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AN APPROXIMATION OF THE
K-FUNCTION FOR THE STUDY OF
BINARY IMAGES

GUILLERMO AYALA GALLEGO*
AMELIA SIMO VIDALT

Jensen et al. (1990) gave an ezact ezpression for the K-function
in non-overlapping Boolean models. The present study proposes and
evaluates an approzimate ezpression for the K-function in overlap-
ping isotropic Boolean models based on an approzimation of the cova-
riogram of the primary grain. We study the suitability of a Boolean
model for two binary images using this approzimate expression.

Key words: Boolean model, K-function, reduced moment mea-
sure, image analysis.

1. INTRODUCTION

The Boolean model, a kind of random closed set (Matheron, 1975), has, .
in recent years, proved to be sufficiently versatile for modelling binary images
from very varied sources and is of particular interest for biological and geological
images (Stoyan et al., 1987). Its use for modelling three-dimensional objects is
also of considerable interest. A recent contribution in this area is Bindrich and
Stoyan (1991).
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A Boolean model is: Let x = {z1,z2,...} be a stationary Poisson point
process in R with intensity A. Let Z,Z,... be a sequence of almost surely
compact, convex, independent, random closed sets called grains, identically dis-
tributed (as Zo), distributed independently of x and satisfying EAg(Zo+L) < co
for every compact L in RY where [ = {=k : k € L} is the symmetric of L about
the origin, Zo+L = {z+k:2€ Zy, k € L} the Minkowski addition and Ag
stands for the Lebesgue measure in the Euclidean space R®. Then:

(1) Z=\]J %0+
n>1

is a Boolean model with primary grain Z, and intensity .

Given a stationary random closed set ® in R, we can define a random me-
asure which we will call the measure of coverage associated with @ as: vg(B) =
Aa(® (N B), B being a Borel set in R%. In the following, A, with r = 0, vy d
denotes the r-dimensional Hausdorff measure in R?. It has been shown that
under certain very general conditions vg, which is obviously determined by &,
In turn determines the random set ®, Ayala et al. (1991a). In any case, charac-
teristics of v provide partial descriptions of & which are of practical interest,
particularly the K-function. If p = P(0 € ®) denotes the volume fraction of the
random set, then

K(t) = I—I)Eo(w(B(O,t))) = %E(:«»(B(O,t)) )

where Ey is the expectation with respect to the Palm distribution Py of vg
(Daley and Vere-Jones, 1988) and B(0,t) the ball with the origin as center and
with radius ¢. Intuitively,

K(t) = ’17 (expected Lebesgue measure for the intersection of ® and the ball
with radius ¢ and center at a typical point of ®).

It can easily be proved (Jensen et al., 1990) that

@) K(t) = % /B 0 01

where C(z) = P(0,z € ®) is the covariance function of the random set ®.
Assuming an isotropic random set, i.e., distribution invariant under rotations,
then the covariance function depends on the modulus of z and (2) is

(3) K(t) = % /0 r4=1C(r)dr

where Ag = A4-1(So), and Sy is the unit ball surface in R?.
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An approximation of K for isotropic Boolean models is proposed in the fo-
llowing section. The third section is devoted to studying its errors. This ap-
proximation is used in the fourth section for a goodness-of-fit problem: for two
different binary images we test the suitability of the Boolean model.

2. THE APPROXIMATION

For a Boolean model Z in R? as described above in (1), it holds (Matheron,
1975) that:

(4) C(z)=2p—1+ (1 - p)2eMz(®),

where vz,(z) = EXa(Zo (V(Zo + )), the geometric covariogram of the primary
grain Zp and p=1—e*4 with V; = EXia(Zo). Matheron (1975) shows that the
function g(ru) = Ag(L((L+ru)) withr > 0, u € Sy and L convex and compact,
is differentiable from the right at » = 0 and its derivative is Aa—1(IIy L), where
II,L denotes the projection of L onto the hyperplane whose normal vector is
u. Bearing in mind that we assume the primary grain Z to be almost surely
convex, compact and isotropic, by applying Cauchy’s formula (Santal, 1976) it
follows that:

(5) 72,(0) = —faSa-1,

where 0Z, denotes the boundary between Zy and S4_; = EXi-1(8Zp) and B3 =
2?1,;%%. Consequently the first order approximation of the geometric

covariogram of the primary grain near r = 0 is
(6) 72o(7) = Vi — BaSa-17.

From (4) and (5) it is easy to obtain the first derivative of the covariance
function, C’(0).

The approximation which we propose consists in using (3), and performing
the Taylor expansion up to the order d + 1 of the K-function. It is verified that
this method is equivalent to replacing the covariance function in equation (3)
with its development at the origin to order one: C(r) =~ p + C’(0)r. For higher
order developments we need to know the second, ... derivatives at the origin of
the covariance function whose general expression is unknown. For any random
set (not necessarily Boolean) the approximation is as follows:

237



™ k(0 = 2ttt + 2000 o,

(d+1)p?
If the random set is a Boolean model then (7) is

(8) K0~ Ka(0) = 231% = MafaSac ozt

Ford=2:

©) K(t) ~ K1,2(t) = % 2 2A513(; ~p) s

)

S1 being the mean perimeter of the primary grain.

3. ERRORS

Two different models are considered in order to evaluate the approximation.

1. A 2-D Boolean model: the primary grain is a random disc with uniform
radius in [0, p].

2. A 3-D Boolean model: the primary grain is a random ball with uniform
radius in [0, p].

The covariance function is known for both models (Stoyan et al., 1987) and we
can evaluate K using numerical integration. (9) (d = 2) and (8) (d = 3) provide
us with the first approximation for these models. The values chosen for the
parameters were p = 0.1 with three different volume fractions, p = 0.1,0.5,0.9
(or equivalently, three A values).

Each volume fraction corresponds to two plots of the same row. In the plot
on the left, we have shown the K-functions (thick line) and K; -functions (fine
line) within a row In the column on the right we have shown K/K;. For
r > p, C(r) = p* as shown Ayala et al. (1991b) and so we have evaluated the
approximation up to r = p. Figure 1 corresponds to the 2-D case and Figure 2
to the 3-D one.

Globally, we can say that the approximation proposed, (8), is fairly good,
improving, though not greatly, as the volume fraction increases.
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4. SOME APPLICATIONS

We shall analyse two binary images in order to demonstrate the use of the
approximation. The first image, Figure 3, represents the distribution of heather
in the countryside (it is a centred square from Diggle’s image, 1981). The second
image, figure 4, is a cross-section of fibres within a nerve fascicule.in the sciatic
nerve of a male rat (Ruiz, 1986). In-order to test the suitability of the Boolean
model we use the following method: first, we shall estimate p and S; (see (9)
by means of a method not related with the covariance function (we assume
a Boolean model.) This provides us with the first approximate version of K,
K1,2. Then using the usual estimator (see Ripley, 1988), we shall estimate the
covariance at the points belonging to a grid. In this way, we will have, using
(3), a second approximation for K, K. Note that in this second case we are not
assuming any hypothesis about the model. We have chosen Kellerer’s method
(Kellerer, 1983 and 1985) to estimate the parameters in the first case. This
method uses only three quantities: area and Euler-Poincaré characteristic of the
image and perimeter of the image without its intersection with the edges of the
window. From these quantities we can estimate the intensity of the Poisson
point process, the mean area and the perimeter of the primary grain. Assuming
a unit square as sampling window for both images, the estimated intensity for the
heather is 217.36, the mean area is 0.00373 and the mean perimeter is 0.22256.
For the nerve fascicule, the values observed were: 272.9242, 0.00138 and 0.13646.
From these values we will obtain two versions of K1,2. We have plotted (Figure
5) two curves, one for each binary image, representing K12 against K, and the
line z = y. From this figure, we can formulate the following conclusions:

1. Boolean model does not seem suitable in either case. This may, of course,
be due to the quality of the approximation, although, as we can see in
Figure 5, near the origin there is a clear difference between the estimate
based on the real images and the approximations, which argues against
this supposition. It may also be due to the estimator used to obtain the
approximations. Although the problem has been studied fairly extensively
for the point processes, this is not the case for random closed sets. This
line of study needs further exploration. (Doguwa and Upton, 1989, and
Ripley, 1988).

2. The mean area for the intersection of the heather and a ball with radius ¢
and centre at a typical point of the set is smaller than might be expected
for the adjusted Boolean model. The difference decreases with t.

3. The mean area observed for the-nerve fascicle is also less than the mean
area when we assume a Boolean model, but the opposite is true as t in-
creases.
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Figure 4
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5. FINAL REMARKS

In the foregoing section we have shown an application of the approximation
proposed with a view to establishing whether two images can be considered
as realizations of an isotropic Boolean model. We believe this might be its
main application. If a model of this kind is considered suitable e priori, it is
clear that our approximations provide fairly good estimators with a much lower
computation cost than if we calculated Ripley-type estimators for random sets.
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