUTE VALUE ESTIMATION

SIRA ALLENDE*, CARLOS BOUZA* and ISIDRO ROMERO"

Robust estimation of the multiple regression is modeled by using a convex
combination of Least Squares and Least Absolute Value criterions. A Bicri-
terion Parametric algorithm is developed for computing the corresponding
estimates. The proposed procedure should be specially useful when outliers
are expected. Its behavior is analyzed using some examples.

Key words: Outliers in regression, L, regression, bicriterion parame-
tric algorithm.

1. INTRODUCTION

The main objective of many applications is to obtain a function which should
describe the relationship between a vector of known variables x” = (X|,...,X,,) with
X)| = 1 and a response variable Y. That is the case when the abundance of phytoplank-
ton (Y) is studied. The salinity, temperature and other variables can be measured.
The biologist’s aims is to establish a functional and to use the adjusted model for
studying the effect of the explanatory variables in the abundance of phytoplankton.
A classic approach is to suppose that

m
(l-l) )’i=ZXiij+81, i=1,...,n

J=1
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is an adequate model. The parametric vector B” = (By,... .B,,;) should be estimated.
We usually want to compute an estimate B of B which minimizes a certain function
of the vector (€;....,&,)", where & =Y, —xBfori=1.....nand x] = (Xif,... , Xim).
The classic approach is to minimize the squared deviations which leads to Least
Squares (LS) estimation. The optimization problem to be solved here is:

n
,
Pl : min Y &7
iy €;

==l

(1.2) Subject to: zX,,B,+8,= oi=1.....n

However LS estimates are severly affected by outliers because of the weight given
to each point in the solution of Pl is the same. Then, if a heavy tailed distribution
generates some residuals, the influence of them may be very important. Therefore P1
does not provide adequate estimations of B in the study of phytoplankton because it
is frequent to obtain some extreme data points. Several studies, see Dielman (1984),
Dielman and Pfaffenberger (1988) and Efron (1988), have shown that Least Absolute
Value (LAV) regression criterion provides improved estimates. The corresponding
optimization problem is:

n
P2: min » |E;
in3

Subject to (1.2)

From a numerical point of view P2 is solved by computing the solution of the Linear
Programming Problem

n
P3: min} (df +d])

= =1

(1.3) Subject to : BiXij+d—d =Y; i=1,...,n
=1

(1.4) df >0, d7 >0, i=1,....n

m

We will denote df +d;” =e;.

The equivalence between LAV problems and Linear Programming was pointed
out by Charnes et al. (1955). Special purpose algorithms, based on modifications of
the Simplex Method (SM), increased the possibilities of using LAV. The consistency
and asymptotic efficiency of this method with respect to LS was established, see
Basset and Koenker (1978) and Dielman and Pfaffenberg (1988). The analysis of the
behavior of LAV estimation plays a key role in the evaluation of regression equation
fitting. LAV estimates are recommended as a good starting point in the search for

108



a robust estimate of B. As an example we can mention the results of Antonch and
Bartkoviak (1988) in the study of the robutness of a—trimmed and o.—winsorised
estimators of B. LAV and LS estimates may coincide but it follows from Jenssen’s
inequality that |||, < |||, where ¢" = (e},...,e,). The idea of combining LAV and
LS in a convex function is present in different previous publications. Arthanari and
Dodge (1981) quoted the possibility of combining them for deriving a compromise
estimator of B. Dodge (1984) analysed the robustness of this procedure establishing
that it provides the solution for a certain M—type estimator. Using the structure of
the problem posed in that paper we have the optimization problem Q(«) which is
denoted as follows:

n i n

Ou) : mBinu Z el +(1- u)Zei
g = i=1
Subject to (1.3)—(1.4)

The present paper follows a research of Allende and Bouza (1991). They studied
the related optimization problem for u € [0,1] as appearing in Q(u). Dodge (1984)
solved a similar problem when u was known. The parameter u characterizes the
contamination between an assumed normal distribution of the residuals and a heavy
tailed one. We solve this problem formulating a Bicriterion Optimization Problem
(BOP). A set of linear regression models is generated and one of them is selected on
the basis of the analysis of values of a proposed coefficient. It has the property to
increase with the goodness of the approximation of the equation to the observed data.

The Mathematical Model is discussed in the second section. The structure of the
optimization problem is characterized by fixing the Karush-Kuhn-Tucker Conditions
(KKTC). In the third section a model selection criterium is proposed. An algorithm
for solving the problem, for a fixed value of u, is proposed. In Section 4 the results
of a classic regression problems are used for evaluating the proposed procedure. A
Monte Carlo experiment is performed and the behavior of the algorithm is discussed.
The method is also used for fitting the regression equation of a set of data of the
abundance of phytoplankton in the bay of Monterrey.

2. A CONVEX COMBINATION OF LS AND LAV

We consider the classic linear regression model Y = XB+ €. Y € R" is an ob-

servable random vector and € € R* a random unobservable vector with E(E) =0 and
B € R™ is unknown.
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A compromise between LS and LAV for estimating B was expressed by Allende
and Bouza (1991) in terms of a Bicriterion Optimization Problem (BOP) given by:

n n
min Z e,~2, Ze,-}
B =1 i=1
Subject to: (1.3)—(1.4)
The definition of e; fixes that ¢” = (ey,...,e,) > 0.

An efficient point of BOP represents a regression model such that there does not
exist another offering a smaller LAV and LS errors simultaneously. The set of efficient
points of BOP coincides with the set of optimal solutions of Q(m). See Lommatsch

(1979) for a detailed discussion of this result. If m # 1 then Q(m) can be reformulated
as

Q(0): min{ie?+eie,~: (-):m/l—m}
B8 (i=l i=1
Subject to: (1.3)—(1.4)

0 will be called weight coefficient. QP(8) is an one parameter Parametric Program-
ming Problem and its special structure will be analyzed for obtaining a more efficient
solution. The Karush-Kuhn-Tucker Conditions (KKTC) lead to a set of matrix equa-
tions which will be refered as the LCP—model or simply LCP. Taking 1,, as a vector
of m components equal to one, g(j), j=1,...,5,and B(h), h=1,2, as nonnegative
vectors, L(h), h=1,2, g(j), j =3,4,5, and e belong to R”, B(h) and g(h), h=1,2,
belong to R™ and - B

@.1) L(1)g(4) =L'(2)g(5) = €'g(3) = B'(1)g(1) = B'(2)g(2) =0

The LC model is described as follows:

X'L(1)-X"L(2) = g(1)
—X'L(1) + X"L(2) 8(2)

81, +2¢—L(1) - L(2) 8(3)
Y- XB(1)+XB(2) +e 8(4)
—Y+XB(1)-XB(2)+e g(5)

Allende and Bouza (1991) proved that to solve QP(0) is equivalent to obtain the
solution of the LCP. The convexity of the objective function plays a key role in the

proof.
An algorithm for estimating B should be able to determine, for each 8 > 0, an
element of the set G(8) = {(x,g) € N(6) : x"g =0}, where x = (L"(1),L7(2),¢",b)",
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b= (B'(1),B'(2)), N(6) = {(x,8) :g—Wx=ry+6r,} and g = (g'(4),8"(5).8"(3),
g'(1), g"(2))". The vectors r, and r, are such that
0o if i=1,...,3n
2.2) roi = Yi if i=3n+1,...3n+m
—Y if i=3n4+m+1,...,3n+2m
0 if i=1,....2n
(2.3) ry; = I if i=2n+1,...,3n

0 if i=3n+1,....3n+m

Take 0,,, as a matrix of zeros and [ as the m x m identity matrix. (2.1) is a comple-
mentarity condition because, when the product of two variables is zero, each of them
1s called complement of the other one. The vector of the coefficient of the regression
can be expressed by B = B(1) — B(2). The matrix W is given by:

an an Qnm XT ~_X-T

(—)nn (_)nn Qnm _XT Xr

(2.4) LV_ = an an 2 -1 -1
_K X. l Qmm Qmm

X -X I O—Inm -Qmm

with the property x*"g* = 0. Note that the points of N(8) that satisfy the constraint
—XB — ¢ < Y conforms G(0).

Using W the solution algorithm determines an element (x*,g") of the polyhedron N(8)

Now we can formulate the following theorem:

Theorem 2.1
i) G(6) #d forall®>0

i) G(0) is a closed face of the convex polyhedron N(6) or is equal to N(6).

Proof:

Take an arbitrary 8 > 0 and a particular vector (x),g) such that

Il

1,6/2
L(2)o=g(3)o=g(4)o=g(5)0 =0

&
L(1)o
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fixing

[ vi-e/2 ife<ay
B(1oi = { 0 otherwise }

[ -Yi-8/2 if8>2Y,
B(2)oi = { 0 otherwise }

As g(1)o = g(2)o = Q the constraints of G(8) are satisfied. For obtaining ii) consider
the partition of W given by:

O2n)2n Omm  A@n)am

W= Q('")2'1 Q(m)m l?m)Zm
—Aoman  ~Lomm  Qamzm
where I = [~1,,, — L] and
xXr =X
A= [ _}r }T :I

Taking v/ = [v'(1),€,v7(3)] € R¥**+2™ the relation y'"Wv = 2¢"Ie > 0 permits to es-
tablish that W is positive semidefinite. From Theorem A.3.3 of Bank et. al. (1982)
follows ii).

3. ALGORITHM FOR SELECTING THE REGRESSION EQUATION

We denote the prediction of Y;, for a fixed weight coefficient 0, by Y;g. An
estimate of B is computed for each 6. Denote by By the corresponding estimator.
The statistician needs to evaluate the behavior of the estimator with respect to various
values of 8. The goodness of the regression equation obtained by the formula B =
XBg + ¢ is measured by

n n
> Ye-1)*+6Y |Yp—7|
, n ‘n =R(e)

S Y28 L) Y} 7

i=1 i=1

—

When Vg = Y, for any i = 1,... ,n, the coefficient R(8) will be near to one and it will
decrease with the Yg’s when they are very different from Y;. Note that R(0) plays a
role similar to the determination coefficient in common LS regression problems.

The decision maker of the statistician can fix a threshold value of R, for judging
whether a fitted regression equation is admissible or not. This criterion permits to

112



obtain a set with the regression equations which can be used for the decision making.
Take By as the estimate of B obtained for a 0 fixed. Then M = XgBgR(9) is such set.

Consider the sets
7 = {(_‘.Ee) c Rﬂnwln x R}m—r.’.n xR : (.\.S) c N(e)}

and
C={(xg.9) EZ:;’SZO}

We will obtain a description of the vertices in Z contained in C using the results of
Bank eral. (1982). Take V ={V, ="x."g."0) e ZNC. h=0,1.....p}.

The parametric problem QP(8) is solved by taking into account those vertices.
The statistician has a set @ = {6;.....0,}.s > 0 is an arbitrary integer, of weight coef-
ficients and the solution of (3.2) for cach 8, € © permits to determine By;. The “best’
equation is selected analyzing the corresponding R(8;)'s. 1If M = @ we consider that
(1.1) is an inadequate model. The least permissible value Ry of the R(6;), j=1,...,
s. 1s tixed by the statistician. The appropiate value of 6 is determined by the following
procedure:

Procedure for selecting the best equation

START: Give © = {0},....06,}.Ry and the observations (y;,Xi1,--- ,Xim),
i=1.....n
BEGIN {main}
(1) Construct a vertex v, of the polyhedron Z such that y, € C
Repeat:=true
=0
(2)  while repeat do
begin
If there is v;,, € Z adjacent to v; with 8;,; >6; and v;,, € C
then
=i+l
else
begin
Repeat:=false :
{describe the unbounded edge of Z contained in C:
(dl ,42743) c R3m+2n o R3Im+2n o R}

end
end; while (2)
vi = (x,¢,'9), i=1,...,pwas calculated
B(i) = 'B(1)-'B(2)



Repeat:=true

j=1 R =-o0
(3) While repeat do

begin

Calculation of R(8;) for each j=1,...,s
(4) While j <sdo

Determine:
, — N
k -()n;?sxp{zl 0<9,}
If k<p then
begin
a = . 9.,'—/(9
k+1g—kg
B(j) = aB(k)+(1-a)B(k+1)
e(j) = det+(1—a)tle
end;
else
begin
a = 8;/pg
B(j) = aB(p)
e(j) = ale
end;

Calculate  R(8;)
If R(B;) > R" then R* =R(6,)
ji=j+1
end: {while (1)}
If R* > R, then By describes the linear regression model
else
begin
write “do you want to give another value of 87
if (answer="not”) then repeat:=false
else
s=s+1
end: {while (3)}
END {main}

This procedure permits to determine a set of adequate regression equations.
Since ry, defined in (2.3), is non null: Z is not empty.
Considering 8 = 0 the initial point y, is obtained by applying the algorithm of

Lemke (1970). It is an algorithm based in a Simplex tableau and a complementarity
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pivot technique. An artificial variable Zg is introduced and a starting tableau is

constructed by eliminating linear dependent rows and columns from W. Then W' is

obtained and an initial basic solution of the system y* — W'x — x;, = r is constructed

with y as a basic value. By entering Z into the basis an index k is fixed by ro; = minr;
- 1

and y, leaves the basis. The basic variables y; (j # k) and Z have positive values.
At each iteration the complement of the variable which lefts the basis in the previous
iteration is entered. For the regression problem we can specify this algorithm in the

following way:

Ty : Starting Tableau

Basic variable Non Basic Variable Z
-1

g/ W/

ING

.
-1

The solution of the initial vertex is obtained by using the following procedure:

Procedure for obtaining the initial solution (PIS)

Begin
{T is not primal feasible because rf, 2 0}
EV:=Z (variable Z enters into the basis)
Determine an index such that

[viol = max [yl
i=1,....m
If yo<O then RV = g, (4); {gm(4) leaves the basis}
else

RV = gin(S);{gi() leaves the basis }
T':= Pivoting T: {T’ tableau is obtained after pivoting 7'}
Repeat:=true
While Repeat do
begin
EV:=comp (RV): { The complement variable of RV is introduced
into the basis}
q := index of EV
(4) Determine an index iy such that
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RV:= Basic Variable (iy){ The basic variable (BV) corresponding to
the index i, leaves the basis }
If RV = Z then
Repeat:=false
T' .= Pivoting T’
end: {while}
(5)  Calculate
|

to=/f""n
{f denotes the basis corresponding to the tableau 7’ and f~! its inverse}
Add the column g to T’
{t¢ is the column corresponding to 8}
(6)  Determine a Basic Index i such that (i € IB(T"))
140/1ge = min ;g tio/tie
i€(T")

T" = Pivoting T(1,9 = pivot)
Exchange rows of 7' in such a way that the last row corresponds to 6
END

This procedure computes an initial solution of LCP. The following theorem esta-
blishes the importance of PIS.

Theorem 3.1

A solution of LCP(0) is obtained by using PIS.

Proof:

PIS is a specification of Lamke’s algorithm. It solves the linear complementary
problem, for a finite number of iterations, for any right hand side vector if the matrix

is copositive plus. Then we need to prove that W’ is copositive plus. That is to derive
if the following results hold:

b) VWyv=0 = W +W)=0

a) is obtained by using a procedure similar to that applied in Theorem 2.1 for deriving
that W is a semidefinite positive matrix.

Taking
, -(-)nm Qnm Qn(Zm)
w "+ ﬂ' = an 4lmm Qm(2n)

(=)

Q(Zm)n Q(Zm)n 2(2m)2n
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VWy=2e=0 = W +W)r=0

Therefore b) is satisfied and W' is copositive plus.

In order to obtain a vertex of Z belonging to C, 0 is introduced in the tableau as
a variable in Step 5. The coefficients is the column entering into the basis are not
smaller or equal to zero, since LCP(0) has a feasible solution. Hence 8 is exchanged
with one of the variables of the basis. According to the rules of the SM exactly
one index k*, with (x .,_k‘) fixes the non basic variables in the obtained solution.
The solution obtained by using PIS corresponds to a vertex of Z NC, see Bank et al.
(1982).

For solving the parametric dependent LCP it is necessary to modify the parametric

principal pivoting algorithm refered by Pang and Lee (1981), because 6 and r; has
null components.

The procedure for solving parameter dependent LCP needs, as initial informa-
tion, the tableau 7", the index sets IB and IS of the basic and non basic variables
respectively. The following procedure solves parameter dependent LCP:

Procedure for solving Parameter Dependent LCP

Begin
T:=T7T"
cont:=1
EVi=x,.
h:=K*
While cent <2 do
begin
Qo = +eo
Determine an index d € {1,...,3m+ n} such that
Qo =tg, =min £ /1,
tiy>0
If Q9 < o and BV(Q) # 6 then
begin
T" = Pivoting (T)

(ktlx,k+1g. k+1g) : solution corresponding to 7"

If BV(Q) =x; then
EV =g,
h=j+n
If BV(Q) =g; then
EV = Xj
h=j
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T:=T7T"
k=k+1
end

If Qy = 4+ then

o 8-k

~h —
Rmtn- 0

BV(i) = BV(i)—1,. i€ IB
NBV(j)=d,. j#h
END

4. BEHAVIOR OF THE PROPOSED ALGORITHM

The proposed procedures were programmed in Fortran 77. The computer program
uses the facilities of a standard Numerical Analysis Package (NAP) as MatLab for
some calculations. Then, the accuracy of the approximations and the size of the
solvable problem, depend of the characteristics of the MAP used. The code and more

technical information is available from Dr. Romero. It can be implemented in an
IBM 486 PC.

Dodge (1984) studied the robustness of the estimates derived by using Q(u) for
a fixed u. This procedure permits to compute M—type estimates of B. The method
proposed in this paper computes the best regression equation for a given set of values
of 8 = u/1 —u. The values of 6 reflect the ideas on the possible degree of contam-
ination of the distribution of the residuals. For example, if it is close to a normal

distribution function, with zero mean and variance G-, the selected model will have
0~0.

The proposed procedure is a generalization of the model of Dodge (1984). Its
construction grants that the behavior of its solution is not worse than the use of LS or
LAV as optimization criteria. Say that the estimates will not have a larger Residual

Sum of Squares (RSS) and a Sum of Absolute Deviations (SAD) than any other
derived by LS or LAV.

The data from the experiment of Hald (1952) used by Draper and Smith (1981) are
reanalyzed. This is a classic example where LS is a good method. Table 4.1 gives the
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corresponding results. The optimal convex combination was obtained for u = 0.05.
Note that observation number 6 is considered as an extreme data point by the three
methods. For LAV observation number 8 is another outlier. The regression equation
fitted by the algorithm has a smaller RSS than the equation derived by the use of
LAV and its SAD is smaller than the corresponding to LS method. This is expected
because of the theoretical properties of the methods. As the degree of contamination
1s small the results of the recomended model are similar to the obtained using LS.
The computing time for this example was 18.24 seconds.

Table 4.1
Analysis of Hald’s data
Estimated LS LAV Convex
Coefficients Combination
B, 62.206 62.405 62.300
B> 1.551 1.551 1.551
B3 0.510 0.499 0.511
B, 0.102 0.102 0.101
Bs -0.144 -0.130 —-0.140
Item Residuals
1 0.005 0.548 0.149
2 1.511 1.103 1.395
3 —-1.671 —1.326 —1.685
4 -1.727 —2.040 —1.830
5 0.251 0.368 0.185
6 3.925* 4.557* 3.890*
7 —1.449 —-0.741 —1.411
8 -3.175 -3.408 —3.250
9 1.375 1.671 1.366
10 0.281 0.443 0.248
11 1.991 1.990 1.946
12 0.973 1.542 0.984
13 -2.294 —1.703 —2.286
RSS 45.037 50.919 47.784
SAD 20.628 18.321 20.625
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A study of the abundance of phytoplankton () produced 120 measurements in the
analysis of the effect of pollution in the bay of Monterrey, Mexico. The independent
variables were salinity (X)), temperature of the water (X,), Ph (X3), intensity of the
light (X4), X5 = X]Xz, X6 = X1X3, X7 = X1X4, Xg :X2X3, Xg =X2X4 and XlO = X3X4.
The behavior of the three approaches, in the presence of outliers was analyzed using
Monte Carlo experiments. Twelfe points of the collected data, were considered as
outliers by the experts. A percent of the generated sample was selected from the
set of outliers. In each Monte Carlo experiment 0, 6, 12 or 24 experiment points
were generated by means of a random sampling with replacement mechanism from
the outliers. The rest of the units were selected from the not outliers. One hundred
samples of size fifty were generated for each percent of outliers. Table 4.2 contains
the means of the calculated RSS and SAD.

Table 4.2

Average of RSS and SAD in 100 Monte Carlo experiments with the abundance of
phytoplankton data for 6 €{0, 0.01....,0.99}

% of Methods
ouﬂiers LS LAV Convex Combination
R 0 105.8 124.4 110.3
S 6 135.9 188.7 177.6
S 12 158.0 188.6 185.3
24 274.6 198.5 179.5
S 0 75.4 51.3 80.5
A 6 935 53.2 66.7
D 12 137.5 53.9 66.5
24 245.6 85.8 100.5

Note that the existence of outliers does not affect seriously the accuracy of the re-
gressions obtained by the proposed Convex Combination of LS and LAV, in the

Montecarlo experiments. The mean computing time for deriving the solutions was
46.33 seconds.
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