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GOODNESS-OF-FIT TEST FOR THE
FAMILY OF LOGISTIC DISTRIBUTIONS

N. AGUIRRE* AND M. NIKULINT

Chi-squared goodness-of-fit test for the famzly of logistic distributions
is proposed. Different methods of estimation of the unknown para-
meters  of the family are compared. The problem of homogeneity is
considered.
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1. INTRODUCTION

Let Xi,..., X, be independent identically distributed random variables and
suppose that according to the hypothesis H,

(1) P{X; < z} = F(z;8), 0=(6,....,0,)T €O CR’, z e R}
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where © is an open set. We devide the real line into k intervals I, ..., I;:

LU UL =R, LN =0, i#j

We shall suppose that

(2) pi(@)=P{X1 €L |Ho} >0, i=1,.. k.

Let v = (v, ...,I/k)T be the vector of frequencies arising as a result of
grouping the random variables X, ..., X,, into the classes I1, ..., I;. We denote
2 r ~ (vi = npi(6))”

3) X5(0) = X, (6)Xn(0) = ; (@)
where

T
(4) X, = ul—npl(B),.“’uk——npk(G)
Vnp1(8) V1pi(6)
Theorem. (K. PEarson, 1900)
If 6 is known or given by the hypothesis Hy, then
(5) lim P{X;(6) > z | Ho} = P{xi_; >z}
n—0o0
It is known that if the value of the parameter 8 is unknown and is estimated
relative to the observed values of Xi,..., Xy, the limiting distribution of the
Pearson’s statistics X2(8;,) is given by the asymptotic properties of the estimator

6;, which is substituted into (3) in place of 6.

Here we shall give some results concerning this problem.

2. FISHER’S-THEOREM

Following Cramer (1946) we suppose that
) pi(6)>c>0,i=1,... .k, (k>s+2);

8%p.(0 . .
2) 3;%6—12 are continuous functions;
1
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3) the information matrix of Fisher

k
1 9pi(8) Opi(9) T
6 N J=J(6) = =B (6)B(#
=1 sXs
exists, and rankJ = s, where
apz
™) 5|
pI kxs
In this case nJ is the information matrix of Fisher of the statistic » = (n1,...,v)T.

Let 6, is the minimum chi-squared estimator for 9,

(8) X2(6,) = min X2(8),
Bco

or an estimator asymptotically equivalent to it. As it was shown by Cra-
mer(1946), a root 8,, of the system

Lou 3 )
(9) Z : pl =0, j=1,... s
1s such an estimator and, under Hy as n — oo, the vector V(8. — 6) satisfies
the asymptotic relation
(10) V(8. ~ 6) = I71(8)B” (8)X(8) + o(1,),

where o(1;) is a random vector converging to 0, in Pg - probability, and

hence \/ﬁ(én — 8) is asymptotically normally distributed with parameters 0,
and J~1(6).

Theorem. (FisHER(1928), CRAMER(1946))

If the regularity conditions of Cramer hold then
(11) lim P{X7(6:) >z | Ho} = P{x}_,_, > z}.

3. CHERNOFF-LEHMANN’S THEOREM

We suppose that the regularity conditions of Chernoff-Lehmann’s (1954)
hold:
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1) F(z;0) has probability density f(z;0), where all

5 £(z:6)
12 A Sk il
(12) 00; 06,
are continuous functions on R! x O
2) the information matrix of Fisher

(13) L(8) = ||Ljllsxs = EgA(6)AT(6),

corresponding to one observation X exists and is positive definite for any

8 € O, where

(14) A(6) 0 In f(X1;8),

- 96

(nI(8) is the amount of information of Fisher about @ in sample X =
(X1,...,X)T).

3) differentiation with respect to parameters under the integral sign of
(15) /f(:L';G)dx =1

is permissible, 1.e.

0 a .
(16) ég—i/f(x;ﬂ)dm = / Eo—if(z;e)da: =0, i=1,...,s;

4) the matrix W = [w;;] with elements

0
(17) wij = /;J%f(x;g)dz
has rank s;
5) the maximum likelihood estimator 8, exists,

(18) L(8,) = sup L(8),
Bco

where

(19) L(8) = H f(X:;8).

As it is known (see for example Rao (1965)), 85, is a solution of the likelihood
equation
(20) A(8) =0,



and, under Hg as n — oo, the vector \/n(8, — 8) satisfies the asymptotic relation
. 1
(21) Vn(8, — ) = %I“I(B)A(O) + o(1,),

from where it follows that \/n(8, — 6) is asymptotically normally distributed
with parameters 0, and I71(8) and hence 8, is asympotically efficient estimator.
We say that 6, is a BAN estimator.

Theorem. (CHERNOFF-LEHMANN, 1954)
If the regularity conditions 1)-5) hold then
(22) Jim P{X3(6:) > z | Ho} = P{xi_,_, + Y Ni€? >z},
i=1

where x2_,_,,&1,...,& are independent, & ~ N(0,1) and X, = X\(9),
0< (@) <1, i=1,2,...,s, are the roots of the equation

(23) | (1= 2)I(6) - 3(8) |= 0.

Remark 1. We note here that in continuous case v = (v1,..., )T is not suf-
ficient statistic, and hence the matrix I(8) — J(8) is positive definite.

Remark 2. Let us consider the density family

(24)  F(5:6) = h@)eep Y bmz™ +0(0)), cEXCR
m=1
X is open in R', X = {z : f(z;8) > 0}, 0co.

The family (24) is very rich: it contains Poisson, normal distributions etc.
It’s evident that

n n n T
(25) U, = (ZXZXQZX>
i=1 i=1 i=1

is complet minimal sufficient statistics for the family (24).
We suppose that

1) the support X does not depend on 8;
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2) the matrix of Hessen

82

(26) H,(6) = - ”Wwe)

§Xs

of the function v(8) is positive definite;

3) the moment a;(8) = EgX] exists.

In this case, using the results of Zacks (1971), it is not difficult to show (see,
for example, Dzhaparidze and Nikulin (1991)) that the maximum likelihood
estimator 6,, = én(Un) and the method of moments estimator 8,, = én(Un) of
8 coincide, i.e. 6, = 9n. Let

a(8) = (a1(9),...,a,(0))T and T, = lUn.

One can verify that

0
a(6) = —50(0),

and hence the likelihood equation is T,, = a(8), i.e. 8, is root of this equation.
On the other hand we have EgT, = a(@), and hence from the properties of
the statistics Uy, it follows that T, is the MVUE of a(8), and 8,, is the root
of the same equation T, = a(8), which we used to find 0,,. Hence én = 8,,
Le. under the conditions 1)-3) the method of moments gives for the family
(24) an asymptotically efficient (BAN) estimator. We remark that in general
an estimator based on the method of moments is not asymptotically efficient,
and hence does not verify the Chernoff-Lehmann theorem. In “Handbook of the
logistic distribution” in chap. 13, it is reported that this theorem is applied by
Massaro and d’Agostino using 6, = (X,,s2)7, (the moments method estimator
of 8 = (EX1, VarX;)T) for the family of the logistic distributions. But 8,, is not
efficient and ever not asymptotically efficient for the logistic family, and hence is
not BAN, since this family does not belong to the exponential family (24) and
(X, 52)7 is not sufficient statistic in this situation. Hence, the tables of critical
points, proposed by Massaro et d’Agostino in section 13.9 are not valid.

4. ROY’S EXTENSION OF THE CHERNOFF-LEHMANN THEO-
REM

We consider here the result of Dahiya and Gurland (1970,1972), concerning
the chi-squared test of Pearson with random intervals, which is an extension of
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the unpublished result of Roy (1956) and Chernoff-Lehmann’s theorem. It can
be found more information about Chernoff-Lehmann’s theorem in the paper of
LeCam, Mahan and Singh (1983).

Let 6}, is an \/n - consistent estimator for 8 such that

n

(27) VA8, 8) = 3" v(X;)+ of(L)

J=1
where a function v = (v1,...,v,)7 is such that
(28) Egv(X;) =0, and Vargv(X;) =V s finite.
As it follows from (10) and (21) 8, and 8, satisfy (27). For each 8 € O let us
define a partition of the real line into & classes-intervals I, I, ..., I} is defined
with boundary points o = —oc0, z; = Y1(03)yThq = Yk-1(0;), Tk = +oo

depending on 8, such that
(29)  L=L(8) = {z:%-1(8}) < = < %(8])}, i=1,...,k,
where 7;(8) are continuous functions having partial derivatives.

Let v* = (¢f,...,1})T be a vector of frequencies obtained as a result of
grouping the observations X1, ..., X,, by the intervals 1,(6,), 1.(8;), ..., I (8})
with random boundaries, and let

pi(67) = pi(6},.8]) = Pg-{X1 € [(6}) | Ho} =
(30) = = F(7i(67):67) = F(v:-1(6;,); 6;,).

To test Hy Roy (1956) proposed to consider the statistic

k ol (B2
(31) Xﬁ(o;):xg(e;,o;)zz(”_i%,
i=1 \¥n

Theorem. (RoY(1956), Daniva & GURLAND (1972))
If 87, satisfies (27) and the Chernoff-Lehmann conditions hold then
k
(32) lim P{X}(6,)> ¢ | Ho} = P{>_ A€ > 2},
i=1
where £),&3,...,€ are mutually independent standard normal random varia-

bles, & ~ N(0,1), A; = A1(8), ..., Ak = Xg(6) are the characteristic roots of
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the matrix D~! ¥, where D = D(8) is the diagonal matrix with the elements
p1(8), ..., pr(6) on the main diagonal,

(33) ¥=30)=D-ppf ~UTM -MTU+UTVU,

g 0f(z;8)
uT = (Usilexs U;; = Ui~(9):/ (8)———=dz,
JikX J J g,_l(G) b

T _ (M. = maey= [ v (O) F(z: 0)dz.
MT = [Miloxss My = My(8) = ~/g._1(9)(6) 1 (6)f(z;8)d

For example, if 8, = 8., is the maximum likelihood estimator, which satisfies
(21), then, as it was shown by Roy (1956), in (32) k — s — 1 of A; are equal to
1, one of the A; is equal to 0, and the remaining s lie between 0 and 1. It is
obvious that this is an extension of the Chernoff-Lehmann theorem to the case
of random cell boundaries.

Remark 3. As it was shown by Dahiya and Gurland (1972) if the density
function f(z;80) of X, belongs to a location and scale family

V0" \ VB2

then 1t is possible to choose the grouping intervals in order to have the asymptotic
distribution of X% independent of 8. For example, let suppose that we test
hypothesis Hy according to which X; follows the normal distribution N (6, 6),

(34) f(w;ﬂ)z—Lf($_91), 6= (0,07, 10 |< 00,650,

(35) E{X, | Ho} = 91, Var{XZ- | Ho} = 92,
and let 8,, = (X,,s2)T, where

ol D s O
(36) Xn_n;X,, sn_;;(Xl—Xn) .

0, is the method of moments estimator for 8 = (61,65)T. Since f(z;8) belongs
to the exponential family (24) of order 2, s = 2, the method of moments gives
as a result the maximum likelihood estimator, én =8,.

If in (29) we choose
(37) 7i(6) = 0, + ci /b2,

and hence 7i(én) = X, + cisn, then as it was shown by Gurland and Dahiya
(1972) (see also Watson (1957),(1958)), the statistic X% is distributed, under
Hgy, in the limit as n — oo as

(38) X%—3+/\lff+)\2€§7
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where A; and Ay do not depend on . Using some results of Watson (1957),
Dahiya and Gurland tabulated the distribution of Roy’s statistic X% for k =
3,4,...,15, for the significance level o equal to 0.1,0.05,0.01, in the case when
the constants ¢; in (37) are chosen so that p;(8,) = 1/k.

Remark 4. It is important to remark that when 8 is unknown and we have to
estimate it, the limit distribution of the Pearson’s statistic X2(8}) changes in
general in accordance with asymptotical properties of the estimator 87 we shall

use.

For this reason it has looked reasonable to have a statistic which limit dis-
tribution is wellknown when we apply the maximum likelihood estimator or
anyone BAN estimator. In the papers of Nikulin (1973) (see also, for example,
Rao and Robson (1974), Moore and Spruill (1975)), is exposed how to construct
a chi-squared test for a continuous distribution (in particular, for the normal
distribution and for distributions with shift and scale parameters), based on the
statistic ¥,2(6},), by using any BAN estimator 87, of 8. For example we can
take 8; = én, where 8, is the maximum likelihood estimator. We note that
the technique of chi-squared tests for the exponential family of distributions of
rank one, s=1, and some applications of MVUE’s were exposed by Nikulin and
Voinov (1989). Another modification W2(8), which limit distribution is stable
with respect to any statistical method of estimation, providing \/n - consistent
estimator 6 was proposed by Dzhaparidze and Nikulin (1974). We shall apply
the statistic ¥,? to test the hypothesis Hy according to which the distribution of
X belongs to the family of the logistic distributions. This topic is studied also
by Dudley (1976), Drost(1988).

5. LOGISTIC DISTRIBUTION AND THE CHI-SQUARED
GOODNESS-OF-FIT TEST

Let X = (X1,..., X»)7 be a random sample, i.e. X3, ... , X, are independent
identically distributed random variables. In this section we consider the problem
of testing the hypothesis Hy that the distribution function of X; belongs to the

family of logistic distributions G (I—;ﬁ) depending on the shift parameter y and
the scale parameter o:

. T—p 1 i
) P{X; < Hyl=G =
@9PLG < 21 o) =0 (224 repl-5 (0) €T

u=E{X| Ho}, | ¢ |< oo, 0? = VarX,, o> 0.
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Under Hy the density function of X; is

0) L4 (tﬂ) :G/(x;#) T TP (‘%x_;&)

" e ()]

z e R

We remark that g(z) is symmetric.

We point out that “Handbook of the logistic distribution” edited by Balak-
rishnan (1992) was published recently about the theory, the methodology and
some applications of the family of logistic distributions, see also, Oliver(1964),
Pearl and Reed (1920), Reed and Berkson(1929).

We denote 8 = (i1,0%)T, and let 8, = (jin,62)T be the maximum of likeli-
hood estimator of 8. Since there is no any other sufficient statistic for 8 than
the trivial one X = (X1, ..., X»)T, the maximum likelihood equation has no ex-
plicit root. Balakrishnan and Cohen (1990) proposed an approximate solution
of the maximum likelihood equations based on a “type II censured sample” of
Harter and Moore (1967) (see also Grizzle (1961)). They proved that this appro-
ximate solution gives an asymptotically efficient estimator, i.e. asymptotically
equivalent to 6,,.

Let 8, be such an estimator. As it follows from (21) the limit covariance
matrix of the random vector 1/n(6, — ) will be I=!, where

1
902

Yoo 72 T @] ™ +3
Iu:/_oo [ig—(gx—)l] g(:v)dx:;, IZQ:I_OO 1:2[%(%—)2] g(z)dz—1 = 5

1
(41) I= FHI,-]-Iszz =

w2 0
0 743 |’

)

and since g(z) is symmetric

+o0 s 2
[12:121:/ m[ﬂﬂ] g(z)dz = 0.

-0

Let. us fix the vector p =-(ps,p2, ..., pr)T of positive probabilities such that
(42) PL=...=pr = 1/k,

and let

)1 izlv---yk“la Yo = —00, Yr = +o0.
(43)
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Further, let v = (v1,...,14)T be the frequency vector arising from grouping

X1,...,Xn over the intervals with random ends
(44) (=00, z1], (21, 22], - . . ., (zp—1, +00), where z; = z,-(GAn) = fin + Ony;,
and let

1 .
(45) a=(ay,...,ax)T, b=(b,... b)7, WT:—;Ha:bH,

where for i = 1,2,... %

T

a; = g(yi)—g(yi—l):kz\/g(k—-Qi—Fl),
bi = vig(¥) — yi—19(yi-1) =
1 . ) k—i+1 | i k—1
- k—2[(l—1)(k—l+l)1n~?—z(lc—z)ln ; :|,

k
(46) a(v) = kZaiu,—:ﬁ

k
(k+1)n— QZz‘u{' ,
i=1

k k-1 .
(47) Bv) = &k Z biv; = %Z(VH,I —v;)i(k — i)In k — z,
i=1 i=1

?

k 9 k
™
(48) /\1 = [11-k 2 a?:m, /\2:]22—-16 E bzz
i=1 i=1

Since g is symmetric we have a; + ag + - - - + ay =by+bs+---+by =0. Let
(49) B=D-plp-wWTI'w,

where D is the diagonal matrix with the elements 1/k on the main diagonal.
The matrix B does not depend on 6, and rankB = k — 1, i.e. the matrix B is

singular, while the matrix B, obtained as a result of deleting the last row and
column in B, has an inverse

(50) Bl = A+ AWT(I- WAWT)" 1WA,

where A = D! + 117 /p,, D~ lis a diagonal matrix with elements 1 ... ;kl—_L
on the main diagonal, 1 = 1;_; is the vector of dimension (k—1), all elements of
which are equal to 1, W is a matrix obtained from W by deleting the last column.

Since the vector & = (vy, . . ., ve-1)T is asymptotically normally distributed with
parameters
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(51) E» =np+0O(1,) and  E(@ —np)T (& — np) = nB + O(1,x,),

where p = (p1,...,pr_1)T, we obtain the next result

Theorem 1.
The statistic

" A Aa

has, as n — oo, chi-squared limit distribution with (k — 1) degrees of freedom,
where

9 k (vi —np:)?  k 5
}( = A T = L —n.
(53) n ;zl np; n § v n

Remark 5. We consider the hypothesis H, according to which X, follows
G(%5#,n), where G(z,n) is continuous, | z |< 0o, € H C R}, G(z,0) = G(z),
and 7 = 0 is a limit point of H. Let us assume also, that

59 gGEm =g wmd ) o ¥)

exist, where g(z,0) = g(z) = G'(z). In this case if %ﬂ exists and is
continuous for all z in the neighbourhood of the 5 = 0, then

(55) P{z;1 < Xi <z | Hy} = pi + ne; + o(n),
where ,
(56) ¢ = / U(z)dz, i=1,...,k,

and finally, in the limit as n — oo the statistic Y,? has noncentral chi-squared

distribution with (k — 1) degrees of freedom and with non-centrality parameter
A.

(57) lim P{Y? >z | H,} = P{x}_,(}) >z},
where .
ez Xa?(c) + A 8% (e
/\:Z—i+ : (3\1/\21 ()’c:(cl’CZ""vck)Tr

P, a(c), B(c), A1, Ay are given by (42),(46),(47),(48) respectively.
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6. EXAMPLE (ABOUT A CHOICE OF INTERVALS)

1. Simple hypotheses. Suppose that we want to test the simple hypothesis
Hy acording to which

(1) P{X, < z| Ho} = G(z)
against the simple hypothesis H;:
(2) P{X, <z|H} = ®(z)

(®(z) being the standard normal distribution function).

It would be possible to use the Neymann and Pearson test, yet 1t would
entrail large calculations. We shall then try to adapt a chi-squared test.

Let (X1, ..., Xn)T be a sample of mutually independent identically distributed
random variables with E(X;) = 0, Var(X;) = 1. Before to construct a chi-
square test for testing Hy against H, we shall do one remark on the cells’ choice.
As the test only compares the respective frequencies on the cells, it is worth-
while to choose those when both density curves are the most distant, that is to
say those got by their junctions.

0.5
T T T 2h) —
045 m

04 E

0.3F b
0.25 g
0.2¢ b
0.15 7
0.1 E
0.05 g

T

The representative curves of the density function g(z) of L(0,1) distribution
and the density function ¢(z) of the standard normal N (0, 1) distribution have
four symmetric points of intersection:

TL =T = 00, Ty = -5, IT3=—I4,
where ©(z;) = g(z;). Let

Ii:{zi_1<IS$,‘}, i:17273)4y5a
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be the such definite intervals of grouping the data. We can even improve the

power of the test by considering the cells only differentiated by the relative
positions of the two curves:

Ji = hUl3UIs = {z:g(x) > p(z)}, g(z) higher that ¢(z),
Jo = LUl ={z:¢(z) > g(z)}, @(x) higher that g(z).

Let us remark that if we consider, for example, an interval —2 < z < 0 for
grouping the data with one point of intersection z3 on the inside, as shown on
the schema, it is clear that in this case the two probabilities

P{-2< X; <0| Ho} and P{-2< X; < 0| H,}

will be approximately equal, and it will be difficult to decide which of both hy-
potheses is true and hence the power of the test using such interval will be low.
A test using the intervals {-2 < z < z3} and {23 < 2 < 0} (or 23 < & < z4})
will obviously be more powerfull. From this remark we obtain the next

Proposition

To test Hg against Hq, the chi-squared test using Iy, Is, I3, 14, I5 is less po-
werful as the one using two cells:

Jl and Jg.
a) Let (v1,vs,...,u5)T be the observed frequencies of the sample in the in-
tervals Iy, ..., Is respectively. Then
(60) P{Xi €L |Ho}=p i=12...5

(with pi®) = p{” = 0.0155; pi® = p = 0.207; p¥) = 0.555). In our case
we shall use the standard statistic of Pearson:
5 (0)y2
2 _ (vi —np; ")
(61) Xr=Y —

i=1 np;

Under Ho, X7 is asymptotically x7 and we shall reject H if X2>cha,
since

P{XTZI Z Ca,0 | HO} ~ P{Xﬁ 2 C4,01} = «.
The power of this test is Pg = P{X% > ¢4q | H1}. Or,

(62) P{Xiel |H}=p", i=1,2...5,

(P = pM = 0.011; p = p{V = 0.234; " = 0.51).
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(63)

b)

Under Hi, X2 has asymptotically a non-central chi-square distribution
with 4 degrees of freedom and the parameter of non centrality A:

(0) (1))
(0) '

=n

(A ~ 0.0133n).

'Mm

i=]

Using the approximation of Patnaik we can compute

PG 2 o) ~ Pl 2 o (1- 125 )

For example, for & = 0.05 we have ¢4 o = 9.49, from which it follows that

in order to have Py > 0.5 0.74 0.9 0.99,
it is necessary to take n > 195 240 269 292

respectively.

Let v be the observed frequency on J;. We have

P{X: € J1| Ho} = w® with w(® = 0.586
and
P{X:€Ji| H} =w® with v = 0.532.

To test Hp against H, we shall use again the standard statistic of Pearson

X2 (v — nw(0))?
T nw(®(1 — w0y’

Under Hy the statistic X2 is distributed (n — o0) asymptotically as x?.
We shall reject Hg if X2 > ¢; 4, since P{x? > ¢i1.4} = a and the power of
this test is

=P{X2>c1, | H}

Under Hy, X2 has asymptotically (n — o00) a non central chi-square dis-
tribution with one degree of freedom and the parameter of noncentrality

, W@ - w12

= Lo ooy (X~ 00120).

Using the same approximation (63):

P{X{(X) 2 ca} ~ P{x} > c1.a(1 = X)},
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we have ¢; , = 3.84 for a = 0.05, from which it follows that

in order to have P, > 0.5 0.75 0.9 0.99,
it 1s necessary totaken > 74 82 83 84

respectively. One can see that in the case b) the chi-square test based on
J1 and J 1s more powerfull, then in the case a). The same approach may

be used for composite hypotheses (see, for example, Nikulin & Voinov,
1989).

2. Composite hypotheses. Let now X = (X;,...,X,)T be a sample,
E(X1) = g and Var(X;) = 02, 8 = (g,0¢%)7T, 6 is unknown, and let us test
Hp according to which X, follows a logistic distribution (39):

(65) P{X1§x|H0}:G(x,6):G(x;“)

against the hypothesis of normality H; according to which

(66) P{X,<z|Hi}=0(*=F)

Let 8, be an estimator which satisfies to (21). According to the precedent study
and to §5, we shall take the two cells with random boundaries (41):

J1(
Jo(

én) ] — 00, —0,T5 + ﬂn]u] — 0pz3+ fin, 0nT3 + ﬂn]U]&nmS + ﬂn’ +OO[,
6,) = R'\Ji(6,).

Let v = (v,n — v)T be the vector of frequencies obtained in the result of the
groupement of the sample X = (X;,..., X,,)7 into the intervals Jl(én) and
J2(6y). According to definitions (43) to (47) we calculate

!

0
a; = —O'EP{XZ'EJl(G)]HO}:a1+a3+a5:O:a/2,

, & ~
bl = —U-a—o_P{XZEJl(G)|H0}:
= b1 + b3 -+ b5 = 2[.’133g(.’l,'3) -~ l’sg(l'g,)] = —blz ~ 0296,

12 12 2
ay aq I = a
11 — 6’7

Al = Ill*m_l_w(o):
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b2 b2 2 +3 b72

WO T TZ® T Ty T 01— w)
Az = Ly—-0=0,
_ aiv  ay(n—v)
"= et =0
/ ! _ _ (0)
5(1/) — bl_y + b?(n’ V) — b/ (V nw )

w(0) 1 — w(0) 1w(0)(1 —w(o))’

(v — nw(®)?
T (1 - w(®)’

and finally we obtain the statistic

12
bl

(67)  Y2=X24 ﬁ—(;’—) = X2+ — :“’5““”(:,? X2 ~1.34X2,
A - 9 T wOI-w®)

for testing the composite hypothesis Hy, given by (39), against the hypothesis
of normality H;, and

P{Y2>z|Ho} = P{}>z}, (n— oo).
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