A PRODUCTION PLANNING PROBLEM IN FMS
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We present in this work a hierarchical approach for generating alterna-
tives for production planning in a generic floor shop problem within
the environment of Flexible Manufacturing Systems (hereafter, FMS).
Briefly, the problem can be stated as follows: Given the resources of a
FMS and the characteristics of the parts to be produced along a plan-
ning horizon, obtain the loading ordering of the parts in the FMS, the
execution ordering of the operations and the processing route of each
part (ie., the working stations where each operation is to be executed),
such that the production and transport costs are minimized and the
modules workload is levelized. The problem is decomposed into three
subproblems which are arranged in a hierarchy; a variety of models is
presented, as well as the input/output relations that allow to integrate
them; we also propose some algorithmic ideas to exploit the special
structure of the problem. Computational experience is reported.
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1. INTRODUCTION

The concept of FMS is largely accepted to be the foundation on which manufacturing compa-
nies should build the Factory of the Future; see Gunn (1982). A FMS basically consists of the
following elements: A group of modules (i.e. working stations), such as numerically controlled
machines, robots, etc. with automatic tool interchange processing capabilities; an automatic
material handling system that links together the modules; and a computerized system that
controls the production and transport systems.

Elsewhere (1986) we presents the framework for the models that could form a substantial part
of a computerized system for production planning in FMS, such that it allows interactive model
building, testing and experimentation. This paper deals with some of these models as one
of the solution methods for a generic floor shop problem that frequently arises in FMS pro-
duction planning (see Section 2). The main goal of the paper consists of presenting a hierar-
chical approach to this very complex problem (see Sections 3 to 5). As a secondary objective,
we give the main ideas behind the algorithms that exploit the special structure of the problem.
Computational results are reported for each model in the appropriate sections. Finally, Section
6 offers some conclusions and discusses some topics for future research.

2. PROBLEM DESCRIPTION

2.1, ELEMENTS

Let us describe the elements of the problem addressed in this work, and give the related no-
tation.
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A process, say f consists of the capability for any transformation/assembling of material re-
quiring inputs of tabor, machine time, other material and energy. Let F denote the set of
processes that may be performed in a given FMS.

A part type is a set of identical parts to be produced on a given planning horizon. Let/ denote
the set of part types, and D, the number of parts of type i foriel.

An operation consists of the technical requirements of a given process when performed on a
part. Let N; denote the set of operations that defines each part of type i forie /.

Let M denote the set of processing modules (hereafter, modules); and F,,, U, S,, and T, the
set of processing capabilities, capacity of the tools magazine, number of servers and available
number of time units in module m for m € M, respectively. Let R denote the set of resources

required by the set F, and B, and C, the available amount and cost unit of resource r for
re R, respectively.

The elements related to each process, say ffor fe F are as follows: M, set of modules that
have the processmg capability £, v, , number of tools that are required for performing the
process; and a,, amount of the resource r for r € R required per time unit by the process f.

The elements related to each operation, say n for n € N, for the part type i are as follows:
p(n), associated process for p(n) € F; and {,,,, processing time that is required by the operation

n, provided that it is executed by using the most efficient module for performing p(n) (see be-
low).

Let the matrix E give the efficiency coeflicients of the modules, such that e, ,= 1 if m is the
most efficient module for the execution of the process f and, otherwise, 0 < e, ,< 1 will give
the related efficiency coefficient for fe F,, and me M ; then, {, /e, ., gives the execution time
of n while been performed by m.

The availability of the segments of the transport system can be represented by the matrix Q,
such that g, .. = oo means that a part cannot be transported from the modute m1 to the
module m2; otherwise, it gives the inter-modules transport cost/time. Note that g, ,, # oo is
allowed; it could be the case for which two consecutive operations are executed in the same
module; usually, its value is zero. Haines (1985) gives a specialization of the shortest path
algorithm for obtaining the matrix Q in a variety of material handling systems.

The precedence graph (or, more precisely, the graph of precedence relationships in the exe-
cution of the operations) of the part type i is formally denoted by the direct graph

;= (N A1 A,2) . where N, gives the set of nodes (i.e., the set of operations), and A, |J A,,
represents the set of d|recled arcs; (n1,n2)e A,, means that the execution of the operations

n1 and n2 has a direct precedence relationship {see Chatterjee et al., 1984) in the sense that,
although it is admissible that other operations are executed in- between, the execution of n1
must be performed before the execution of n2; (n1,n2)e A, means that n1 and n2 have an
immediate precedence relationship (i.e., n1 must precede n2 and no other operation is allowed
in-between). Case a, Figure 1 allows the sequence 1,2,3,4,5,6,7; it is not allowed by case b.
Both cases allow e.g. the sequence 7,1,6,3,4,2,5; and no case allows e.g. 7,3,6,1,4,2,5.

The data related to the strategies for using the FMS along the planning horizon are as follows:
m, maximum number of modules where a processing capability may be assigned; w,,, mini-
mum workload per module’s server that may be assigned to any process. Note: in addition to
the above notation, each model requires its own; where some model requires the notation
given for the others, it will be noted explicitly.
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Figure 1. Graphs of precedence relationships

2.2. PLANNING TASK
Let us consider the following assumptions:

1. Each operation to be performed on a given part can only be executed by one module,
although a process can be assigned to more than one; i.e., it is allowed that the same
operation be executed by different modules but only for different parts. Let pp;, denote
the (production) proportion of the part type / whose operation n will be performed by the
module m.

2. The parts that belong to the same type will have the same execution ordering in the op-
erations. Let so,|i denote the operation that will be executed at the h* level for the part
type i. Let n1— n2|i denote the partial ordering n1=so,i and n2= §0p4qli. Let
Py mpl1 = N2|i denote the (routing) proportion of the parts of type i that will be routed
fro:;, module m1 to modute m2, where the operations n1 and n2 will be executed, re-
spectively.

Finally, let J denote the whole set of parts to be processed along the planning horizon, such
that

| = ZD’ (2.1)
el
Given the assumptions, resources and part type characteristics described above, the goal

consists of obtaining:

1. The loading ordering of the set J in the FMS; let /o(j) denote the type of the part to be
loaded at the j* level for je J.

2. The execution ordering {so,|i} of the operations per each part type.

3. The processing route of each part along the FMS; let pr;, denote the module where the
operation n will be executed for ne Ny, and je J .

such that some target is achieved.

Stecke (1983, 1986) and Abraham et al. (1985) suggest the targets that ideally should be
achieved. In our case, the targets are: minimizing a production cost function (or, alternatively,
levelizing the modules workload assignment), minimizing the transport cost/time, and bal-
ancing the modules workload along the time units of the planning horizon, such that the fol-
lowing constraints are satisfied:
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1. The whole production volume is processed.
The amount to be used per resource can not exceed the maximum availability.
A process can not be assigned to more modules than a given maximum.

The capacity of the tools magazine of each module can not be exceeded.

o s woN

The modules workload can not required more time units than the maximum available per
module.

6. The modules workload per each process can not be less than a given minimum, provided
that the process is assigned to the module.

7. The execution ordering of the operations per each part type must allow to execute all
operations without violating the precedence relationships, nor the constraints related to
the inter-modules transport system.

8. Each part is loaded in the FMS just only once, and its processing route assigns only one
module to each operation.

2.3. A HIERARCHICAL APPROACH

The problem described above is a large-scale multicriteria mixed combinatorial problem; we
can recognize resource allocation constraints in 1 to 6 above, structured combinatorial con-
straints as the Asymmetric Traveling Salesman Problem (hereafter, ATSP) with side con-
straints in 7, and combinatorial-like constraints in 8 whose structure has not yet been fully
studied. We are not aware of any attempt to solve this generic floor shop problem. The next
sections describe our (inexact) solution procedure; it uses a hierarchical approach and gives
{hopefully, good) solutions without proving optimality even for each particular model. We be-
lieve that it is, at most, what the current algorithmic methodology can provide for helping to
solve, in affordable time, this type of problems. The approach is as follows (see Figure 2):

1. Mode! Modules workload assignment. It obtains the processing capabilities to be used
by each module, and its related modules workload assigned to each process, such that

a production cost function is minimized. See Section 3. The output {pp;,} is used by
model 2.

2. Model Operations execution sequencing and part type routing. It obtains the operations
execution sequence {so,}i} of each part type, and the related routing proportion
P m2in1— n2|i assigned to each inter-modules path, such that a transport cost/time
function is minimized. See Section 4. The output is used by model 3.

3. Model Parts loading sequencing and processing route in the FMS. It obtains the type /o(j}
and the processing route {pr;,} of the part that is to be loaded in the FMS at the level j
for j=1,2,....}J], such that the modules workload is balanced along the time units of the
planning horizon. The output should be used by an evaluative system (see Eggelke et al.,,
1983); it advances the performance of the proposed production planning, by asing prob-
abilistic information in a more de-aggregated environment (see Escudero, 1986).
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Modules workload assignment

L {pp I,n,rn}

Operations execution sequencing
and part type routing

| {s0uli} and {rpmmln1 ~ n2}i}

Parts loading sequencing
and processing route in FMS

I {lo(j)} and {pr;,}
r Evaluative system

Figure 2. The hierarchical approach

3. MODULES WORKLOAD ASSIGNMENT

3.1. PLANNING TASK SUPPORTED BY THE MODEL

Assigning the processing capabilities to be used by each module along the planning horizon,
and obtaining the related modules workload and the production proportions {pp, , ..} of the part
types. The assignment must be such that it allows to process the production volume pro-
grammed for each part type, the constraints stated below (see Section 3.2) are satisfied and
the resources cost is minimized. Alternatively, any of the following targets could be achieved:
Minimize the total absolute deviation of the modules workload from the mean workload, min-
imize the greatest absolute deviation of the modules workioad from the mean workload, min-
imize the greatest difference on the modules workload, and minimize the greatest workload
in any module; the goal in this case consists of balancing the modules workload and, as a
result, getting an acceptable production rate and avoiding production ‘bottlenecks’.

3.2. MODELIZATION

Let us state the additional notation required by the model’s formulation. /,,,, will denote the
workload required by the operation n for ne N, if it is to be executed by the module m for the
whole part type i; it can be written

t
2 _p, (3.1a)

m = e oy

Let b,,, denote the workload per server in module m related to the workload /,,, ,,, such that

/ i,n,m

b['n'm—': (3.1b)

m
a,,,m Will denote the amount of resource r required by the workload i, , ,, such that
arjnm=linmrp(n) (3.1¢)

C;nm Will denote the resource cost of the workload /, such that

nam o

Cinm= char,l,n,m (3.14d)
rer
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Finally, let y, , be a 0-1 variable such that it will take the value 1 if the processing capability 1
is (partially or totally) assigned to the module m and, otherwise, it is zero.

Assuming that the objective consists of minimizing the resource cost, the problem has the
following formulation.

min Z=Z Z Z i.0,mPPin,m (3.2a)

el ne N; me My,

subject to
Z Z 8. mmPPinm<Br VreR (3.3a)
ikl ne N;me My,
Z b pmPPinm<Tym VYmeM (3.4a)

il ne Nj|p(nk F,,

Z PPinm=1 VYneN, iel (3.5)
ME My
Wr¥ms< Z Z by pmPPinm < Wi dmys VI€Fm meM (3.6)

kel ne Nj|p(n)y=f
DS ) YmgST VIEF (3.78)
me M,

Z UymesUyn VmeM (3.8)
& F,
Ymse {01} VieFp meM 3.9)
PPinmZ0 VmeMpypy, neN, iel (3.10)

Constraints (3.3) prevent to use more amount per resource than the maximum allowed. (3.4)
avoid that the server’'s workload exceed the available time given to its module. (3.5) force to
process the whole production volume of each part type. (3.6) state that the server’s workload
assigned to each process cannot be less than a given minimum, if any; w,,, is a realistic upper
bound, such that

Wit < Mindl, 6 Ty (3.41)

where Z,,_, gives the server’s workload of the module m assigned to the process f, provided that
it is the unique module where the process is assigned, such that

Img=Y, Y. biam VI€Fm meM (3.12)
Kl ne Nj|p(ny=f

Note that w,,, gives the 'big M" and, then, it must be kept as small as possible. (3.7) avoid that
a process be assigned to more modules than the maximum allowed. The lower bound m; is
an strictly positive integer parameter that must be kept as big as possible; very frequently, it
can be set to 2 or 3 without cutting off any feasible integer solution (see below); on the other
hand, note that usually m is small (typical values, 3 and 4). (3.8) prevent that the number of
tools to be used by each module be greater than the capacity of its tools magazine. Note that
PPinm is @ 0-1 continuous variable; then, pp,, »D; must be rounded to its nearest integer.

The model (3.2)-(3.10) is a large scale mixed 0-1 programming with a special structure in the
constraints matrix that the algorithm should exploit; see below.- Note that the problem’s di-
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mensions may be very high; in this case, it is necessary to sacrifice either the optimality’s
guarantee of the solution (by using an heuristic approach) or the model’s accuracy (by solving
an approximation of the problem). For dimensions within the range of 300 0-1 integer vari-
ables, 3000 continuous variables and 1000 constraints, a tight LP reformulation still allows to
obtain g-sub optimal solutions in affordable time. In any case, q=2% seems to be quite ade-
quate given the aggregation performed in the model’s formulation.

Should the goal be minimizing the greatest workload, say [ the model can be expressed
min {/} (3.13a)
subject to (3.3)-(3.10) and
binmPPinm<| YmeM (3.13b)
ikl ne N\p(nE Fp,

Note that max{T,, Ym e M} gives the first upper bound of I

3.3, CASEm =1

The problem’s dimensions are strongly reduced if m = 1 (i.e., a processing capability cannot
be assigned to more than one moduie). The problem consists of obtaining the module where
each process is to be assigned, such that the resource cost, or allernatively the greatest
workioad, are minimized subject to the constraints stated below. Let the following additional

notation. c,,,, will give the cost of the resources required by the process f in the module m; it
can be written

Cme=D, D, Cinm (3.14)
&l ne Nn)=f

5,,,,,', will cive the amount of the resource r to be used by the process fin the module m; it can

be writt i
ér,m,l = Z Z arinm (3.15)

il ne Np(m=f

The formulation of the model is as follows.

min z= Z Z Em,,ym_, (3.2b)

fe F, meM

subject to the constraint (3.8) related to the capacity of the tools magazine, the 0-1 integrality
constraint on y,,, (3.9) and

Y > am¥me<B, VreR (3.3b)
€ F,, meM

ZTm,,ym,,s T, YmeM (3.4b)
f€F,

Z Ymg=1 VieF (3.7)
me M,
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Constraints (3.3) prevent to use more amount per resource than the maximum allowed. (3.4)
avoid that the server’s workload exceed the available time given to its module. (3.7) force just
only one module per process.

The above model is a pure 0-1 programming that imbeds very well know structures that are
exploited by the algorithm given in Section 3.4; the S1-entities (3.7) are explicitly used for
variables fixing and branching selection in the branch-and-bound phase; and the coefficients
reduction and constraints generation (by analyzing minimal (lifted) cover and k-configurations)
are performed by using the constraints (3.3), (3.4) and (3.8). Note that the constraints {3.6) are
not explicitly included in the above model; they are analyzed by the preprocessing phase such

that y,,, is fixed to zero if it holds w,,, > I, .

3.4. ALGORITHMIC APPROACH

The overall framework is given in Figure 3; it follows the description given in Crowder et al.
(1983), Grotschel et al. (1984) and Hoffman and Padberg (1986) for pure 0-1 problems, but it is
quite suitable for our purposes. The approach is valid for the models given in the two previous
sections; where the structure of the mode! for m = 1 can be exploited, it will be mentioned
explicitly.

See other approaches in Stecke and Talbot (1983), Ammons et al. {1984), Chackravarty and
Shtub (1984), Kusiak {1985), Whitney and Gaul (1984), Stecke and Moring (1985), Wittrock (1986)
and Stecke (1986) among others. Typically, the resources based constraints (3.3) are not al-
lowed, nor the w,,-based constraints (3.5), e,,=1Vfm , m = 1 and some heuristics are used.
See in Stecke (1983) the description of the model and in Berrada and Stecke (1983) the related
algorithm for the case of tools sharing by different processes.

Let us give the main steps of our algorithm and, next, some insights:
1. We start reading the data from the data base.

2. The preprocessing phase inspects the data automatically and a permanent problem re-
duction may be carried out. Such problem reductions concern:

a. Fixing the y-variabies due to feasibility considerations to either zero or one (see
Guignard and Spielberg 1877, Johnson et al. 1985, and Freville and Plateau 1986},
such that they are carried out by performing independently feasibility tests on the
data as well as by partially using the probing procedure (note that y, .= 0 implies
PPiyn=0forVne Nip(n)=T1, iel).

b. Coefficient reduction in some types of constraints; as a by-product it clears the con-
straints of common divisors greater than one and reduces the ‘big M’s’.

c. Tightening the range of variability of some types of constraints.

d. Deleting from the model redundant and in any case non-binding constraints.

The preprocessing phase also analyses the implications of the previous reductions such
that it could produce new reductions on the problem. After preprocessing, we have the
definite version of the problem; let us name it the giobal problem to be optimized.

3. Ad-hoc heuristic algorithms are used to find the first upper bound of the optimal solution.

4. Since the value of m (see constraints 13.7)) is not too-high, a great number of variables
will be zero in the optimal solution; then, one proceeds next with the selection of a sub-
problem for the optimization if m > 1, let us name it the quasi-global problem. It will be
included by the variables with non-zero value in the solution provided by the heuristic
algorithm, if any.
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10.

1.

12.

13.

14.

15.

16.

Quasi-global problem set-up.

LP quasi-global problem optimization by relaxing the integrality constraint of the y-
variables.

To prove that the optimal solution to the LP quasi-global problem is also optimal to the
LP global problem, one needs to “price out’ the variables that were not included in the
quasi-global problem (and, then, with zero value).

If the reduced cost of any of these variables has not the appropriate sign, the quasi-global
problem is revised by including these variables, the current LP solution is restored and
go to Step 6.

if the reduced cost of the above variables has the appropriate sign, we have obtained a
lower bound on the optimal solution of the global problem. Now, if the reduced cost of the
nonbasic y-variables exceed the gap between the lower bound and the best integer sol-
ution obtained so far (up to now, the heuristic solution if any) then the related variable
will be permanently fixed to its current value; note that it could be either zero or one. If,
as a result of the testing, all nonbasic y-variables have been fixed then stop since we have
obtained the optimal solution of the global problem.

If the number of variables that have been fixed in the previous step is greater than a given
bound then the preprocessing phase is used again but, now, without using probing. Then,
go to Step 2.

Otherwise, the quasi-global problem is revised by deleting the fixed variabies if any and,
then, the LP current solution is restored.

Once it has been tested that no further problem reductions can be performed with the
above procedures, we proceed to the constraints generation phase, by using the con-
straints where only the y-variables have non-zero coefficients (see below).

If the attempt is successful, the quasi-global problem is revised by plugging in the new
constraints. Next, the current LP solution is restored and the LP optimization is reas-
sumed from that basis by going to Step 6.

Otherwise, since nothing more can be done with the above procedure we go to the
branch-and-bound phase. At each node with a new incumbent solution we analyze if a
substantial number of nonbasic y-variables in the LP solution at the node 1 can be per-
manently fixed at their current values. The testing is performed by using the reduced
costs and the LP optimum at the node 1, and the new incumbent solution as the (stronger)
upper bound. if the attempt is successful, we fix the appropriate variables and go to Step
2 to perform again the preprocessing phase but, this time, without probing. At selected
branch-and-bound nodes with non-integer solution we proceed as follows: (a) Preproc-
essing (without probing) to analyzing the feasibility of the partiaily fixed-and-branched
subproblem attached to the node; (b) If the attempt is successful, the node is fathomed;
(c) Otherwise, an attempt to obtain a heuristic solution for this subproblem is performed,
such that if a new incumbent is found we proceed as before.

To prove that the optimal solution of the quasi-global problem is also optimal to the global
problem, the incumbent solution is set-up in the quasi-global problem.

Next, a testing is performed as in step 7. If it is not successful we go to Step 8; otherwise,
the incumbent solution of the quasi-global problem is also optimal for the giobal problem.

L.et us next give some insights on the algorithm outlined above:

1.

Probing procedure. It is only used during the first execution of the Step 2 (preprocessing
phase). It only checks the feasibility of setting Yme=1 for the two most important proc-
esses that are still available per each module; if the result is not successful then y,,, is
permanently set to zero. Given the problem’s dimensions, a thorough using of probing is
expensive but, on the other hand, any type of probing should be performed.
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The upper bounds B, (3.3), T, (3.4) and U,, (3.8) are updated if the foliowing fixing is per-
formed: y,,,=1and y,,,=0 for m1 e M|m1# m; note also that in the general model (i.e.,
m > 1) this fixing implies pp,,, = 1 and pp,, ., = 0 for any n such that p(n)= 1.

If the result of the above fixings for m > 1 is such that a given process, say f can only be

performed by at most two modules, say m1 and m2 and /,,,> T, for both modules, then
Ym1s and ¥,,,, are permanently fixed to one and the bounds B, , 7, and U,, are appropri-

ately updated; I, , is given by (3.12).

Coefficients reduction. !f is always performed for the constraints (3.8), and if m = 1 then
also for the constraints (3.3)-(3.4). In both cases, the constraints are also cleared of com-
mon divisors greater than one. Note that each constraint (3.3b) together with its related
constraints (3.7b) defines the set of feasible solutions to a knapsack subproblem with
special ordered sets; this structure is used for feasibility testing, variables fixing and co-
efficients reduction. We follow the procedures described in Guignard and Spielberg
(1977) and Johnson et al. (1985); they are very effective and practically inexpensive. It is
not unusua!l to find logical relations with sum less or equal than a small number; the LP
that results may provide a very tight lower bound of the optimal solution.

Given the constraints (3.5), the iower bound of the constraints (3.7) must be greater than
zero for m > 1, since it must be integer, it is possible to reduce the range of variability
of these constraints. In fact, it will be 2 for the constraint (3.7) related to any process, say
f such that any of the conditions (3.16) is satisfied.

Ame M, | Tm‘,s Tm (3.16a)

dre R such that #me M, | a, (< B, (3.16b)

where 5,,,,‘, is given by (3.15). Since the value of /i is not too-high, this reduction is also
very interesting.

If the heuristic algorithm fails to provide a feasible solution then the quasi-global problem
is the same global problem and the upper bound, say Z of the optimal solution to the
global-problem is estimated by increasing in a g% the lower bound, say z ; typically,
g = 25. Note that Z is obtained by the LP relaxation of the current quasi-global problem.

A great portion of the y-variables may be permanently fixed by the result of testing the
reduced costs of the LP problem to be solved at the Step 6. The fixing of the variables is
performed as follows: fix y,,,= 0 and y,,,= 1 if the conditions (3.17a) are (3.17b) are sat-
isfied, respectively.

2+ Em"ZZ_ | j;m,f=0 (3173)
Z= Cpe2Z | Fg=1 (3.17b)

where y, , and c,, are the values of the variable and its related reduced cost, respec-
tively.

The algorithm goes to the Step 2 from the Steps 10 and 14 if the number of variables, say
nf for which the above fixing is performed is such that nf/nv > gv, where nv gives the
number of y-variables still free and gv is a given tolerance; typically, gv = 0.1.

The constraints generation is currently performed by identifying the most violated (lifted)
minimal cover of each constraint (3.8). We follow the same procedure for the constraints
(3.3)-(3.4) if m = 1 (see Section 3.3); in this case, we also try to identify new constraints.
by analyzing k-configurations (see Crowder et al. 1983). See also Van Roy and Wolsey, 1987.

We must note that if the solution of two consecutive LP optimizations is such that
(z2 — z1)/z1 < t (where 22 and g1 give their optimal values and, say = 10E-4), then the
reduced costs fixing and the constraints generation are not performed.



The main strategies for the branch-and-bound phase are as follows (we use the well known
terminology used by the system MPSX, see the reference):

1.
2.

Quasi-integrality tolerance of the y—vériables, 0.01.

Sub-optimality tolerance of the integer solution, 0.02; i.e., a node is fathomed if its func-
tional value is not better than the 98% of the value of the incumbent solution.

The branching node is selected according to the criterion of the best estimation of the
functional value; it is expressed as a linear combination of its functional value and the
weighted sum of its integer infeasibilities, such that it can be written

F+ aZmin{Kj),1—I(j)} (3.18)
]

where F denotes the functional value at the given node, ) gives the fractional part of the
current value of the y-variable j at that node, and a is a parameter that can be expressed

Z-2

Y min (0.1 - H0D
I

o

(3.19)

where f,(j) has the same meaning as above but, now, related to the node 1 (i.e, the LP
current quasi-global problem that provides the lower bound 2 ).

The upper bound Z and the parameter « are recomputed for each new incumbent solution.
Recall that Z at the node 1 is given by the heuristic procedure and, by default, it is esti-
mated as noted above. In any case, branching priority is given to the nodes whose
functional value is not worse than a given limit such that it can be expressed by b+8.
where b gives the best functional value of the waiting nodes (note than b = z at node 1),
and f is a dynamically-adjusted parameter. In our case, =0.1(Z~z) but it is gradually
increased until every waiting node is a candidate for branching; at the same time that B
is increased, higher priority is given to the nodes based on their integer infeasibility by
increasing the parameter a. In fact, the value of § is increased by 0.4(Z — z) and a is
doubled if v consecutive nodes have been scanned without finding a new incumbent sol-
ution. The value of v is a function of the number of y-variables , say ny that take a positive
value in the optimal solution of the current LP quasi-global probiem, such that
v=10+0.1ny .

The criterion for selecting the branching variable at each branching node is as follows:
Case i > 1. The y-variable to be branched on is selected according to the value of /~,,,‘,
(3.12), such that greater /,,, higher priority for the related variable.

Case m = 1. The reference row (see Escudero 1979) for the S1-entity, say f (3.7) is given
by the expression

Y. Ity (3.20)

me M1,

where M1, gives the set of modules that still are available for the process . The entity
S1 to be branched on is selected according to the parameter b(f), where

b{f) = max {E,,.,_, Vm e M1;} for (3.2) (3.21a)
bf) = max {Ip, Yme M1} for (3.13) (3.21b)

such that greater b(f) higher priority for the S1-entity f.
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Obtaining the Initial solution (For more details, see Escudero 1986).

Case m > 1. The problem (3.2)-(10) (and the same with (3.13)) is decomposed in three sub-
problems. First, we obtain the set of modules that are to be assigned to each process, by using
an ad-hoc heuristic (greedy) procedure such that there is at least one feasible solution; let
M1, (res. F1,) denote the set of modules (res. process) that are allocated for each process
(res. module). Second, we improve the above solution by solving the Linear Transportation
Problem (hereafter, LTP) with positive gains: min (3.2) subject to (3.4)-(3.5) and (3.10), where
the sets M, and F,, are substituted by the sets M1, and F1,,, respectively. Third, an ad-hoc

re-arrangement of {pp,, .} is performed such that the violated constraints (3.3) and (3.6) are
satisfied.

Case i = 1. First, salving the Generalized Assignment Problem: min (3.2) subject to (3.7)-(3.9).
Second, if the constraints (3.3)-(3.4) are satisfied, it is the optimal solution; otherwise, an ap-
propiate re-arrangement of {ym} is performed. Note that the algorithm may exploit the structure
of the constraints (3.8), where the coefficient us does not depend on m; see Sandi (1975).

3.5. COMPUTATIONAL EXPERIENCE

The algorithm was tested by implementing a prototype running on the IBM 4381-P13 with
VM/SP-4.0; it was written in PL/I and compiled with the version 1.3. it uses interactively the
system MPSX-MIP/370 via ECL. Table 1 reports some computational experience with six
real-life cases. P1 to P6 require m = 4. P7 and P8 are as P1 and P2, respectively but m = 1.
The objective function to minimize is the resource cost (3.2a)

All runs have a q = 2% sub-optimality tolerance; i.e., a node will be fathomed if its functional
value, say F is such that F> 0.98Z, where Z is the value of the incumbent solution. GAP de-
notes (Z — z)/z, where z now gives the lowest functional value (note that it is not necessarily
the value of the LP relaxation). Then, GAP#2% and, usually, it is smaller. The table reports
the number of constraints and variables for the global problem; it gives an indication of the
case’s size. However, the size of any quasi-global problem (whenever it can be used) is
smaller; note that y,, ,= 0 implies PPipmn=0 for Yne Njlp(n)=1,iel. The heuristic algorithm
finds in all cases a feasible solution and, then, only quasi-global problems were optimized for
P1to P6; each quasi-global problem was revised once, but the number of fixed variables never
was less than 33.4%. The reporled time is the total CPU time including preprocessing, but
excluding 1/0 operations.

Additionally, we have solved till optimality the case P4. The optimal value was very similar
to the value obtained for the 2% sub-optimal solution, but it requires 7.58 minutes; i.e., almost
100% of additional computational effort was needed for improving the solution and proving
optimality. It is in accordance with other experiences for smaller problems. Usually, the gain
if any is not balanced with the computational time that it requires. We have also experimented
running the case till optimality, but without using the solution provided by the heuristic algo-
rithm, nor any type of preprocessing; then, the full global problem is to be used; it required

12.47 minutes for obtaining the optimal solution, and its optimality was not yet proved after
20 minutes of CPU time.
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Table 1. Computational results. Modules Workload Assignment.

Parameters Pl P2 | P3 P4 | P5 P6 | P7 P8

Number part types 5 8 8 8 gl 10 5 8

Average number oper—| 15| 25| 28] 39| 431 31| 15| 25
ations per part type

Number modules 5 6| 10| 18] 10| 15 5 6
Number processes 12] 21] 28] 33| 36| 27 12] 21
Number resources 9 13 9 10 10 10 9 13
Constraints 218| 473} 6661 972{1006| 736] 23{ 34
Cont. variables 392112012157 [3121[3671|2748] - -
0~1 variables ksl 117] 218} 286} 312 267 ko) 113
Density (%) 1.9} 0.9{ 0.7] 8.5] 0.4] 8.7]10.8]5.62
Branch~and~bound:

-Solutions 3 2 3 2 3 1 3 2
-Total number nodes 13§ 58] 68| 228] 180 16] 31 16
GAP (%) 0.0/0.32(0.00(2.00| 6.8]1.62/0.00(0.41
Time {m) 0.13}10.59]1.56§3.87{4.75{2.38]|0.10(0.05

4. OPERATIONS EXECUTION SEQUENCING AND PART TYPE ROUTING

4.1. PLANNING TASK SUPPORTED BY THE MODEL

Obtaining the sequence {so,|i} for the operations execution, and the routing proportion
{rPmimln1 — n2|i} that must be sent through each inter-modules path for each part type in the
set I. Let Feasible Sequencing Ordering (hereafter, FSO) denote any complete operations or-
dering {n1— n2} that is consistent with the direct and immediate precedence relationships
given by the set A, J A;,, and does not violate the restrictions on the feasibility of the inter-
modules routing. The goal consists of obtaining the FSO for each part type such that the
transport cost/time is minimized. Since the transport matrix Q is not related to the part types,

and the graphs of precedence relationships {G,} are independent, let us drop the subindex i
from the notation given in Section 2.

" 4.2. ROUTING PROPORTIONS FOR THE POTENTIAL PARTIAL ORDERING n1 - n2

Let P denote the reachable matrix in the graph G, such that its element Pm» Will have the vaiue
1if n is reachable from n1, i.e., there is, at least, one predecessor path from the node n to
the node nt; otherwise, p,,, = 0. Let the matrix § be such that s, ,, =1 if it has not yet been
detected the infeasibility of the potential partial ordering n1 — n2 in any FSO and, otherwise,
it is zero for n1,n2 € N . Then, initially, s,, ,,= 1 if any of the conditions (4.1) is satisfied.

(n1.n2)e AU A, (4.1a)
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Prin2=0 A Pppm=0 A #ne Nl(nn2)e Ay A 3ne N|(nt.n)e Ay (4.1b)

The routing proportions {rpmimln1— n2} must be such that the transport cost/time, say
{Cn1 2} is minimized. It is obtained by solving the LTP (4.2)-(4.5) for each potential partial or-
dering n1— n2. (Note: ¢,,,, = 0o|S,,, =0 and, then, the LTP is not required). Let us drop
n1— n2 from the rp-variables and let, now, M, = {me M|pp,, >0} for ne {n1,n2} . (The
production proportions {pp, .} are given by the model Modules workioad assignment).

min Cpq pp = z Z Qm1,m2"Pm1,m2 (4.2)
M€ Mypnty M2€ Myng)

subject to

TPm,m2=PPmimz VM1 € Mgy (4.3)
mM2€ Mpna)lGm1 ma o0

TPmtmz2 = PPmim2  YM2 € My oy (4.4)
M€ My(1)|Amt,mz %00

Pmime =0 ¥Ym1m2 {4.5)
Note that the model can be solved by inspection if Myl = 1v|My.| = 1 as it frequently hap-
pens. In any case, it has smail dimensions. The matrix S is updated by (4.5) if the LTP is in-
feasible.

Spe,n2' = 0| Spypo=1ACpq pg =00 (4.8)

4.3. MODELIZATION

Let N2(n1) (res. N1(n2)) define the set of nodes for which it has not yet been detected that they
cannot be immediate successors (res. predecessors) of the node n1 (res. n2) in any FSO.

N2(n1)={n2e Nispy no =1} Vn1eN (4.7a)
NH(r2)={n1eN|sp =1} ¥n2eN (4.7b)

The so-called Gequential Ordering Problem (hereafter, SOP) consists of obtaining the FSO that
minimi. = the penalty given by the matrix C = {c,,,,}. The penalty, say z(S0) associated with
a given Sequestial Ordering (hereafter, SO) can be expressed as follows

AS0)= ) Y ComYmm (48)

n1eN n2eN2(n1)

where y,, ., is a 0-1 variable such that y,, ., = 1 if n1— n2 and, otherwise, it is zero. Then, the
problem consists of

min {z(SO)| SO is a FSO} (4.9)
There is not a unique formulation of SOP (4.8)-(4.9). The formulation that seems to be most at-
tractive can be more easily expressed if we require without loss of generality that there is only

one node, say 0 such that #n e N|(n,0) e A, L A, then, the SOP can be expressed as the ATSP
with side (precedence relations based) constraints.

Let h1, and h2, ¥n e N denote the lowest and highest sequencing levels of the node n in any
FSO, respectively; then, h1,= 1+ {P1,| and h2,= |N| — |P2,|, where

P1,={n1€ Nipy =1} (4.10a)
P2,={n2 € N|p, =1} (4.10b)
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Let x,, be a 0-1 variable such that x,, = 1 if the node n is sequenced at the level h and, oth-
erwise, it is zero; let y,,, be also a binary variable with the same meaning as in (4.8). Then,

Xq.n € {0;1} for h=h1,,..., h2, and, otherwise, x, =0 (4.11)
Yni,m2 € {0;1} Vn1,n2e N|spy pp=1 (4.12)
Note that so, # n|x,, =0 in any FSO, and s,,,,= 1 implies that there is at least one level, say
h such that h1,,< h< h2,, and h1,,<h+ 1< h2,. The SOP can be formulated as follows
min z = Z Cn1,n2¥n1,n2 (4.13)
n1,n2eN
subject to (4.11)-(4.12), and

> Vwm=1 VnleN (4.14)
n2eN2(n1)
Yorpz=1 Vn2eN (4.15)

neN1(n2)

> Votne € 1TI=1 TN, 2<|TI<IN] (4.16)
n1,n2eT
Dxon=1 VneN (4.17)
heN
> Xon=1 VheN (4.18)
neN
D txxu+1 € D Rxxpp V(01n2)e A (4.19)
HeN eN
Xpih+Xmoprt S 1+ Ypino Vnhn2eNispy =1, h=12_.|N| -1 (4.20)
Xpiht Xpoppr S 1 Vn4n2e Nispy pp=0, h=12,. [Nl -1 (4.21)
Xotn=Xnappr  V(M1n2)€ Ay h=12,IN| -1 (4.22)

Two blocks can be recognized in the above model. The constraints (4.14)-(4.16) are related
to the ATSP, and (4.17)-(4.22) are related to the precedence relationships. (4.14) (res. (4.15))
avoid more than one partial ordering n1— n2 for any n1 (res. n2), and (4.16) avoid subtours.
(4.17) (res. (4.18)) avoid more than one level (res. operation) for a given operation (res. level).
(4.19) prevent that an operation have a lower sequencing level than the sequencing leve! of
any operation that must be directly precedent. (4.20) force the penalty ¢, ,, if n1— n2 belongs
to the solution. {4.21) avoid the partial ordering n1 — n2 if it is not allowed in any FSO. (4.22)
force n1— n2 for any immediate precedence relationship.

4.3. ALGORITHMIC APPROACH

Solving the ATSP with side constraints given in Section 4.2 may require more CPU time than
allowed. If the optimality is required the best approach seems to be using a cutting planes
based LP relaxation for obtaining a tight lower bound of the optimal solution and fixing vari-
ables and, next, using the branch-and-bound methodology for obtaining the optimal solution.
See in Section 3.3 a detailed framework for the LP-based combinatorial problem solving.

The proposed (inexact) algorithm for solving SOP (4.8)-(4.9) is as follows (For more details, see
Escudero 1987):
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Obtaining the initial sets N2(n) and N1(n) Yn € N by using the information provided by the
set A, | A, and the matrix C.

SOP’s preprocessing. A strong characterization of the potential partial orderings {
n1— n2} is performed, such that the feasibility of any n1— n2 is analyzed; i.e., the goal
consists of reducing as much as possible the cardinality of the sets N2(n) and N1(n).

Obtaining a lower bound, say z of the optimal solution to SOP. It is obtained by solving the
Assignment Problem (hereafter, AP) that results from the relaxation of the constraints
(4.16) in the ATSP (4.12)-(4.16). Let {y,,..; denote the value of the variables in the optimal
solution. We use the algorithm so-called CTCS given by Carpaneto et al. (1985).

Reducing the number of existing subtours, if any. We use a modification of the Patching
Algorithm (hereafter, PA) given by Karp and Steele (1985). In this step, we only ook for
those ‘patchs’ that do not violate the precedence relationships and do not deteriorate the
value of the objective function (i.e., only alternative solutions to the optimal one to AP are
considered). If there are no more subtours, the solution is optimal.

Tightening the lower bound z. We use the bounding procedures BP1, BP2 and BP3 as
given by Balas and Christofides (1981). The related admissible graph, say G, = (N, A) is
also obtained. The graph G, is a subgraph of G containing those and only those arcs with
zero reduced cost, i.e.,

Ag = {(n1,n2) such that n1,n2 € Nicyy 5, = 0} (4.23)

where G, ,, is the reduced cost of the arc (n1.n2} such that

Chin2 = Cptnz — Unt — Vm2 — Zwtaz,m,nz (4.24)
T

u,, and v,, for n1,n2 € N are the dual variables associated with the constraints {4.14) and
(4.15), respectively; a,,, ., is the coefficient of y,, ,, in the ATSP constraint, say t that is vi-
olated by the optimal solution to AP, w, gives its related dual variable, and
T=T1J T2 T3, where T1, T2 and T3 are the three types of inequalities that are used
by the bounding procedures BP1, BP2 and BP3, respectively. The sets T1, T2 and T3 are
equivalent to the constraints (4.16).

Obtaining a Hamiltonian circuit (hereafter, #) . Let the so-calied augmented admissible

graph, say é°= (N, 50) be such that ;\u= AU {(n1.n2)}, where the set {(n1,n2)} gives the
arcs with the smallest positive reduced cost in the admissible graph Gg; i.e., the arc
(n1,n2) must be such that ¢, ,, = ¢, where

c = min{Ch py Y(N1,n2)¢Aglspy np = 1} (4.25)

We use the implicit enumeration algorithm given by Martello (1983) for obtaining H, the
parameters are as follows: nc = — 1 (i.e., only one  is requested) and nb = 20 {maxi-
mum number of allowed backtrackings). Note that if all arcs in # have null reduced cost
and do not violate the precedence relationships given by the set A,{J A, , then & Is an
optimal solution to SOP. Let {y,,.,} denote the value of the variables in /.

Testing the feasibility of >, if any. By definition, 5 is a feasible solution to ATSP, but
it could be a non-feasible one to SOP. In this case (i.e., 3n1,n € N|p,,, = 1 such that there
is a successor path from n to n1 in  that does not pass through the node 0), the nodes
n and n1 are permuted in . Note that if there is, at least, one such a permutation then
a new feasibility testing must be performed by using the matrices P and S. Let Z denote
the value of the objective function (4.8) for the feasible 3. It is assumed that a qg-sub
optimal solution to SOP has been obtained if (Z — 2)/z < q%.: currently, g=3 .

Reduced cost fixing. By using the reduced cost (4.24) of the potential partial orderings,
the matrix S can be updated, such that

sn1,n2:=0| sn1,n2=1 A 5,,1,,-,222—2 A .Vn1,n2=0 (4.28)

101



Note that €,y ,, =0 for ¥, ,,=1. If, as the result of (4.26), [N2(n1)| = 1v|N1(n2)| = 1 then
perform a new preprocessing as in Step 2. If, as a result of any further fixing, the condition
(4.27) is satisfied then go to the Step 3; a tighter lower bound could be found.

dn1,n2e NIYM,[}Q = 1/\Sn1,n2 =0 (427)

9. Eliminating the existing subtours, if any. We use a modification of PA, such that the fea-
sible solution to ATSP is also a feasible one to SOP. In this step, we use the costs
{cmm}. Itis expected that the value of the objective function is not strongly deteriorated
while keeping feasible the solution. If a FSO has not yet been obtained, an interactive
graphic approach is used for eliminating the remaining subtours; alternatively, an implicit
enumeration methodology can be used (see Chatterjee et al., 1984). A new reducing cost
fixing is performed as in (4.26) if the new solution, if any is better than the previous one.

10. Improving the FSO. We use a modification of the local search described by Kanellakis and
Papadimitrou (1980} for the ATSP, such that the new solution is a feasible one to SOP.

11. Reduced cost fixing if the FSO has been improved. The result is given to the planner as

a (hopefully} useful information for his potential attempt to improve the FSO offered by the
algorithm.

For illustrative purposes, let the case shown in Figure 1a and Tables 2 and 3 with IN| =7 op-
erations and |M| = 4 modules. The matrices P, S and C are shown in Table 4. The results are
as follows: z = 13.50 from AP; z = 14.10 from the bounding procedure, and 3" (0,1,4,3,6,2,5,7,0)
with Z = 14.10 and it is a FSO; then it is the optimal solution. The optimal routing proportions
are shown in Table 5 and Figure 4.

4.4. COMPUTATIONAL EXPERIENCE

The algorithm was tested by implementing a prototype running on the IBM 4381-P13 with
VM/SP-4.0; it was written in PL/| and compiled with the version 1.3, except the codes AP and
H that were written in Fortran (see Carpaneto et al 1985, and Martello 1983) and compiled
with the version VS 1.4. Table 6 reports some computational experience. Up to 6 modules
are considered and all inter-module transport segments are allowed. The problems belong
to nine classes based on sizes with |[N| =8, 31, 36, 58, 68, 71, 84, 91 and 98 operations; each
class is included by one real-life and ten generated problems. The latier ones just only obtain
the FSO; instead of calculating the penalty matrix C by solving a LTP for obtaining the optimal
routing proportions of each potential partial ordering, the coefficients Cn1 02 Were obtained as
follows: ¢, ., = oo if s0 in the related real-life problem and, otherwise, it was drawn from a
uniform distribution with the range [0.9 x Cotpzs 1.1 %X Coypa] -

The headings of the table are as follows: NPR, number of (direct) precedence relationships.
nLTP , number of LTP’s solved for the reai-life problem. T up LTP , CPU time (secs.) (/O op-
erations are not counted) for obtaining the matrices P, S and C, including preprocessing. T,
time (secs.) required for solving the SOP; aver , average time of the eleven entries. OPT ,
number of cases where the algorithm detects the optimality of the FSO. GAP = (Z — 2)/z ;
aver: the two worst cases per each class are not included, nor the cases whose solution was
proved to be optimal. NR , total number of potential partial orderings (i.e., number of elements
with value 1 in the matrix S before performing the SOP’s preprocessing). R , number of po-
tential partial orderings that by average were removed by the SOP’s preprocessing and the
reduced costs fixing. Note: the counting of R does not include the cases with optimal FSO.

Based on the results shown in Table 6, it seems that the performance of the algorithm is very
similar for the real-life and generated problems of each class. We can see that the CPU time
increases almost linearly on the number of nodes; the range of the CPU time is very small
within each class. Note also that the maximum time required for solving any problem was
31.25 seconds, and the aigorithm found a FSO in all problems. Only in one case the planner
could improve the solution offered by the algorithm; the improvement amounted to 1.8% on
the value of the objective function. It seems that it could be extremely difficult to do so, should
he not be provided with the graphical representation of the graph of precedence relationships,
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the augmented admissible graph, and the graph showing the potential partial orderings
{n1 — n2} that cannot be included in any better solution than the solution offered by the al-
gorithm. As it was expected, the solution’s optimality was proved only for few cases; however,
we have detected by inspection cases where the FSO offered by the algorithm was optimal.
In any case, the gap between the FSO and the lower bound of the optimal solution is not too-
big, and the percentage of potential partial orderings removed on the average is not too-small.

Table 2. Matrix Q

Table 3. Production proportions

{pPn,m} %
\m2 \'m
m}\ tl213]|4 n\\ vl 2134
et 2]3 1 | 25} 25} 25| 25
2{4]lo]5]6 2 | 50| 25} 58} ©
3718|079 3 8| 60| o] ko
4 [we 1 2 fo 4 | 10] 20| 20] 50
5 | 4o] 36| 3B} ©
6 o|ee| ®] ©
7 o] e|iee] ©

Tahle 4. Matrices P, S and C.

Case given by Figure la and Tables 2 and 3

VoY .
\ i 2 3 4 5 6 7
nI\
1]0;0;~- 1;1;250|1;1;246]{1;1;120|1;0;— |0;1;500 9;1;475
2 |0;0;~- 0;0;~ 16;1;305)0;1;195]1;1;15 }0;1;250]|0;1;225
3 lo;0;- |0;1;565]0;0;— |o;1;208]151;550 0; 1;440|0;1;780
4 |o;0;- |0;1;515}0;1;280/|0;0;- 1;1;530]0;1;7281{0;1;720
5 {0;0;~ |0;0;- |0;0;- |6;0;- |0;0;— |0;1;2808]|0;1;230
6 |0;1;375|6;1;325]0;1;240{0;1;440(0; 1;310f0;0;- |05 1;500
7 |9;1;600|0;1;550{8;1;840|6;1;680]0;1;520(0;1;800{0;0;-

Each element must be read: p,q .z Spyp2 Coipe (in 100))
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Table 5. Optimal routing proportions {rpmi,m2|ntl—n2} (%)
for the case given in Table 4

1-b b3 3-6
\m2 \m2 \m2
N2 34 N2t b \N| 2
mi\ mi\ mi\

1 {10 15 1 ]10 2 [60
2 20 5 2 |20 4 140
3 28] 5 3 |20
4 25 4 110]40

62 2-5 57
\m2 \m2 \m2
Nt 2) 3 Nt 2] 3 N3
mi\ mi\ mi\

2 |50]25}25 I |40} 5] 5 1 40

2 25 2 30
3 25 3] 30
n 1 4 3 6 7
m
1
2
K
4

Figure 4. Optimal routing. See Table 5

Final remarks

The proposed algorithm does not attempt to guarantee the solution’s optimality, although
sometimes it does so. High cost range and tight precedence relationships often produce high
GAP. It seems that bounding procedures that use the information provided by the matrix P
should be investigated; we are planning as future research 1o analyze the performance of
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using cutting planes LP based lower bounds (a good balance between the tightness of the
lower bound and the computing effort is needed); identifying violated precedence relationships
is not a big problem, but deciding what variables are to be left free in the successive LP op-
timizations and what constraints are to be included as cutting planes is up to now an open
problem. Other topic for future research consists of analyzing the performance of ATSP as a
provider of lower bounds for SOP. In any case, based on our computational experience and
the by-hand results obtained by the planner, it seems that the algorithm can be a useful tool
for producing good FSO’s almost on-line, as it is frequently required when planning the FM8’s
utilization.

Table 6. Computational results for the SOP (11 entries per class)

class| M|} |N]INPR]nLTP|T up LTP ! oPT sAP (%) T/IN}|IR/NR
aver| max aver| max|x 108}(%)
1 b 8 8 34 0.4o 0.39} 0.42] 3 2.3] 8.9 5 |98.4
2 3| 31172} 66| ©.63 |1.62| 1.82| 2 | 3.4}22.8 5 189.3
3 6 36(187] 120 1.02 2.12| 2.54) @ 5.6(27.5 6 |85.1
h L] 58}142] 227 1.51 |5.86] 6.171 O | L.1)15.4] 1@ }7B.2
5 3 | 681236| 3u46| 2.24 [7.63] 8.09] 1 | 3.0|] B.2] 11 |74.3
6 L] 71327} 518 3.65 7.47] 7.92] © L.3]11.6 10 |86.5
7 5 871560| 413 4.24 2.59113.29( © 6.8{10.7 th j84.6
8 5 90| 468 631 7.43 3.21415.78) 1 5.6128.8 14 188.7
9 5 98|521{ 945 9.78 8.38j21.55] © 9.7(37.8 18 166.1

5. PARTS LOADING SEQUENCING AND PROCESSING ROUTE

5.1. PLANNING TASK SUPPORTED BY THE MODEL

Obtaining the loading sequence {/o)} of the parts to be processed in the FMS along the given
planning horizon, and the processing route {pr;,} for each part. See related approaches in
Wittrock (1985 and 1986), and Greene and Sadowski (1986).

In addition to the definitions given in Section 2, let i (5.1) and fl (5.2) denote the total workload
of the module m for m e M, and the total workload of the FMS, respectively. These elements
are provided by the model Modules workload assignment (see Section 3).

thy = Z Z t—:,n,mD:ppl,n,m (5.1)

&l neN,

A —

="t (5.2)

meM
where

- t’ n

£

i,n,m €mpn) (5.3)
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Let the following elements for the j* loading level for j=1,2,...,|J}: al,; (5.4), the actual work-
load of the module m; tl; (5.5), the actual workload of the whole FMS; and el,; (5.6), the ex-
pected workload of the module m,

alp= Z Z fiognmYg,mn (5.4)

g€ J; 1€ Niyg)lD(mE Frp

where Jj denotes the set of loading levels {1,2,...j}, and Ygnm i85 @ 0-1 variable such that its
value will be one if the operation n to be executed in the part loaded in the g* level is per-
formed by the module m; otherwise, it is zero. l.e., Yoam=1= pry,=m.

tl= Z 8l (5.5)
meM
i, ,
elpmj=—t VYmeM,jed (5.8)
fi

Note that the set {e/,, } gives the 'ideal’ workload for balancing the utilization of the moduies
along the time units of the planning horizon.

The parts loading sequencing and the processing route for each part must be such that the
total absolute deviation (5.7) of the actual workload {al,,} from the expected workload {el.}
along the time units of the planning horizon is minimized, and each part type is processed
according to the given routing proportions and operations execution sequence. (These ele-
ments are provided by the model Operations execution sequencing and part type routing)

min {Zd,} (5.7)
7
where
d= z C (5.8)
meM

(Similar approach could be used for minimizing the greatest absolute deviation). The goal
consists of reducing the turnaround time per each part and, then, reducing the WIP inventory.

5.2 MODELIZATION

The dimensions of the y-variables in (5.4) are defined by Vm e My » D€ Ny, and ge J. Be-
sides, (5.7) may require additional instrumental variables. Given the problem’s dimensions,
a classical mathematical programming formulation is not practical for our purposes and, then,
is omitted here. As an academic exercise, see in Escudero (1986 pp.69-72) the modelization
of the constraints of a feasible loading sequence.

Although we cannot effort to use exact algorithms, a ‘local’ minimization of the function (5.7)
still may produce good resuits and the computational effort is affordable. Let 2, denote the
smallest total absolute deviation of the actua!l workload from the expected workload at the
level j, provided that /o(j) =/, note that the unknown is the processing route {pr;,} of the part
to be loaded. Then, instead of minimizing (5.7), we only try to obtain the type 1o(j) at the level
j for ¥j e J such that

lo(j) = arg.min {z; Vie )} (5.9)

where J; gives the set of part types whose production volume has not yet been completely
loaded. Note, then, that we obtain at each loading level the best part to be loaded without
modifying the previous loading levels. Let {y,,,} and {x, 1 m,} be 0-1 variables; Yam Will be one
if the operation n is performed by the module m and, otherwise, it is zero for
Vm € My, n € N,; X, 00 m2 Will be one if the operations n1 and n2 are executed by the modules
m1 and m2, respectively and, otherwise, it is zero for Ymle Moy M2 € My and n1— n2,
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being n1=so,|i for h=1,..,IN|| — 1, such that rp,, ., > 0|n1 = n2|i. Then, z; is the solution of
the problem (5.10)-(5.17).

2z = min{Z|almJ—eImJl} (5.10)
meM

where
aly ;= Z Z t.lo(g),n,m + Z t—l,n,myn,m (5.11)
G Jiq € Nigg)lprg o =m ne N)\p(nE Fp,

where t_,.,,l,,, is given by (5.3). The expression for el is given by (5.6); it uses (5.1), (5.2), (5.5)
and (5.11). The minimization (5.10} is subject to

> Vam=1 VneN, (5.12)
me Myp)

Xpmime2=Ymm VYmle Mpnay 01 = sopli (5.13)
M2€ Myl P mz >0In1—n2{i

Xp.mt,m2 = Yna,m2 Ym2e Mp(n2)‘ n2 = s0p4|i (5.14)
M€ Myl rPrmt mz >0ln1—n2]i
Xpm,m2 € {01}, ¥ me {0;1} (5.15)
Xpmt,m2 =0 | Ny maln1— n2lilj=0 (5.18)

where h=1,. [N| — 1. And, 5,,,, ..,|n1 — n2]i|j for n1 = so,|i gives the number of parts of type i
that, at the loading level j, still may be sent from the module m1 to the module m2 for exe-
cuting the operations n1 and n2, respectively; it is given by the expression

(rPm1,malnt — n2|D; — |L| (5.17a)
where

L={ge J_qllo(g)=irnm1=prg pyam2=prg »} (5.17b)

Constraints (5.12) force that each operation be executed by just only one module. For the
module that has been selected, say m1 (res. m2) for the operation n1 (res. n2), (5.13) (res.
(5.14)) force an appropriate module, say m2 {res. m1) where the operation n2 {res. n1) is to
be executed for any n1— n2. (5.16) prevent the using of any path whose ‘capacity’ has already
been used by the previous levels. Note that x, ,, ., = 1 implies that ¥, ,,y = 1 and Y, . = 1 for
n1=so,|i and n1 — n2 and, then, pr;,, = m1 and pr;,, = m2, provided that /o(j)=i. Note: some
provisions must be made in the above formulation for guaranteeing that, computationally,
(5.17) gives an integer number and the condition (5.18) is satisfied (see Figure 4).

Y. @m0 = Y (P maln — 21D, Ym,n.i (5.18)

m1€ My m2€ My

5.3. ALGORITHMIC APPROACH

Note that even the optimal solution to (5.10)-(5.17) may require in some cases more computing
time than it could be afforded. See in Escudero (1986 pp.73-75, 121-127) the details, but the
main steps of the (inexact) algorithm that currently we are using are as foliows:

1. Obtaining a feasible processing route, say {pr;,} for the loading level j, provided that

lo(j) = i, such that Z; will denote the distance to be used in (5.9) instead of the optimal one
Z;(5.10). Let us consider the direct graph G (see Figure 4), such that
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& =(Jm, A) (5.19)

heN;

where (J M, gives the set of nodes such that M, = {m € Mipp, ,,, > 0} for n = so,|i, and A
gives the set of directed arcs such that (mi,m2)e A if 4 In1— n2lilj =1 (5.17). Then,
any path in G whose ending nodes are a module from M,, and a module from M,,, where
h1=1 and h2 = [N/ is a feasible solution (i.e., a feasible processing route) to (5.12)-(5.17).

Let 4, ,, denote the module to be visited by a part of type i for executing the operation
so, | provided that the potential processing route up to the execution level h for
h=2,.,IN] and module m2 for m2e M, (hereafter, ppr(h,m2)) is chosen. Note that
pprih,m2)= {pprth — 1, 6, m,). M2} . Our shortest path based approach requires that 5, ,,
be the module such that

Sp,mo = arg.min { dmy molh  ¥m1e M,_s{(m.m2)e A} (5.20)

where d,, .,lh gives the total absolute deviation of the actual workload {57;,',,,} from the
expected workload {e/, .} at the loading level j and execution level h, provided that the
ppr(h — 1,m1) is chosen and the module m2 is selected for the level h. It can be expressed

Itmalh= Y. | alnlhm2 = elplhm2 | (5.21)
meM

where

alylhm2=allh—1mt + A (5.22)
A= t—,',,m (5.3) (being n = so,|i} for m = m2 and otherwise it is zero, and

_ i _

Slmlhm2 =~ & ln,m2 (5.23)

tl mem

where ﬁ,,, and ﬁ are given by (5.1) and (5.2), respectively.

Note that (5.22) for h = 2 requires a—l,,,!1.m1 for Yme M, it is given by (5.24).

Z Z togram + A (5.24)

€ 1 € Nyog)lPTg p =m
where A’ = {,,,,, (being n = so,|/) for m= m1 where m1e M, and, otherwise, it is zero.

The processing route {pr;,} proposed by the algorithm is the ppr(h,m2) for h = |N/|, where
m2 is the module from the set M, with the smallest deviation (5.20) (note that it gives the
value of z).

Obtaining the loading frequency. Assume that |/| = 4. If after sequencing a given part, it
is detected that the loading sequence e.g. x1 parts of type A, x2 parts of type B, x3 parts
of type A and x4 parts of type C is repeated for a given number of ‘cycles’ then it is sug-
gested to use this frequency for loading the parts that have not yet been loaded.

Improving the loading sequence. The improving is obtained by performing a new local
optimization by introducing partial changes in the sequence. The changes to analyze
consist of moving the part to be loaded at the j level to the g* level, where
g=j+1..J1 and

J=min{J.j + r%lJ)} (5.25)

for a given r> 0, such that the parts that are sequenced in between are advanced one
level. Note that j1 gives the highest level for any partial change; the distance j1 — j should
balance the potential improvement with the required computing time (see computational
experience reported below). The re-sequence only consists of re-ordering the loading of
some parts in the FMS, without re-allocating the modules of the processing routes. Let
i1 =lo(j), i2 =lo(j+1), i3=lo(g — 1) and id=lo(g). Then, the analysis of the potential re-



sequencing of a given part only needs one additional computation. It is the deviation of
the actual workload from the expected workload at the level g — 1, where now a part of
type i4 is to be loaded; and the types of the parts already loaded are given by the set
{lo(k) Vke J_,} U {i2,...,i3} . Note that the deviation related to the level g (where a part
of type i1 is to be loaded) does not change.

Final note. If the production volume is big enough, it is wise to partition it such that a ‘part’ is
defined by a lot; obtaining the appropriate lot’s size for each part type is up to now an open
problem.

For illustrative purposes, let the case shown in Tabie 7; the results are given in Table 8; total
deviation, 47.22.

Table 7. Operations execution sequences and routing proportions

Table 7a. Routing proportions for i=1

"Pm1,m2 |
nt,n2

ml,m2} rp [m1,m2| rp [m!I,m2| rp
1,2 | 2,1 }10.33] 2,3 {0.17| 4,4 ]b.590

2,3 | 1,2 }e.33] 3,2 [0.17] 4,4 |o.50
3,4 - - 2,2 |0.50) 4,4 [0.50

Table 7b. Routing proportions for i=2

rPmi,m2 ]
ml,m2| rp iml,m2| rp |mi,m2]| rp

.4 13,3 [6.25} 3,4 {0.58f 4,4 jo.25

ni,n2

Note: |N;| =4 |N,|=2,D,=6,;D,=4;t,=nVneN,iel;{e,, =1}
sosli=hforh=1,..|N}liel

5.4. COMPUTATIONAL EXPERIENCE

The algorithm was tested by implementing a prototype running on the |IBM 4381-P13 with
VM/SP-4.0; it was written in PL/I and compiled with the version 1.3. Table 9 reports some
computational experience. The description of P1 is given by Table 7; the results are shown in

Table 8. P2 is related to the case shown in Table 5 and Figuie 4. P3 to P9 are real-life prob-
lems.

Two types of improvements on the solution given by the Step 1 of the algorithm are performed
for each problem. They are related to the values 20 and 100 of the parameter r in {5.25). The
headings of the table are as follows. aver |N| and aver na give the average number of oper-
ations and routing proportions per each part type, respectively. T4, CPU time {secs.) till the
first solution is obtained. nimp, number of improvements. %imp = (z1 — 22)[z1% , where z1

and 22 give Zd, Vje J (5.8) related to the first solution and last improvement, respectively. T,
total CPU time.
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Frorm the resulls shown in Table 9, it seems that an improvement on the shortest path based
soution should be performed. Bul, higher values of r do not necessarily imply better im-
provements. Analyzing the potential improvement of all higher leveis {case r= 100) of each
toading level requires an additional computing time that is not balanceo with the improvement
achieved. =20 seems {o balance bolh parameters; note that the maximum time required for
solving any probiem was 128 seconds and most of the problems were soived in iess that 30
seconds.

Table 8. Parts loading sequence in FMS and processing route for the
case shown in Table 7

Processing route
Moqvence ® il 2 T3 15 |15 1%
Joleljpy imimimim i(5.5){(5.8)
1 2 3 {4 -1 - 3 2.33
2 1 214127312 13 9.89
3 i b al b h 23 2.47
4 2 3 {3 =-1~- 26 4.06
5 2 L] b i-1 - 28 3.33
6 i 214232 39 110.08
7 i Ly 4 4ty 49 2.56
8 2 3141 -1- 52 2.78
3 i 21312142 62 9.72
18 ! Y4141 8 72 6.06

n and m: operation to be executed and module
to be visited in the processing route.

Final remarks

The special case m =1 (i.e., oniy one module may and must be assigned toc each process)
does not require to solve the model (5.9)-(5.16), since there is only one processing rouie per
each part type. in any case, the proposed algorithm does not attempt {c guarantee the sol-
ution’s optimality, but it is as much as we can do.

Should the computing time not be a serious restriclion and the dimensions of the problem not
too-big, an attempt could be made for solving the model (5.140)-(5.17) till optimality. Note that
the dimensions depend on the value of m ; from other point of view, higher the value of the
ioading level fewer available processing routes and, then, smaller is the model. Note that the
processing route obtained at any loading level for a given type of part either is a feasible
solution for the next ievel or it is the starting solution for obtaining the iower bound of the
optimal one; in both cases, the algorithmic approach whose framework is given in Section 3
and Figure 3 couid be applied. Implementing this alternative is not an easy task but, we be-
lieve, it is worthy to try it.
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Table 9. Computational experience with the Parts loading algorithm

r=20 r=100

Prob#| |1} |J]|aver|aver] TI
INI| na nimp|%imp T |nimp{%imp T

P8 110 J1432| 31 | 124|56.38] h428]16.
P9 9 |1620] 43 | 172{99.07| 358] 9.

71.08] L55]15.8} 96.88
128.61} 358{ 9.0|181.89

Pl 2 19 3 6] 8.01 1] 3.6] 0.01 41 8.81 0.02
P2 1 1ee] 7 25| 0.4%4 16| 5.4] ©.73 16} 5.4 1.25
P3 5 83| 15 ol 2.30] 47{11.0] 2.60) 49]11.6] 3.00
Ph 8 | 231] 25 122] 5.21 38}12.8} 15.32| 37|12.1]| 21.64
P5 190 | 219] 32 138] 8.55| 96| 7.7| 12.97] tt1] 7.8] 16.84
Pb 10 | 345{ 19 85]15.34] 2@1]13.0] 28.88} 182}12.21 38.62
P7 8 1 838} 28 107121.75} 350) 5.4} 31.80] 428] 6.2 56.50

o]

8

6. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

The {mathematical programming) models described in this paper presents an alternative for
the production planning of a generic FMS floor shop problem. The output of the so-called
generative system where the models are to be included is recommended to be used as input
for an evaluative system (based on simulation); see Engelke et al. (1983). The latter does not
provide any alternative for the production planning; but, by using deterministic and probabi-
listic data in a de-aggregated environment, it analyzes the performance and implications of
the production planning provided by the generative system.

The muin conclusions that can be drawn from this work are as follows:

1.

Higher tiexibility in the FMS, broader set of production planning alternatives to be simu-
lated and greater difficulty on obtaining the best solution. It seems that a computerized
system for narrowing the set of alternatives to evaluate should be investigated; this work
is in the direction of this aim.

Given the complexity of the problem and our current algorithmic technology, a generic
planning problem has to be decomposed in subproblems; then, the execution of the re-
lated models is hierarchical in nature. Models addressing broader problems must be
executed first; their results are used by models with more specific short-term goals.

Based on our computational experience, we may conclude that the hierarchical approach
presented in this paper can be a useful tool for providing good candidate solutions on
realistic planning problems.

The application of OR to FMS is still in its infancy. Some open problems within the framework
presented here are as follows:

1.
2.

A hierarchical categorization of a broader set of models.
Good heuristics (and special classes of expert-like systems) that use a graphic-interactive

methodology are needed; the planner-system interaction may help to solve problems with
some targets and constraints that are only in the mind of the planner.
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Interfacing simulation with mathematical programming. Mathematical programming can
be used without great difficulty to provide input for simulation models. To our knowledge,
the other way around is still an open problem; we believe it is worthy to investigate how

simulation may help to adding and/or deleting constraints in mathematical programming
models.

High quality research is on going for identifying valid inequalities for (general and spe-
cific) pure 0-1 problems; many models for FMS production planning belong to this cate-

gory. But, there is also a broad application field for mixed G-1 problems that deserves to
do so.

it could be interesting to exploit such special objective functions as minimizing 'bottle-
necks’ and absolute deviations for more general problems than the specific problems
{such as LTP and AP) for which we have to-day the know-how. There is a variety of
models for FMS production planning with these types of functions.
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