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MULTIVARIABLE ARMA SYSTEMS AND PRACTICABLE CALCULATIONS
E. J. HANNAN
THE AUSTRALIAN NATIONAL UNIVEKRSITY

The representation of ARMA systems in canonical state space form is described and the idea of
order and the manifold structure of spaces of systems are introduced. Some neighbourhood sys-
tems are described and related to other systems of structures. Algorithms for maximum like-
Lihood estimation are discussed and related to stability of the system. An algorithm for order
estimation is briefly discussed and alsoc some asymptotic theory.

Keywords: ARMA, HANKEL MATRIX, ORDER,
LIKELIHOOD, AUTOREGRESSION,
SIMULATIONS.

1. THE STRUCTURE OF ARMA SYSTEMS,

Consider a stationary vector process, y(t),
of the form

(1 y(t) = T KGlelt-3), Ele(®re()'} =

where k(z) = IK(3j)z J is rational in z and
€(t) is the linear innovation sequence for

y(t). Then

(2) detik(z)} # 0, lz] > 1; x(z) is

analytic for |z| = 1.

If in (2) we reguire, more strongly, that
det(k) # 0, |z| 2 1 we shall speak of (2)'.
Such rational transfer function models have
been widely used, especially for s=1, partly
because of the influence of /6/ .

Since k(z) is rational we have k = a 'b
where a,b are matrices of polynomials. In
this matrix fraction description (m.f.d) we
may require that a,b be left coprime, for
which a necessary and sufficient conditions

is

(3) T[a(z),b(2)] is of rank s for all =z

in the complex plane.

MANIFOLD, KALMAN FILTER, MAXIMUM
AIC, LAW OF ITERATED LOGARITHM,

There are many such factorisations as there
are many polynomial matrices wuf(z) with
det{u) = constant # 0 so that ua, ub will
provide another prime m.f.d. Tc attain a
unique decomposition consider the (infinite)
Hankel matrix, H.

K(1) K(2) K({3) . . .
K(2) K(3) K(4) . . .
K(3) K(4) K(5) . . .

This is of finite rank, n let us say, iff k
is rational (see /2/ ). Call r(u,j) the jth
row, j=l,...,s, in the uth row of blocks.
Then we may always choose a basis for the
rows of ¥ of the form

(4) r(u,3j); u=l,2,...nj; j=1l,...,8;

In, = n.
j -

Thus the basis is fully specified by the
partition n = an‘. Let M(n) be the set of
all k(z) for which (2) holds and for which
H is of rank n and call n the order for
M(n). Let U({n.}) be the subset of M(n) for
which (4) is a basis for #. It will be con-

Venient to represent the set {nj}' by the
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symbol v , to write |v]|
U =
v
is clear that M(n) = u v
[vi=n

= an and to write
U({nj}) if v indexes *he set {n.}. It

N We may topo-

logise the k(z) with the norm || k|

(E=3
I k| = 2 tr{K((3)K(3) "'}
hen each U, lvl = n, is open and dense in
M(n). As we shall see these Uv constitute
coordinate neighbourhoods covering the, es-
(M(n) is

an analytic manifold but no differential

sentially algebraic, surface M(n).

geometry is used in this paper.) The dimen-
is 2ns. Put

sion of M{(n)

y{t+tult) = Z K(3) e (t+u-3j).

o1 8

Then compose x(t+l|t) from the yj(t+u1t),

u=l,...,n, ; j=l,...,s. If k(z)e Uv then

J
s
6 {t+ult) = {tvult-1)+ T k., (u)e, {(t),
(6) y]( [£) vy | ’ k(W ey )
u=l,...,n.-1
J
s Dy
yv.{t+n.lt) + & b ujk(\—l)v (t+v=-1t-1)=
k=1 v=1 -
s
=7 k., (n.)ye, (t).
: ik j) k( )

Here Kjk(u) is the typical element of K(u).

Thus

(7) x(t+l]|t) = F x (t|t-1) + K _(t)

yi(t) = H x(t|t-1) + e(t)

where F,H,K are easily constructed using (5)
(6). The freely varying elements in F,H,K
(i.e. those not 0 or 1, identically) are the

2ns quantities, which we call "system para-

meters",
(8) ujk(v), v=0,...,nk—l;
Kjk(v), v=l,...,nj ;o J.k=1,...,s.
Putting a(z) = ZA(V)ZV ,
Av) = Loy (Vi weq, . i,s?
o35 ng) =t

and b{z) = a(z)k(z), which is also polyno--
mial, then k = a_lb is a left prime m.f.d.
for k. (See /7/).

Let Vv be the set of all k(z) for which (2)'

holds and (4) is the first set of linearly
independent rows met as you go down the rows
cf H The nj, called dynamical indices, for
which this is true are uniquely determined,
i.e. k(z) lies in a unique Vv (these do not
intersect) and for |v|=n their union is M(n).
Then the ajk(v) in (8) satisfy further res-

trictions, namely

9 .. (v) = 0, Vv > n.;
(9) oy (V) 5

ajk(nj) =0, 3 <k.

Then Vv < Uv and equality holds only when,

putting n=ps+r,
ny, =n, = ...n. = pt+l; L ng = p.
Call this neighbourhood just U(n).

-1
Z

For ker put k( ) =

1,,-1

iz 2z h i Mz bz e o) Nz,

n.
where 2z is diagonal with z J in the Jjth

Y(3j) the
o (z), w(z).
Then ¢(0) = ¥(0) and we have an ARMA repre-

zsentation

place in the diagonal. Call ®(j),

coefficient matrices of zJ in

(10) Jo(iyie-3) = J¥(Ielt-3).

However unless k = a_lb corresponds to the
then not all of the coef-
(that are not 0 or 1)
(See /8/).

nj for which keV
ficients in the Y (3)

are independently varying.

If we put M(n) for the part of the closure,
M(n) , of M(n) for which (2)' holds then

M(n) = U M(j). Since U(n) is dense in M(n)
55N
it is dense in U M(j).
jsn

A further parameterisation discussed below
is M(p,q) which consists of all k.(z), satis-
fying (2)', for which k(z 1) has a left
$(2)” ¥(z) with 2(0) = ¥(0) =
= 1 and [¢(p),¥(q)] of full rank. Put

Then

prime m.£.d,

r = max{p.q) and m = p=-gq

(11) M(p,q) is equivalent to the part of

U(rs) satisfying

K(1)
K (m)

I

K(2) = ... = K(m-1) = OS,

I
S

We give the proof for p 2 g. Consider
2z Mk (z)eU(ps). Then k(z) = a(Z)—l{Zmb(Z)}

where a(z) is of degree p and b(z) is of
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degree q = p-m. If ¢(z) = zpa(z_l),

Yy(z) = zp_m—(z‘l) then ¢,y are left prime
because 9(0) = A(p) = IS and certainly
[o(z),v(2)] is of full rank for z # 0. More

over [¢(p),¥(q)] 1is of full rank since it
is [A(0),B(0)] = T[a(0),b(0)] . The
ment may be reserved to show that for
k(z)eM(p,q) then k(z) =

argu-

= zm{zpq)(z"l)}_l qu(z-l) = gt a(z)_lb(z)

where a(z)-lb(z)EU(p s). For g = p we con-

sider k(z)™ 1

and proceed similarly.

In relation to the M(p,q) the following is
true. (i) There are k(z) that lie in no
M(p,q) . However since M(p.p) = U(ps) and

U(ps) is open and dense in U M(j) these
j<ps
k{(z) may be regarded as exceptional. (ii) The

M(p,q) are not disjoint. (iii) The largest

dynamical index n , of k(z) satisfies

Noax S min{max(p,q??x,where the minimum is
over all (p,q) for which k(z)eM(p,q). how-
ever inequality may hold. For the same kind
of reason as was given under (i) it would
not be unreasonalbe to strengthen the re-
quirement "[®(p) ¥(qg)] is of full rank" to
¢(p) is of full rank p > q; ¥(g) is of full
rank, g > p, Le(p), ¥(p)] is of full rank,
P=qg. Then k(z)eU(s max(p,q)).

The virtue in M(p,q) can be only in an, a
priori reasonable, belief that a good "fit"
will be obtained with |p-q| different from
zero. In case s=1 this seems often to be
true and may correspond to the fact that
spectra often show sharp peaks, which re-

quires high p but not necessarily high q.

The virtue in the V lies in the Uniqueness

of the parameterisation. If the elements of
y(t) are permuted then so are the dynamical
indices, but not in the same way. For }v|=n
these indices appear to define an arbitrary
division of M(n) so that any gain in the re
duction in the number of parameters fitted,
due to (9), seems illusory.

The meaning of n is direct, as the rank of
H or the dimension of the "predictor space",
spanned by the yj(t+uftj), j=1,...,8;
u=1l,2,... . See /2/).

The most a#tractive situation is that where
(10) (or a state space formulation) is a
Priori so heavily constrained by valid cons-

traints that the representation is uniquely
determined on physical grounds. However we

do not in general deal with this situation.

2._ALGORITHMS

In /15/ a direct search for an appropriate
Uv is considered. That is not discussed here,
partly because nothing seems so far esta-
blished about the method and partly because
it seems better first to find, by some ad
hoc method, an estimate of the order parame-
ters (n, v or p,q) and of the system parame-
ters for that order. Maximum likelihood (ML)
can then be used commencing from these ini-
tial values.The computation of the MLE is
not trivial. One way to proceed is via the Kal-
man Filter (KF) to construct the finite past
innovations, e(t), and their covariance ma-
trix $t. Thus

(12) e(t) = y(t)-Hx(t]|t-1),
§(t+1|t)=F§(t|t-1)+Kte(t),

%(0]-1) = 0

= -1 — 1 - t
(13) K, = MtXt » M = FP_H'+K{, T =HP H'+]

-1
= v " v = ' '
Pi,1 = FP.F'+KIK MY oMy, P FP_F'+K{K

Then the e(t), Xt, t=1,...,T are used to cons
truct the Gaussian likelihood. The optimisa-
tion of that is a not inconsiderable task
and requires the calculation of derivatives,
again using the KF, but we omit any discis-
sion here. In /17/ it is suggested that (13)
be modified as in /3, pp.228,9/. Thus let

vjk(v) = E{yj(t)yk(t—V)} and T (v) = [ij(V)J

where the typical matrix element is indicated.
Let G be composed from the I'(v) as H was from
the K(v). Then G,H have the same rank and the
same row dependence structure. Thus in (8)
the Kjk(V) may be replaced by the correspond
ing ij(v). Also (13) may be reorganised as
follows, putting T for the matrix constructed
from the yjk(v) as was K from the Kjk(v),

' = -1 =T v = -
(13) Kt—Mt};t ’ Mt-P FTtH ’ ¢t~r(0) HT

£H'

-1
= ' 1 =
Ty 1 =FTeF M I M, Ty = 0.
Put

T .
Z y)y(urt)* .
u=1

it
=
1

T (t)
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Here we have omitted mean corrections for
convenience but they will be needed. We may
use the f(t) to initially estimate T {(0) and
I' . To estimate the ajk(v) we may use an
instrumental variable (IV) method, using
the yj(t— ), for & large, via (10), as the
instrumental variables. Thus let GS be the
submatrix of & taking |v| rows according to
the partition v and |u| = !v| columns ac-

cording to u. Let A have ujk(v), v=0,1,...

V=O,l,...,nk_1, Jr.k=1,...,8 in row j, co-
lumn ny+n, atny g v+1l, where v = {nj}
Let gs contain rows r(nj+l,j) j=1,...,s
from ¢ and columns according to u. Then if

”
k(Z)EJ\)

T

(14) Auv g,

If we wish to consider Vv then we must take
account of the relation (9) that constrains
A, If 3: is non - singularAwe may estimate A
consistently by using the T'(t) to estimate
o 9
spectral density £(w) 1if kaUv since f(w) uni-
guely determines k(z) via 2wf(w) =

T, 4 k*(eiu).

We may associate n and v with the

= ke Then f{-w) has +the same
n and 75 is of fuil rank iff £le)et
f(—w)eUu (See /5/). However this method of
estimation may be very inefficient. For ex-
ample when s=1 (when f(w) = f(-w) and we may
take p=v ) and y{t)+0.9y (t-1)=c(£)+0.7e(t~1)
then the asymptotic efficiency of the 1V
method is 0.08. Another problem arises with
the stability of (12), (13)'. Consider s=1,
y(t) = e(t) + Ye(t-1). Then P/ (1+y*) =

= v(1)/v(0) € a. However if 4 > 1/2, which is
guite likely, then (12},

Indeed, then H=1, F=0, K=&p,Kt = b;l a, bt =

li

2 - b -
l-a /bt~l' b =1. Then b, =

const. cos(et+¢l)/cos(8t+¢2) where,
iaitcos(et+¢1)/c05 ¢ is the solution of

2

2 X
- = = = ] 4
X Ky ta 0, X, 1, x i-a” while &2

corresponds to Ay = 1 =x

Thus evidently bt’ and hence K, oscillate in-

creasingly wildly with occasiogal negative
values. (Here bt = $t/y(0)). It seems prefe-
rable to face the problem that 27f(w) may not
factorise, as in this case where the estimate

using the f(t) is, 2rt = ?(O) + 2?(1)cosm.

(13)"' will not "run".

A procedure that estimates v and the u‘k(v)
via cancnical correlation methods was pre-
sented in /1/. 1t essentially proceeds by
examining sucessive rows down H {or eguiva-
lently G). We omit discussion here for bre-
vity and discuss another method. This is an
extension /12/, /14/, of an idea due to

Durbin /9/, who considered s=1, n known and
gave heuristic proofs. It has also been used
in a real time, recursive, calculation of es
timates for s=1 by Astrom and Mayne. The me-

thod, in outline, is as follows.

I. Form the autoregression

h, R
(15) 3 L (G)yle=3) = €, (£), h=0,1,..., H(T),
0
L, (0) = I.

This may be recursively calculated by the me-
thod due to Whittle /19/. Using ih for the

estimate of } got from this algorithm we
choose hT to minimise
(16) 1log det I, + hs’C(T)/T

For C(T) = 2 we refer to (16) as AIC(h) and
for C(T) = 1lcogT we refer to BIC(h). In prac-
tice we would use AIC(h). Put ET(h), LT(j),

$T for the estimate at h = hT.

IT. We next act as if kel (ps) and calculate

the regression

Yo (v =
o p

= ko]

Wp(j)eT(t~j) + ep(t),
p £ P(T).

Again the Whittle recursion is used with
y{t-3)' in (15) being replaced by (y{t-3)',
ET(t-j)') and yhere only the first s rows of
the resulting L(j) and the first s rows and
columns of the resulting I are used directly.
(The other parts are used in later calcula-
tions). However the direct estimate of § ob-
tained, thus, from the recursion needs adjust
ment by term of order logT/T to account for
a bias due to the use of the E(t). Choose Prp

by AIC(p), BIC(p) where now these correspond
to

(17) log det ip + 2ps2C(T)/T.

ITIT. In this step the dynamical indices are
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estimated. We cannot give details here (See
/14/) . As argued below it may be reasonable
U(n).

1,2,...,8.

to consider only the Then we take
Then ;n

and estimates of the system parameters are

n = (pT—l)s + r, r =

easily found using the calculations in II

and np = (pT-l)s+r is chosen tc minimise

T
AIC(r) or BIC(r) via

log det Tn + 2nsC(T)/T. n={p,-1) s+r,

r=1,...,s.

ITI'. An alternative would be to consider
the M(p,qg). A possible eccnomy in pa-
rameters (see section 1) is balanced by

greater computations.

Iv. A final stage is ML using the results

at stage III to determine the order pa-
rameters and initial estimates of system pa
rameters. This could be done via (12), (13)
or via asymptotically equivalent procedure
that lends itself to recursive calculation,
if one wishes to re-estimate the order para-

meters.

The problem in reiation to (12), (i3)' in
relation to IV method may recur hers, though
I1 scems more efficient for the estimation
of the ¢(j) {(i.e. the ajk(v)) than is (14).
(It is always more efficient for s = p =1,
at least, and in the case discussed above
where IV has asymptotic efficiency 0.08 that
of IT is 0.6.) The problem arises because
det ¥ (2z) may have zeros in |z] < 1. Techni-
ques for adjusting y{z) to avoid the conse-
quences of this in III are discussed in
/14/. One has to replace wT by

wT(O) + A{wT - wT(O)}, 0 < X < 1, choosing
A so as to achieve stability.

3, ASYMPTOTIC THEQRY.

We assume there are T data points. There are
many reasons for attaining generality in the
asymptotic theory. Consider, for example, a

model as in /16/, namely

h
(18) x{e(§N+B,(t)}y(t=9) = u(t), ¢(0)=I_,
0 J s

Assuming the Bj(t), u(t) to be i.i.d, and
the Bj(t) independent of u(s), all s,t,

then when a stationary solution exists (see
/16/) .
h h

I o(fy(t=3)=e(t), e(t)==I B(t)y(t=3)+u(t).
0 1

If F, is the o-algebra generated by v(s), s=<t

(19) Ele(t)|F ;7 = 0.

However it is not true in this case that

(20) Efe(t)e(t)"|F,__;} = E{le(t)eit)'} = §.

t-1

Under (18) and, say,

(21) E{Ej(t)k} < @, ] =1,...,8,

the asymptotic properties of the estimates
described in (15}, (16) hold ard evidently
these autoregressive estimates, given the

estimated order, h could provide a basis

’
for a more efficiegt estimation procedure
based on the structure (18). The condition
(19) is natural in (1), in general, but (20}
is difficult to justify, except by assuming
Gaussianity. However many results hold under
(19), or (19) and (21), except that variances,
covariances of estimates in their limiting
distribution are more complicated unless (20)
holds. For example if y(t) + ¢y{t=1) = e{t)
and (19), (21) hold then for & = -y(1)/%(0)
we have (6 - ¢) = 0{(loglogT/T)'%}, a.s. and
T2 (6 - 4) is asymptotically normal with zero

mean and variance estimated by
17 A -1

(22) TTUI{y (t)+oy (t-1) P2y (£-1)23/{T "Iy (t)?}2,
2 1

If the data satisfies {20) alsc then this ex-
pression may be replaced by 1—@2. Since (22)
involves fourth moments its use is to be
aveided if possible and it may be preferable
to use the simpler formula since it may be
near encugh to appropriate for practical pur-

poses.

Some basic results are as follows. (1) Let
keM(n) (so that now (2) is permitted, rather
than (2)'). Assuming only ergodicity for e(t),
if E,f are the estimates based on maximising
the Gaussian likelihood over M(n), then

ﬁ, f + k, f, a.s. Thus consistency holds if
the assumed order is not too small.)Analogous
results hold for Uv , Mip,g). (ii) ©Let s=1
and r(t) = y(t)/y{(0). Under (19), (21) and
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t23) EBle(te(®)'|F__} =1 , a.s.

then, putting e (t) y{(t)/v(0),

max

[x(t)-o(t)]
1<t<H(t)

0{(loglogT/T) *}, a.s.;

H(T) = 0{(logT)?} , a

A
8

In case s > 1 put

e(t)e(t)' , T(t) =T K(3) § R(3+t)".

Raead

1l
3] b
|
oM

Then under the same conditions

max \I?(t) - f(t)||O{(loglogT/T)lz},a.s.,
1<t<H(T)
H(T) = 0{(logT?} , a < =,

Using these results we may establish for I
of section 2 that, for BIC, hT(2logX)/logT+l,
of
det k(z) nearest to |z| = 1. For AIC the same

a.s., where A is the modulus of a zero

holds, at least in probebility, under some-

what stronger conditions, as was earlier

in /18/. Moreover if k(z)"l
I3 L(3)z7 then || (9 -L(i) | =

shown for s=1

I

It

0{(loglogT/T)!?}
(See /4/, /12/,

ted ones.)

uniformly in 1 < j < hT.
for these results and rela-
BIC,

the

As a result in II, using

then Pp - max n., are

3
dynamical indices,

where the nj

at least in probability.
(See /14/ for details). At stage III analo-
gous results hold so that in IV we may act

as if n or the nj are known in deve-

or p,q
loping the asymptotic theory.
The methods based on I, II, III, IV have
been applied to real data and simulations
and work well. In an example with s=2,

keU(2), A = 0.8
obtained for 1. Here EA(T), ﬁB(T) are obtain
ed by solving log det f
+ 2ns C(T)/T = 0.
g(T) =

the following results were

he1 ~ log det th +

They are much smaller than

logT/2log A. There are 50 replications.

TABLE 1

VECTOR ARMA MODELS

AIC Med AIC Min  AIC Max hA(T) BIC Med BIC Min BIC Max ;B(T)

T
100 4 2 9 2 1 3
500 14 4 3
1000 8 6 12 5 4 5
The following table shows results at Stage II
when s=1, y(t) - 4y(t=-1) + .6y(t-2) =
= e(t) + e(t-1) + .6e(t-2), again with 50 re
plications.
TABLE 2
SCALAR ARMA ORDER ESTIMATION
Stage 11 Repeat Stage II Stage IV
order 1 2 3 34 1 2 3 1 2 3
sample
size
200 - 40 10 - - 48 2 - 49 1
=00 - 35 15 - - 4 - 49 1
1000 - 36 14 - -~ 46 4 - 49 1
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The adjustment to § were not made in this
calculation and would reduce the over estima

tion at Stage II.

The guestion remains of the use of AIC or
BIC. If there is a true model (which is most
unlikely) then BIC is to be preferred at
stages II or III (or IV). Indeed at stage II
AIC will be inconsistent in rather a shock-
ing manner if there is a true model as shown
in /10/, /11/. Here we consider only the

case s=1. Let & > 0 be such that [¥(1)|<1-6.

Then if p, = n

T o is chosen by AIC

lim lim P{nT > n} = 1.
§>0 T-reo

However there will be no true order in prac-
tice and the best choice is not apparent.
Shibata, /18/, has
shown strong arguments for AIC when s=1 and
there is no true order.

For an autoregression
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