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RESTRICTED ESTIMATION IN UNBALANCED
FACTORIAL MODELS:
AN APL PROGRAMS PACKAGE

JOSE M. PRIETO and JOSE M. CARIDAD
University of Cérdoba

This paper describes a set of programs that provide researchers with re-
stricted effect estimations in unbalanced factorial models when several
wetghing systems are tmposed upon those models. The main program
perfoming such an analysis 1s known as REUFM, and 1s written in

APL®PLUS, for IBM/PC microcomputers. An example is given in

order to tllustrate the programs.

Keywords: Factorial designs, unbalanced models, surveys and ex-
periments, APL.

1. INTRODUCTION

In many statistical studies, data can be displayed according to several factors
in a complete factorial classification of treatments. With unbalanced data it is
necessary to distinguish between the complete case and that in which some cells
have no data, since algorithms valid for the former do not apply universally to
the latter (/1/, p. 40). The case of missing cells should be made the subject
of a separate study.

Let us consider initially a two—way design; the associated fixed—effect linear
model in usual notation is written

(1) E(yyr)=p+ai+fj+ab,t=1,.,a;7=1.,b; r=1,.,n;y)
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assuming uncorrelated and independently—distributed normal errors with com-
mon variance o2. We are concerned with least-square estimations of the dif-
ferent factorial effects involved and their standard deviations. Although 1t is
common to deal with hypothesis-testing as a related subject, in many anova
situations it is the estimation of the effects per se that is desired (/2/, p. 67).
Our study is based on this approach.

Since the above model is overparameterised, identiafiability “constraints” are
usually imposed on main and interaction effects, the form of the constraints
depending on the “weights” assigned to the cells of the classification. Three
well-known weighing systems will be considered:

E n,. oy = 0, E n_,-ﬂ]- - 0, Zn;jaﬂ,-j = O(i = 1, vaey a),
: 7 7

(2) ‘
2 niafi; =0(7=1,..,b)

Yonioa; =0, n;6;=0,> n;af; =00E=1,..a),
- ~ ~

Z niafi;=0(=1,..05)

Zai = O,Zﬁj = O,Zaﬂ,-j =0z =1,...,a),
1 2 2

(4)
Y afiy =00 = 1,...,b)

1

The choice of system to be imposed on model parameters has been a matter
of some controversy /3/.

In investigations in which sample sizes are known to be proportional to sub-
population sizes, we use the first weighing system (2}, or “frequency” weights.
This choice of weights is ideal in sample surveys. When the cells arise from
“experimental” subpopulation through a given survey technique, as is the case
of those studies which make a sample survey of the result of an “extensive”
experiment, the choice of that weighing systemn may still be meaningful /4/.

It is common practice in experimentation to call initially for a balanced de-
sign, the normal thing being to use the system of weights given in (4), called
“usual” weights. However, unequal subclass numbers inevitably appear in the
completed experiment; if, as is to be expected, the lack of balance is unimpor-
tant, the analysis of such an unbalanced design with usual weights produces
appropriate effect estimates /5/.
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Other experiments are initially planned with a “proportional” design /6/, the
weights normally associated being /7/ those given in (3), which we have termed
“marginal” weights. In actual practice, however, a slight disproportionality is
obtained; in this case, an apropriate analysis can be carried out using marginal
weights /8/. On the other hand, in terms of the additional notation:

(5) ng=1/n(ning) , nf=ni , n

the following weighing system may be established:

Z:nfai =0, En'_;ﬂj =0, an.aﬂij = O(i =1,.., a),
1 3 7
(6) i
Z nafi; =0(7 =1, ey b)

If we introduce (5) in (6), it turns out that (6) is reduced to (3), in other
words, (3) and (6) are similar expressions of the marginal weighing system; we
shall use the latter.

~

A hypothetical classification having tne numbers n;; as subclass numbers
would be proportional, and would have the same first-order marginal frequen-
cies as the original one. This is why we have termed such numbers “expected”
proportional frequencies.

2. COMPUTING MATRICES
2.1. EFFECT MATRIX

The matrix expression of (1) for a k—factorial model is E(Y) = LXB. Y
reflects the vector of observations in the various subclasses, if these have been
lexicographically ordered previously. ( denotes the vector of factorial effects.
The matrix product LX is the “design” matrix, where L is the “replications”
matrix that accounts for the different number of observations in the cells, and
where X is the “effect” matrix for 3; both L and X are matrices of incidence. A
logical partitioning of § is assumed to exist such that each group corresponds to
a meaningful subset of factorial effects due to the same treatment combination.
Each effect group might be designated by a tuple whose elements were the
factors indexes, the general mean being designated by the tuple (0}, the i-th
main effect (¢ = 1,..., k) by the tuple (¢}, ando so on. There are, in all, 2% tuples,
which are arranged as follows: (0), (1), ...,(k), (1, 2),...,(k — 1,k)... Thus, we
have established a “complete” lexicographical order of all the tuples.
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The system of “normal” equations in matrix terms of the above model may
be written as X'DXf = X'DY, where D(= L'L) is a diagonal matrix with cell
sizes along the main diagonal, B is the vector of the least squares estimators, and
Y is the vector containing the cell means. The coeflicient matrix of the above
system X'DX is called the “information” matrix. The homogenous system of
weights with regard to the effect estimators in matrix terms is Rf = o where
the coefficient matrix R will be designated “restriction” matrix. From the
above two systems, it is known that there is a unique solution for 3:

(7) f=(X'DX + RR™'X'DY

The covariance matrix of the estimators is:

(8) Cov (B) = 8°|X'DX + R'R"* X'DX|X'DX + R'R]™!
where an estimator of the common variance in the cells may be written:

9) 6?2 = (n—i—s—) [Y'Y . {X'DY]'B]

and where n and s are the total number of observations and cells, respectively.

The effect matrix is structured in 2* lexicographically ordered column-
blocks, each one associated to an effects group of 4. It is known that the
structure of each column-block of X can be expressed in terms of the Kro-
necker matrix product of identity matrices and column vectors whose elements
are ones /9/. Consequently, the information matrix may likewise be structured
in 2¥ x 2% submatrices.

2.2. RESTRICTION MATRIX

To facilitate restriction matrix structuration we have considered in (2) all
the restrictions, including the “redundant” ones. An essential feature of the
structure of R is that it is formed by “certain” submatrices of the information
matrix X' DX . To see this, it is necessary to define an auxiliary matrix in such
a way that if a submatrix of X' DX is an integrant part of R such a submatrix
is substitued by one, or otherwise by zero. The 2% x 2* incidence matrix so
formed, which refer to as the “restriction incidence” matrix, denoted by E, has
the following structure /8/: A column of E, e.g., that associated to a group of
effects denoted by a certain m-tuple (or tuple of m elements) contains exactly
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m numbers equal to 1, which occurs in those rows of E designated by all the
possible (m — 1)—tuples whose elements belong to that m-tuple.

Once FE is constructed and in order to obtain R, a matrix of diagonal-blocks,
each number of F occupying a given position is replaced by the submatrix of
X'DX situated in the same “position”, although multiplied by that number;
this transformed E matrix is denoted by T. Finally, if in each column-block

of T the null submatrices are omited, the remainder forms the corresponding
diagonal-block of R.

In the above process, if the matrix X' DX is used, we obtain the restriction
matrix for frequency weights. If we use the matrix X'HX, where H is a
diagonal matrix whose entries are the generalized n;;;. (5), the result is the
restriction matrix form marginal weights. The restriction matrix for usual
weights is easily obtained replacing each non-null number of the restriction
matrix for frequency weights by an “1”.

3. COMPUTER PROGRAMS

3.1. SINTAX DIAGRAM

This paper presents a programs package consisting of a main program called
REUFM (Restricted Estimation in Unbalanced Factorial Models), the only one
that must be called up by the user, together with a set of auxiliary programs

and subprograms. The following diagram illustrates the dependency hierarchy
between them.

81



| |

VAR

PER

CRE

TR1

REUFM EM TRI

REOR

KRO

CRE

INRININININy

KROP

COMB

RIM

TRIM

RVW

IniniNi

R E

—_—
-—

These programs are written in APL® PLUS for IBM/PC and compatible

computers. Their respective codes* are given in the Appendix.

*Availability: A copy of source code is available for IBM/PC formatt disk, by sending a
floppy disk to the authors.
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3.2. PROGRAM STRUCTURE

The following is a brief description of the functions, to help the user to
understand what they do.

The input program is Design Data, DD. It accepts the number of factors k,
the number of levels each factor, the subclass frequencies, and the observation
values. DD produces as output SY, a vector whose elements are the sum of the
observation values for each subclass.

The next program, EM, calculates the effect matrix, X, and other related
results. To begin, the subprogram VAR generates a 2% x k incidence matrix
A, for a given row of wiich, a “0” in a certain position denotes that the term
occupying that position in the Kronecker product (referred to at the end of
2.1) is an identity matrix, whereas a “1” will denote a vector of ones. It is
necessary to re—order the rows of A in such a way that the result matrix F
has rows which naturally correspond to the lexicographically—ordered column-
blocks of X. Such a matrix F is produced by PER.

The column-blocks of the effect matrix of the same position will correspond
to F matrix z—th row (z = 1,...,2¥), in the following way: first, the subprogram
CRE generates a set of empty variates I1,...,Ik, U1,..Uk. Then, if the t — th
position in the row (¢t = 1,...,k) is occupied by a “1” the subprogram TR1
asssigns to the variate It a column vector of a; “1” s (where a; is the level of
the a; — th factor); and if the ¢/ — th position (' = 1,...,k;t’ # t) is occupied by
a zero, the subprogram TRI assigns to Ut' the identity matrix of order as. The
vectors of “1”s and identity matrices thus formed are assigned to the ordered
variates TOT1,...,TOTk by means of the subprogram REOR. The Kronecker
matrix product of these k variates is carried out by KRO, the output being
BXz, the z — th column-block of X. The different column-blocks are linked
along the [2]-th dimension in line [23] of EM. The X matrix is calculated the
last time the loop is run.

The diagonal matrix D is constructed in line [27] of EM, and the vector Y
in line [28]. Once X and D are constructed, the information matrix X' DX is
also constructed, a given submatrix of which, e.g., that situated in the 2, — th
row-block and in the z; — th column-block, is given by (BXz,)D(BXz,). To
such a submatrix we assign the (2zy, z2) — th position.

The diagonal matrix H is formed in line [30] of EM although previously we
construct an auxiliary matrix QQ equal to the ordered Kronecker product of
the submatrices of X' DX situated in the positions (2,2)—th to (k+1, k+1)—th.
The program producing QQ is KROP.

The next program RM constructs the restriction matrix R for the different
weights used. The subprogram COMB forms a vector of order 2¥ whose ele-
ments are the tuples denoting the positions of the column-blocks of X or R;
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that vector VF is produced in line [29] of COMB. The subprogram RIM pro-
duces as output the restriction incidence matrix using as input VF. A 2% x 2k
matrix of zeros is initially formed and then “1”s are assigned to the positions
determined by the criterion mentioned at (2.2). This is done in line [4] of RIM
for the columns 2 — th to (k+ 1) — th of E, and in line [20] for the remaining
columns.

The transformed restriction incidence matrix T, also referred to at (2.2), is
produced by the subprogram TRIM. For a determined row of E, each number
is substituted by the corresponding submatrix in line [10], the set of which is
linked by the second dimension in line [14]. The resulting row-blocks, TET, are
linked by the first dimension in line [17], thus forming the T' matrix. The output
of TRIM is the matrix T for frequency weights, TFW, if those weights are used
(as in line [4]), whereas the output is the matrix T for marginal weights, TMW,
if these are the weights considered (as in line [25]).

The subprogram RVW forms the restriction matrix for the various weighing
systems. The R diagonal-blocks DBR are formed with the non-null rows of the
corresponding column-blocks of T in line [23]. The various DBR are diagonally
linked in line [44], and the resulting matrix is augmented with a first null column
in line [51], the output being R. If the matrix TFW is initially used, we obtain
the R matrix for frequency weights, RFW. If the matrix TMW is used (in line
[53] the output is the R matrix for marginal weights, RMW. Finally, the R
matrix for usual weights, RUW, is easily deduced from RFW in line [57].

The last program RE, using the outputs of the aboves, gives the restricted
estimators EFW, EMW, and EUW, corresponding to the three weighing sys-
tems in lines [8-10]. An estimation of error variance is given in line {11], and
the standard deviations of the above estimations in lines [15-17] of RE.
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APPENDIX A. PROGRAM LISTING.

[O] PRBEUFH
[1} ~ The Program Packaze REUFM computes the Restricted Estimationz for Unkal-

anced Factorial Models.
[zl DD
131 i
=1 Bt
51 RE

eDDIOIw

£201 DD;35;1
£41 & Function DD acceyte asz inpute the Decign Datez.
[21 'Introduce the numbers of factors'
£31 ¥ed
{41 'Introduce the numbers of levels of the factors
£33 FlLeQ
{61 'Introduce the numbers of sukclazses’
{71 SNel
[3] 'Introduce the okcervation values’®
£31 Yeilat) , 1)erel
(101 SYe({aSH),1)0D
{111 33¢0
[121 et
£13) L1:5:01: e+~ 3035¢030H0133)
[141 S5€55+¢3NL11
[451 #{lel+1)pSHY/L2
[46] 2Lt
[17] Lz:

QEMIDI?
(01 EM:iT:Z;A3F;C4sC138E:0Q;00

SPEUFNLOLw

{11 m Thic function computes
matrix D whosz entries

the Effect Matrix,X.EH alcc computes the diagonal
are the subclacz numbers,the diagonal matrin H

whose entriec are the expected proporticnal frequenciec,and the vector

whose elementz are the
£21 A€ ( T1402H),0)00
[31 Y&R
[4] PER
{51 m The following function

subclase means.

initiates a loopreach time it ic run a coclumn-

block of X is calculated.

[51 CRE

[71 SBeFL;R;F:(1:41:58:0;00
[81 {1ellend

[31 Z&)

£403 Lesa{t ZeZe D ¥ 14eF)) /L
[141 ReFlZ:]

(121 Tet

[433 L2 alTI=01/L4
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(141
£131
(161
047
£181
[151
[201
£241
22l
£23
£ 241
{231
(261
£a271
[281
£293
£301

€01
[11
£zl
(31

[41
[s3
f6l
[73
L&

{2
[43

(3

£41

(53
£el
71
£81

{93
[41

[al
£31
£41
£33

L3:TR1

+(TeTei) }X)/LS
+L2

14:TE]
+0{TeT+11 30 /LS
L2

LS:REIR

KEO

¢'BX', {30, '€l
Xex, 0214

CEE

L1

L&

De{{pBNY, (@3N ) e {{{ 5N #2201, L3N a0) INEN)

YHe({BD)+.x3Y)
KROP
He d2((44a ) K-1)))20Q0

QUARIDI?
VAR 1

s The function VAR calculates an incidence matrix,R,required to compute X.

pe 2410

n The initial A matrix is supplemented firct with a final column of {'s;
subcequent]y it is suprlemented with a final column of 0's,The two re-
sulting matricee are linked by the first dimension,and so on.

£33
Litaedn, 45,0120, 0)
+(lel+d)=¥i/L2
+L1
La:

vPER[DI®
FER;1

p This function re-orders the rous of A to produce the matrix F.

fek+d
Fe0,K)e0

a All the rows of A with the game numbers of 1's form 3 row-block of F.
Within each block,rouws are ordered naturally from lower to higher,

L1 {iel-12(D)/L2

FeF, [410(OALCI=04+/A=0)) /v 41 4eR3 1) =0)

+L1
L2t

wCRE[O3®

CREsM

n This function creates a
U and I.

Mel

g'1',(3M1, e 0!

i HEMELY DK) /LY

+3

get of empty wariatesiwith no ascignated values),
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(6] Liited
£71  «'U',(3H), '€’
£31 #(MeMt1¥ K5 /LE

£33  +7

{103 Le:
eTRIL03%

[01 TR

[1} m For each row of F,if an element 15 '1',thic function assigne to the car-
recsponding empty variate U a specified vector of unities,

(21  &'U',(3T, "e{(3B{T1, 4 el)

[31  C1edy,T

eTEILOI?
[01 TR!
i) m For each row of T,if an element is '0’,thic function aszsigne to the cor-
responding empty varidte I a specified identity matrix.
£21  &'I',(3T), ' €(SBLT],SBIT) el ,(SBITie))"*
{31 (leCl,T

QREORLOI
[0 EREQR;P; XX
£13 A This function acsigns the akove vectors and matrices toc the ordered vari-
ates TOT.
£zl Ped
[31 Li:4i(PeP+1)K)/L2
[4] Xxeps'U' ,{(FP;
(51 {+/Xx)=0)/L2
[el «'TOT',{(3P),'¢','U',(3F)

7 +L1
(81 L2:te'TCT',(3P),'€','1',(8F)
[391 Lt
[103 L3z
TKROCOI®

(91 KRO;PsI;I1

[il @ The Xronecker mairix product of the variatec TOT ic carried out by this
function,the output being a column-klock of X, B4,

£21  PeX

£31 [1eg' TOT', (3F)

(4] I¢¢'TOT',{%PeP-1)

£s L1t (014D x( 1201 1)), ({74 al)X( 71401 1)) 4 3 2 4 RQ€le, %11

[6]1 +i{PeP-1)=0)/L2

[? 11eQ

[81 [es’ TGT', (3P)
£31  +L4

[401 L2t
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SRMIOIT
[O1 RH
{11 A This function calculates the Restriccion Matrices for the several weigh-
ing systems,

[2l  CoMs
[31 RIM
(4] TRIM
[51 BW

eCOHBIOLS

£03  COMB:IsHH; Vs N3 AT HEL: G

{41 a Function CIMB computes a vector,UF,whose elements are the tuples de-
noting the positions of the column~blocks of ¥{or Ry in a complete lexi-
coqrarhical order.

[21 HHeD

£31 Ved, Lk

[41 m f initial UF vector is generated with the tuplez of one element.

51 YFed, X

[6] @ From line {73 toc (161, the tupies of two elements are added two elements
are added to VUF.

£73 1€

[31 Li:vefiy

£3]1 #{leled)=¥H/L3

(101 Nel(1l

[14] XTeo

[12]1 L2t {XTexXT+{)=pW) /LY

[131 HHeHH,2(3N), 3V XT+1]

[14]1 L2

[451 L3:tHHeldHd

161 VFeVF, KK

(171 & From line [43] to [(3)7,the tuples of three elements are added to UF, and
€G on.

[13] L4:ile)

£191 VerX

£203 HHieD

(243 LS:x{leled) YoHH /LT

[221 NeRHII]

£331 Geg143h

[24] XTe0

2571 Loitu (XTeXT+i) e /LS

[261 +(G2VLxTI}/ LS

L2731 HH1eHHL Heq  3HHIDT),3U0XT]

(231 +L¢e

0231 LTIVFeUF, HH1edyHHL

£30] HHedHi

£311 ¥ (azHHI=KY/L3

£32] 4{{p3HHI=01/L3

£331 L3:

QRINIOI
[0 EIM:I;n¥;Z:BT:P3HO;M; NUVE
{41 » Thie function gives as output the Restriccion lncidence Matrix,E,using ac
tnput the vector UF.
[23 a8 null E matric iz ini1tially generated.
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[

E€i(2+)), (2%K1) el

41 NS EREEN SR BNL

{51 o From line (6] to (18], for each turle of VUF,.this function generates all
rocsible 'linked’ tuypleg (eliminating one elemwent tn the 1nitial tupler.

5] Tek+t

[71 Litdo leled)oUF) /L4

[&1 AEeUFLTD

£33 ZewZhx

[401 BTe¢Pew

[11] MeiHO,HOeasAX) el

L1231 L2:ETeBT+1) YHO) /L3

£131 MIBT;ZleD

[14]1 ZeZ-1

(151 +L2

[18] L3t {PeP+1) KO /LL

[171 VEEMIP;]

(131 NUez(VE/SAX)

[15) a 1f the position of the initial tuple (in the natural orderingidenctec a
column of E,and the vrositions of the linked turles denote rows of E,1'z
are assigned to the resulting positions in L.

2 ELCUR W HU) A VFLAX) Ted

{241 +L3

[22] L4:

31w
eTREIMID]®

£01 TRULT;DDPD; YV HMN:FFF; TET; T

{11 a Thic function computes the Transformed Restriccion Incidence matrix,T.

[z21 1€0

£31 n If frequency weights are used (by means of the D matrix),the output ic
the T matrix for Frequency Weights, TFU,

41 DDDel .

[S1 m From line (6] to [17],a row of E ic selected.its elements being rerplaced
vy submatrices,the result being a row-klock of X, TET,which ic linked to
the previous cne kg the firet dimension.

(61 Li:Te(D,s "12aX))e

71 NieY7ed

{31  FFieud

€31 L2t 0=/ +/EINN;1#0)) /Lo

[401 TETeE[NN;YY)x{me'BX', v B3NN+, £DDD+. xg ' BX', (511}

[11T Yiery+d

(423 L3+ ELNM;YY1Y=0) /L4

£43] FFFeFFF, (X ECNN; YYIx(R2 B, (INN) 14, XxDDD+. X 'By',03YY)))

(147 L4:TETeTET,L21EINN; Y ]a{@e ' BX', (SHN) Y+, 2DDD+. 3a'BX', (2TY)

[452  #0YTeiY+ 1) ¥ "44eE)) /LS

[i8l +L3

[17] LS:TeT,L1ITET

£43) A 8 new row of E ic taken.

L1317 . (KNeNN+1) ) 44pE))/LE

£20]  Yred

(241 +L2

E22] Lo:FFFe(({aFFF)=2),2)pFFF

£231 #{lel+1)=2)/L7

[24) n If marginal weightc are uced (g meanc of H matrix),the function TRIM 12
run again,the result being the T matrix for Marginal Weighte,

{231 DDleK
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Y

[26] TFFrueT
£a71 2Lt
233 L7:THeT

RLULDIe
[03 RV I C; I3 COsDBR; TT; ADD: Wil C3 Fy Ny ARFUW FI s XMy NFs NCy FI e Ty HHH
[1] wm This function computes the Restriccion matrix,R, for Various Weighing

systems,
[2] n The matrix TFW ic used initially ac imputs,
[31 TeTFUW

{41 n From line [51 to [24],&ll the non-null rows of a column-block of T are
taken to construct a diazonal-block of R,DER,

L33 Jeo

[81 L1:CO&D
[7] Ce2xX
[81 1e2

(91 L2:C0€20,{ "1tple ' EX',(ZI)))

[401 (1€l +1))XC)/LS

[141 L2

£421 L3:]ed

£433 L4:2'DBR',(H1), ' €{{0,(CO0I1N) D)’

(141 #({leltd))pl0V7L5

(151 14

[167 LS:1eTTed ;S0 DBRsTT;ADL: W CyF e N ARFUW; FI1 3 XMy HF S NC F I T NN

£171 ADDed

C181 Le:t+i(+/¢(TLEI;(ADD+LCOETTINIIAD) ) 24) /L8

[49] L7:4((lel+d) 3 142T))/LY

£203 +Lls

£211 LEINNNeTOI; (ADD+LCOLTTD ]

£221 WWez'DER',(ZTT

£231 &'DBR',(3TT), '€Wld, ', '[AINNN'

(243 L7

[25]1 m A new column~block of T is taken.

[263 L9:led

£271 ADDeADD+COLTTI

[23] 2(TTeTT+4) 2el0)/L1D

[291 +L6

£303 Li5:

{311 m Once the diagonal-blocks of B are constructed,they are diasonally linked
from line [32] to [44]1 of RVUW,the recsult being the matriz ARFU.

£32] Tle(2+50-1

£331 CeFed

£34] Nel

£353 Lif:Ced+{ "{4e2'DBR',(ZHY)

£38] FeFeiitos'DER',(ZH))

[371 +#(NeN+tL{)MH/LL2

[38] 4Lt

[33] L12:RRFUeC(F,R)ed

(401 Flel0eD

£41]  XHed

[42] L13:iNFe(14p2'DRR', (34

0431 NCe( 140g'DBR',(Z4M))

[44] ARFWI(FI+UNF);(CONC)Jee! DER', (35M))

457 0(XMeXM+1) M) /L4

[45] FleFI+NF
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{471 CQelT+NC
(431 +L13
[43] L1404 {JeJ+1)=21/L15
501 p A firet column of zeros is added to ARFW, and the R matrix for Freqaency
We:ghte ,EFU, 12 czloulated,
E581  RFUe(F,1)00),0ETRRTY
521 a If the THY matrix iz used ac input, function R is run again, the cutput
now being the B matrix for Marginal Weights,RMU.

31 TeTiW
4] L1
551 LiSiEMWe!(F,1)e(),[22REFY
5581 a Tinzlluy.the matrix B for Usual Weights.RUW,iz deduced from RFl.
{571  RUWERFURD
QRELOI

[91  RE; XD XDA; xDY; 1FuW; THW; TUW; TEV: CHFW: CMMW; CHUY

[13 e Thic function,ucing the outputs of the akove,gives the Restricted Esti-
matione for frequency,marginal, and uzual weights,EFY, EMY, BUY, respective-
1y.5imilarly, the estimations both of the error variance,EEV,and of the
standard deviaticne,5DEFW, SDEMY, and SHEUW, are calculated.

{21 XDe(nx)+, xD

£33 XDXeXD+, xX

[41 XDyeXD+, xYM

[E] IFldeB: XDX+{ (REFW) +, XEFI))

sl TMUeB XDX+0 (oMW +, 2 EMUD)

% TULeR: XDXe (L RRUW) +, XELHW))

£33 EFWeIFU+. xXDY

[91 EMlde ITMU, xXDY

(101 EUWeIUU+, xxDY

[11] EEVecds0(48aT)=CeSHY D a{0iRYI+ . xYY =0 (RYM) ¢, 2 De, 00X+, XEFWY)

0123 CHMFWeEEW:IFU+, xxD¥+e x1FUY

£131 CHMMUeEE MM+, xXDX+, 2 MW

{141 CHUWEEEVXTIUU, xXDX+, xTUW

(131 SDEFWei{( "L4eCMFW, 10001 1 BOMFW I *#{4:2)

£161 SDEMUe((( "14aiMMid) , 10001 1 DCMMU IR0 1227

[4171  SDEUWeC( T{taiMUWD 10001 4 ROMUWD Y*(1:2)
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APPENDIX B. PROGRAM EXAMPLE,

An example is included in order to illustrate the above-listed functions. The
main program, REUFM, is the only one that must be called by the user. For
reasons of space, a two-factorial model is estimated, whose equation has already
been given (see eq. 1, Sec. 1). This example shows the imput data, the main
intermediate results, and the final outputs described in the text (see Sec. 3.3
and App. A).

The datz, which are required by DD, are:
a) FL (factor nunbers)
=23
by 3N (subclase numbere)
=256473
c) BY (okhservation values,

=941 410867510137 418589219156 9133 166 41 7

The main intermediate results are:

a) Function EM:

H 10 100 100000
1 10 010 010000
Bl = {4 5 BA2=103BX3=001;B4=¢01000
1 01 {00 000100
1 01 010 000010
1 01 001 000001
(Bx = Blocke of the effect matrix o
1101301400000
110010040000
X=110004004000
1041000920100
1010100090010
101091000001
200000 2.89 ¢ [ 0 0 0 19
050000 8] 5.75 0 0 0 ¢ K
D=006000; H=20 0 4,330 ¢ [ ; ’iM = 9
000400 9 0 [ 3.41 0 0 &
00D070 0 0 0 ] 6.220 it
Q000903 Q 0 0 4] 0 4,67 3
b) Function COMB:
UF (vector of tuples) = 0 1 2 {2
c) Function RIM:
0119
I (Restriction Incidence Matrix) = 00 0§
0001
00090

d, Functior TRIM:

TFW (Transforued E matrix for Frequencu Weighte)
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0 0

O
O 2 3 6 0 0

0 ¢

3

013 14 6 {2

0 0 0

0

0

0

0 0 0 4
0 2 90

0
00 0 0 0 0 0O S5

0 0 0 0
0 90

=0

9 4 0 0

D0 0

0 0 0 ¢ 6 0 O 2

0 0

0

T (Trancformed E matrix for Marginal Weights)

i4

13

)

2.89 5,783 4.33

0

0

6.22 4.67

3,144

0
0

0

Q

<

3.414 9

2.89
0

0

5.78
0

0

0

4.67

4.33 0

0

.
X

e) Function RUU

EFY (® matriz for Frequency Ueights)

0

9 Q0 0 0 0 9

1344 ¢ 0

0

=0 0 0 0 0 0 2 5 6 0 0 O

20 00 0 0 O 4 7 3

00

0

0
0

Q2
7

9 0 0 0 2 0 O 4

0

00 0 0 0 0 0 5 0 0
0 6 0 0

0

3

VY]

0 9

0 0

R (B matriz for Marginal UWeights)

)

14

13

0

4.33 90

.78

K

2.89

0

=9

Q
0

0

3.1
0

0

2.89

0

6.22 0

5.7 0

[N
o

4.33

0

9

RUW (R matriz for Usual Weights)

D0 0 D 0 0
D0 9
0

Q

1 0 90 0

i

0

]

Q0 0
1
0

1 2 90
i

0
0

0D 0 01
0
(VI |

0

=0

1

00 0 0 0
Iv]

9

V]

0

900 00201 0 01 0
0 0 20 0

0
9

0

i

D 0

\d

95



The final outputs, produced by function RE, are the Restricted Estimation of
the effects and their Standard Deviations. These effects, in order of appearance,
are: general mean, first-factor main effects (two levels), second-factor main
effects, and interaction effects (two by three levels).

EFW,SDEFY {(Ecstimations for Frequency Weishts, and Standard Deviaticne)

8.7 0.S532
.36 0.627
0.334 0.532
.44 1.4
¢.622 0,835
= 0,428 0.853
3.13 1.8%
"1.93 0,734
0.564 0.538
1.86 0.77
1.3  90.539
.43 1,18

EFW, SDEMW (Idem for Marginal Weighte)

8.62 0.603
0,288 0.628
0.287 0.533
0.695 1,14
0.433 0.672
= 0.14 0.87
2.36  1.19
1.79  0.838

PUW, SDEUW (Idem for Usual Weights)

8.5 0.638
0.1457 0.638
“0.167 0.63¢8
0.5 0.988
0.5 0.816
= 0.0 0.83¢
1.83 0.98¢
T2.17 0,818
0.333 ¢.8%¢
1.83 0,983
2.17 0.81l¢
0,333 0.836
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