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THE FORMULATION OF STRUCTURAL TIME SERIES MODELS
IN DISCRETE AND CONTINUOUS TIME
A. C. HARVEY
LONDON SCHOOL OF ECONOMICS

This paper sets out an approach to modelling univariate time series, ineluding those in which
observations are available on a daily basis. An underlying continuous time model is formulated
and it is shown that this model has important implications for the way in which a discrete

model is set up. It is also shown that the continuous time model allows observations
to temporal aggregation and irregularly spaced observations to be handled relatively

subject
eastly.

The extension to cases where explanatory variables are to be included in the model is also dis

cussed.
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L. INTRODUCTION.

Structural time series models differ from
traditional ARIMA models in that the various
components of a time series, for example
the trend and seasonal effects, are modelled
explicitly; see Engle /6 / , Harvey and
Todd /12/ and Kitagawa /20/ . Harvey and
Todd /12 / , in particular, argue that the
structural approach has a certain methodo-
Box-Jenkins -
approach in that it enables the user to be

aware of exactly what he is doing. This is

logical advantages over the

particularly important when dealing with
economic time series which contain observa-
tions for a relatively small number of years.
/12/ , was
made with respect to monthly and gquarterly

The argument in Harvey and Todd
observations, but when daily observations
are available the case in favour of a struc-
tural approach is even stronger. This is
because the Box-Jenkins model selection pro-

cedure tends to become unmaneagable.

This article first sets out a model for hand
ling daily data. It is then shown how this
discrete time model can be derived from a
model formulated in continuous time. This is
important for two reasons, one methodological,
the other technical. The methodological -
reason is that any model formulated in dis

crete time suffers from the disadvantage that
casting the dynamics in terms of the time
period of the observations is arbitrary; see
Bergstom /2 / This point becomes apparent
that

an ARIMA model will, in general,

with ARIMA models when it is realized
the order of
change if observations are obtained at more
(or less) frequent intervals or if there 1is
temporal aggregation; see, for example, -
Amemiya and Wua (1972). The technical reason for
considering the continuous time representa--
tions is that it enables one to derive effi-
cient ways of handling irregularly spaced

observations and observations subject to -

temporal aggregation.

. MODELLIN Y :

The models employed in Harvey and Todd /12/

and Kitagawa /20/ , are for monthly or quarter
ly data. They are formulated in terms of a

trend, a seasonal and an irregular component,
although cycles can be incorporated into the
models if desired. The components are usually
that the

function consists of a linear trend with a

set up in such a way forecast

fixed seasonal pattern imposed on it. The mo-

dels are stochastic in that the trend and
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seasonal components are allowed to change
slowly over time. From the practical point
of view, this means that past observations
are discounted in making forecasts. Hence
the models are local, rather than global.
Globals models do, however, arise as a spe-

/7/ .
show how it is possible to test for global

cial case and Franzini and Harvey

models in small samples. The general model

can be written as follows

t t t t’ (2.1)

where “t’ ¢t, Yt' et and €

cyclical, seasonal, daily and irregular com-

are the trend,

*
ponents respectively. The term et represents
calender effects, such as public holidays.In

many applications Ye will be in logarithms.

The specification of the various compconents
is as follows.

Trend - the level of the process, Mes and

the slope, B are generated by the multi-

tl
variate random walk process

He T Mooy T Bl Ty (2.2a)
B, = B + 5

t t-1 t (2.2b)

where (nt ctY is a multivariate white noise
process with mean zero and covariance matrix,
Qn. Some restrictions must be placed on Qnin

order to ensure identifiability; of. the dis-

cussion of identifiability cf unobserved com

ponents models in Hotta /16/ . One possibili
ty is to let it be diagonal. Another possibili
ty suggested by the continuous time formula-

tion, is to set

G T

N~
Eaid

2
c

=3
all
S
+
W

(2.2c)

The interpretation of the two parameters,
E; and Ez , will be clear from the discus-

sion in section 4. The above model can be ex
tended so that it becomes a local approxima-
tion to a higher polynomial time trend; see
/10/ . For

purposes (2.2) will suffice.

Harrison and Stevens most -

Cycle ~ A trade cycle’centred around a
frequency of AC can be represented by wt

where

sini_ + K (2.3a)
c t

*

cosA  + K (2.3Db)
c t

S . *

= - +
Yt bpoy sindo v by

* .

where Ky and Ky are white noise disturbances
with covariance matrix QK . The continuous
time formulation of Section 4 suggests that
this covariance matrix be scalar, i.e.

K - 2
Q OKIZ.
plies are more than enough to ensure identi-

The restrictions which this im-
fiability.
The cycle defined by (2.3) is nonstationary

and its forecast will

cyclical form which persists indefinitely

function have a

into the future. A stationary cyclical com-
ponent can be constructed by introducing an
additional parameter, p, into (2.3) so that

it becomes

wt CUSAC sinkC wt-l Ky
=p * (2.4a)
% . *
wt —51nAC coskc wt—l Ky
or,in matrix terms,
wt = C wt—l + Kyr (2.4Db)
where 0 < p < 1; cf. Harrison and Akram
/9/ . This process can be expressed as
*
) (1 - ocosACLJKt + (p 51nACLJKt
by = (2.5)

1 - 2p cesi L + p21L?

where L is the lag operator. Thus wt is a
special case of an ARMA (2,1) process . The
attraction of (2.4) is that its parameters
are directly related to the parameters of
the (pseudo)ycycle.

Seasonal - For monthly or quarterly data,
seasonality can be modelled by a set of
dummy variables or by a set of trigonometric
terms. In Harvey and Todd /12/ and
Kitagawa /20/ ,ka dummy variable formula-
tion is employed. For daily data a trigono-
metric representation is preferable for
several reasons, the main one being to
ensure continuity from the last day of one

month to the first day of the next.

A seasonal model is set up by defining
cycles at frequencies Aj =21 §/M, j=1,2,...,h,
where M is the number of days in the year.

(If observations are available every day in
the year,‘then M = 365 or 366). The model
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for each frequency is similar to the trade

cycle model, i.e.

E cosA, i W
th ( 3 51nkj Yj.t-l it

* o=y ' * Hox | 3J=1.2....
Y -sin}., w

it L 3oeosh g Yy e s

(2.6a)
or in matrix terms.
th ) Sj Yj,t—l ’ it . 3= 1,2, (2.7b)
The seasonal effect is given by
Yo T Yap T Yo f Yy e (2.8)
Again the continuous time formulation
suggests letting the covariances of each wjt
depend on only a single parameter, i.e.,
- 2

Var(mjt) = OjIZ'
Daily - Let w be the number of different

types of day in a week and let k_j be the

number of days of the j-th iype for

j=1,...,w. Thus, for example, if all week
days are alike but both Saturdays and Sun-
days are different, w = 3, k, = 5, and

1
k2 = k3 = 1. The effect associated with the

j-th type of day is R where

it

jt° Jo= 1,...,w-1 ,(2.9)

the disturbance term gjt having zero mean

and variance

var(g . ) = oéll—kg/K]. 3= 1l,...,w-1,

=~
"
He~1g

K2
;3

o= - czkjkh/K, i # h,

5t Gt E (2.11)

Joh=1,...,w-1.
The effect for the w-th type of day is de-
fined by the requirement that the sum of the

daily effects over a week should be zero,
i.e.,

9 = -1 7
P D N Y- T (2.12)
i=1 J Jt
It can be verified directly that ewt has
exactly the same properties as ‘the other

daily effects, i.e. it follows a random walk
of the form (2.9) with a variance (2.10) and
covariances (2.11), see Appendix. Thus it is

immaterial which effect is taken to be the

w-~th.

The above model can be written in matrix
form by defining the (w-1)xl vector

_' t 3 s
k = (kl,...,kw_l) ., Then if Et is the

(w=1)x1 vector of disturbances in

(2.13)

E(E, £} = OE[I—K_IKK’)

In the special case when kj =1 for -
j =1,...,7, the model takes essentially
the same form as the one used by Harrison

and Stevens /10/ to model seasonal effects.

Calender Effecté - Calender effects arise on

certain days throughout the year due to
public holidays, religious festivals and so
on. These effects can be modelled in the
same way as daily effects, with w replaced
by w” which denotes the number of different
types of special days throughout the year.
As with daily effects a constraint analogous
to (2.12) ensures that the sum of the calen-
der effects throughout the past 365 or 366
days is egual to zero.
Calender effects should be distinguished
from unique events such as royal weddings
and earthquakes. Within the sample period
events of this kind can be treated as mis-

sing observations or modelled explicitly by

"the introduction of dummy variables. These

two approaches are equivalent unless the
effect lasts several days and constraints
are put on the coefficients of the dummy

variables.

Irregular Component - The specification of

(2.1) is completed by the requiriment that

the irregular component, be white noise.

€,
t
An extension of the model could be obtained

by replacing €y ARMA

process, but this possibility will not be

by a stationary AR or

pursued here.

3, STATISTICAL TREATMENT OF ILY MODEL.

i

Given that the observations are normally dis
tributed, unknown parameters can be estimated

and tests of specification carried out by
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working with a likelihood function computed is for the w-th type of day in which case
via the prediction error decomposition. The (2.12) leads to the requirement that the
prediction errors are computed by setting up j-th element be equal to —kj/kw for
the model in state space form and applying j =1,...,w-1. Calender effects are treated
the Kalman filter. in a similar way.
State Space Formulation Kalman Filter
The structural model defined in section 2 Let a,_, denote the minimum mean square --
can be handled statistically by writting it error estimator (MMSE) of oLy based on all
in state space form. The transition equation the information up to and including time t,
consists of (2.2), (2.4), (2,7), (2.13) and and let Pt—l denote the covariance matrix
an equaticn for the calender effects, @t, -— of its estimation error, at_1 - at—l' Simi-
having the same form as (2.13). Thus larly let at/t—l denote the MMSE of oy based
~ M r . ' i ! i oo
i 1 .
e ot P Meop | n,
I ' | i ™
I o I ; !
;Ht o . i ) : i Bt‘l C‘C
% l i .\ i
[ A i T‘-'T—_"‘_—""‘__""'T"'T"‘ """" Tt
g-v I 1 ' 1
Yy L Co ‘ | Vi1 K
| i 1 | i v
g——— ------ 2 Sl Sl S B i Se e
i I g t
Y1t LT o Yi,¢-1 “1t
h i t I
: - i
%Y2t:= l %2 ! ; Yo, -1+ wztiia ia)
. g ‘ T, : | : °
P v . .
A T | i
! |
e S U | -
i i | | I H
to \ ‘ b1 5 !
O] o % fe |
S (i B L el I ST
K ' ‘ | . x|
9, H | , : I Ot'l ft ;
_ - ~ b - A
or, more compactly, on all the information up to time t-1 and
let Pt/t—l be the covariance matrix of its
T (3.10) estimation error. The Kalman filter consists

of the prediction equaticns

Both the transition matrix Tt' and the
covariance matrix of N which will be S iy T Tt gLy (3.3a)
denoted by Qt’ are block diagonal. The
associated measurement equation is and
= 2 = z! ! = P T, = .
Ve T OFp %y T Bp T oE) gy Y Zhy Opp By Pore-1 = Te Poon T 0 By (3.3b)
(3.2}

where the state vector has been partitioned together with the updating equations
so that o = (W, B 0,y v, .0)  and -

1t £TE e 1t T2t a, = at/t—l + Pt/t-l Zt \)t/ft (3.4a)

= ) 1 1 4 3
Oop (@t Ot )'. The vector z, 1is time
invariant, consisting of alternate ones and and
zeroes, i.e., zy = (10101 ...)" . The
. P, = P - P z ¢+t are
(w + w* -~ 2) x 1 vector, Zys changes over t t/t-1 t/t-1 “t 't t  t/t-1 (3.4Db)
time so that each day it picks out the
. . = - T il -
appropriate daily effect from Ot and the where Ve =Yy Zy at/t—l is the one-step
appropriate calender effect from Ot. Thus ahead prediction error and
the first w-1 elements.are such that for a
f, = z; P z, + h

day of type j, there is a one in the j-th t tot/t-1 Tt t (3.4¢)

position and zeroes elsewhere. The exception
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The term ht is the variance of €, - Further the next subsequent observation. This situa-
details can be found in, for example, Ander- tion arises often in economics with flow
son and Moore /1/ and Harvey /11/. variables, i.e. variables which can only be

measured with respect to a particular period

Maximuﬁ Likelihood Estimation of time. One way of handling the problem is
to augment the state vector with past values

The state vector, at, contains n elements ?f yt7 cf. Harvey and Pierse /13/ t However,
all of which are nonstationary. If the first in some cases, a more elegant solution can
n observations are regarded as fixed, start- be derived from the continuous time formula-
ing values for the Kalman filter can be con- tion; see section 5.

structed from these observations and the
likelihood function formed from the subsequent
T-n one-step ahead prediction errors, 1i. e.

T
(T-n) 1 1
logL = - — logem - 5 ; logft ] 2 v

where Ve is the one-step ahead prediction
error at time t and ft is its variance, (3.4c).
Predictions of Future Observations

These quantities are obtained directly from

the Kalman filter. Note that instead of ex- Once any unknown parameters in the model have
plicitly calculating starting values from the been estimated, {-step ahead predictions to-
first n observations, the recursions can be gether with this conditional MSEs, can be
started off at t = 0 with an arbitrary a, and made by repeated application of the Kalman

a covariance matrix of estimation errors filter prediction equations. The forecast
equal to kI, where k is a large but finite function for (2.1) is

number (Y} 1n any case the likelihood must be 9T+£/T

maximized numerically with respect to the Cn 5. pﬁ[@ oo £+ i* i o)
hyperparameters in the model, i.e., p, X and T T T s} T 7T e

all the variances of the disturbances in the "
vector n_. (Note that one of the variances ’ % [CjT coskjﬁ N C5T SlnAjL;'
can always be concentrated out of the likeli
hood function). + {Daily and calender effects at T-£7.
A slightly different likelihood function is 2

obtained if the initial state vector, a

= 1,2,... (3.83
of is
assumed to be fixed and the first n cbserva- where m,

- o~ N
T bT’ wT,w;, ch and ch are estimates

tions are random. The Kalman filter is again of M BT etc. computed from the Kalman fil-

needed -to compute the likelihood function,but ter. These estimates are conditional on
the starting value problem is solved by a estimates of the unknown hyperparameters, p,
modification of an algorithm due to Rosenberg Ac’ 02 and so on in the model.

/24/ or by the method given in Wecker and
Ansley /25/ ; see Harvey and Peters /15/, The forecast function in (3.6) is obtained
for further discussion. very easily by observing that if an is the

estimator. of o from the Kalman filter at

Missing observations can be handled quite time T, then
easily within a state space framework; see B 2
Jones /17/ , Harvey and Pierse /13/ and Yrepyr ° z%+£ T 8y Lo=1,2, (3.7)
Kohn and Ansley 21/ . All that needs to be
done is to omit the updating equations since the transition matrix, T, is time
corresponding to a missing observation. Tem- invariant.
poral aggregation is a related problem in
which missing values are incorporated into Estimates of the MSEs of these predictions
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can also be computed by repeated application
of the covariance updating equation (3.3b!.
Of course these MSEs are conditional
hyperparameters.

on the

4. CONTINUQUS TIME FORMULATION

A continuous time model is, in some ways,
more fundamental than a discrete model. It
is not tied to a particular arbitrary time
interval and it removes the constraint that
the observations be at regular intervals.

In order to allow for this possibility it
will be assumed that observations are availa
ble at times t,r r T=1,...,T.

Throughout this section we will adopt the
convention of writing a variable which is
a continuous function of time as, for ex-
ample, u(t). Writing uT will denote the
value of n(t) at t = tT . The other im-
portant convention is that a multivariate
continuous white noise process, n(t) say,
with mean vector zero and covariance matrix

Q will be defined as follows. Let

N s
n (r,s) = J nitldt (4.1a)
r

Then

%
En"(r,s)] = ¢ (4.1b)
and

* * -
EDW (r.s)n (r,s)’] = (s-r)Q (4.1c)
and

% *
sl (ryss)dn (ry,s, 0] =
= 0 for ry < s < r, < s, (4.14)

The matrix Q will be referred to as the co-
variance matrix of n(t)

A first-order stochastic differential equa-

tion for an nxl vector of continuous varia-

bles, a(t), can be written:
d

T fo(t)] = A alt) + nety (4.2)

where A is an nxn matrix of parameters and

n(t) is a multivariate continuous white noise

process as defined in (4.1). The relationship
between a(tT) and a(tT_l), is

(4.3)

&
A(S~s)
+ e nit + slds
L -1

where GT = tT - tr—l’ but the 1 subscript has
been dropped from § for notational wonvenience.
Expression (4.3) can be written as a discrete
time transition equation of the form (3.1b) by
noting that the transition matrix is

eA<S (4.4)
T

while the disturbance term has a mean of zero
and a covariance matrix

8
i - |
o]

In keeping with the convention introduced at
the beginning of this section the subscript
T will replace the subscript t in the state
space model and the Kalman Filter. Note that
both TT and QT depend on 8, but there is no
requirement for § to remain constant over
time.

eA(G-s) 7 eA'(é-s] ds (4.5)

Equation (4.3)can be regarded as being equiva
lent to a discrete time transition equation
of the form (3.1b). All that is required is

a2 slight change of notation to set oc(tT)=0LT
and to let n, be the disturbance integral on
the right hand side of (4.3). In
make this discrete time transition equation
operational it is necessary to evaluate (4.4)
and (4.5). In Jones /19/ and Harvey and
Stock /14/ , the problem of evaluating the
integral in (4.5) is solved by diagonalizing
the matrix A. In the continuous time analogue

order to

of (2.1), however, this is unnecessary as the
derivations can be carried out directly.

Trend - A continuous time linear trend model
can be expressed as

ES) o 1wt nit)

%F = * 5 (4.8)
Blt) 0D 0J|B(t) Tite)

see, for example, Jones /19/, Kitagawa
/20/ , or, in a slightly different context,
Wecker and Ansley /25/ ., Bearing in mind
the definition of a matrix exponential,

AZ + 2. oas .

Zt 31 v (4.7)

it can be seen that the discrete time tran-
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sition equation corresponding to (4.6) is

5 1 Sl(u
T (4.8)

"
+

If the covariance matrix of {n(t), z(t)},
is diag.(ag, 52), then the covariance matrix

of (ny, &), is

(=2, 82 22 | 8 7]

n T3 9% 0 7 9% (4.9)
n I
Q. = 8§
T }------------% ------

]
S =2 ! -2
| 2% v % J

(4.8) reduces to (2.2a) and (2.2b)
(4.9) is identical to (2.2c). Thus let-
ting the disturbances associated with the
level and slope be independent of each other
in continuous time does not imply that they
will be independent of each other in discrete

when § = 1,
while

time. However if the observations are equally
spaced, specifying Q to be of the form (2.2c)
rather than being diagonal is of 1little

practical importance with respect to fore-

casting. Nevertheless the Qn matrix suggested
by the continuous time formulation does re-
solve the problem of how best to specify this
matrix for a discrete model; cf. the slightly
different formulations adopted in
and Stevens /10/ and Harvey and Todd /12/
and the discussion in

/9/ .+ pp.32-3).

Harrison

Harrison and Akram

Cycle - A continuous cycle can be formulated
as

vit) ° Aol [wied k(t)

"
+

£ , . . (4.10)
ly (t) 'AC 0 yo(t) K (t)

where 5 and Ac are parameters, the latter
being the frequency of the cycle. The charac-
teristic roots of the matrix containing these
parameters are p + ix, and o - il,, where

i =/ -1, Since the condition for stationa-
rity is that these roots have negative real

parts, a stationary process must have p < 0.

Using the definition of a matrix exponential,
(4.7), it can be seen that, when 8 = 1, the
discrete time model corresponding to (4.10)

is of the form (2.4c), with §.= logp. The non
stationary model (2.3) is obtained when p = 0.
More generally, the
(2.4a) is

transition matrix in

s cosX$ sinAé

c_ = o]
-sinAé cosid (4.11)
As regards the properties of the disturbances,
it can be seen from (4.5) that if «k(t) and
K*(t) are independent of each other and have
equal variances, then in a discrete time «
and K* will also be independent and have

t
equal variances for any §. If cé denotes the

t

*
common variance of k(t) and k (t). The cova-
*

riance matrix of (Kt,Kt)' is:
K _ 28 =2,
AT L (4.12)

Letting «(t) and K*(t) be independent and
making their variances the same amounts. to
imposing one more restriction then is neces-
sary for identifiability. However, having
the specification of the discrete time model
in (2.4a) independent of the period between

observations is an attractive property.

A pseudo-cyclical process can also be formu-
letting V¥ (t)
follow a continuous AR(2) or ARMA (2,1) pro-
see Phadke and Wu /23/ . The attrac-
tion of (4.10)

ly in terms of the parameters of interest.

lated in continuous time by

cess;

is that it is set up direct-

Seasonal - The continuous time seasonal mo-
del consists of several pairs of components,
kj(t) and A;(t), genefated by a process of
the form (4.10) with o = 0 and kc replaced
by the appropriate seasonal fregquency Aj.

' For irregularly spaced data the form of the

transition matrices, sjt’ and the covariance
matrices of the disturbances can be deduced
directly from (4.11) and (4.12). Again the
restrictions on the continuous time distur-
bances are more than enough to ensure identi-
fiability in discrete time, but the discrete
time specification holds irrespective of the
length of time between observations.

Daily and Calender Effects - The continuous
time daily model is

g

oT ott) = &t (4.13a)
with
verete)] = TE[r - k1] ' (4.131)

where « and k are as defined in Section 2.
Since eO = I, the discrete time model is of
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the form (2.1b), and in the general case of

irregular observations

-~ " —l v
var(g, ) = ogd[l - KT xk'] (4.14)

Calender effects are treated in exactly the

same way.

State Space Formulation and Maximum Likeli-

hood Estimation.

For equally spaced observations, i.e. 6T =1,
the discrete time transition matrix derived

from the continuous time formulation is as -
in (3.1a).

tions the transition matrix and the covari-

For irregularly Observa-

spaced
ance matrix of the vector are no longer time
invariant.

The state space model is completed by the
specification of a measurement equation

However, the possibility of irregularly
spaced observations means that it is now
necessary to discriminate between what econo
mists call stocks and flows. A stock variable
can be measured at one particular point in
time, while a flow variable is an integral

over a period of time. The money supply 1is

an example of a stock, while income is a flow.

In treating flows in this paper it is assumed
that Yo is the

t_.
T

cumulated effect from t_r to

-1

The measurement equation for a stock variable

is

= z! a_ + ¢ = T
Y1 T %1 T , T oo (4.15)
where €. is a white noise disturbance term.

It is straight-forward to apply the Kalman
filter to (4.3) and (4.15); see, for example,
Jones /19/ or Harvey and Stock /14/ . As
in the discrete case, starting values can be
constructed from the first n observations,
where n is the number of nonstationary com-
ponents in the stats vector. The likelihood
function is of the form (3.5), but with the
t subscript replaced by a T subscript to in-.
dicate the possibility of irregularly spaced

observations.
When the observations are flow variables, the
measurement equation can be defined

integral. If the state vector is partitioned
this takes the form

as an

as in (3.2)

(4.16)

where zz(s) is a continuous function, which
may change each time there is a new day in

the interval tT—l to tT. The irregular term

€. May or may not have a variance which 1is
proportional to §, depending on its interpre
tation. An
like (4.16)

integral measurement equation
requires certain modifications

in the Kalman filter. In the case of the mo-
del considered here, these modifications take
a special form, the details of which are set

out in the next section.

5. FLOW VARIABIES.

The modifications in the Kalman filter needed
to handle a flow variable are set out below.
It is then shown that when the observations
are equally spaced, the forecast function for
nonstationary

components 1s the same as

for a stock variable.

Modifications to the Kalman Filter.

Given the measurement equation in (4.16), it
can be seen that the MMSE of Y. at time tT

is

-1

|‘d -
v =z eAls dsta +
“t/T-1 ch 1,7-1
[{6 ' | (5.1)
+ Jo 22-.:)05—"32’_[_1 .
where A, denotes the block in the A matrix

1
corresponding to components other than the

daily and calender effects. The unit of time
will be taken to be one day and it will be
assumed, for simplicity, that § is an inte-
ger so that the integral in the second term
on the right hand side of (5.1) can be re-
placed by a summation. Given this change, the
continuous function, zz(s), will be replaced
by the discrete quantity, Zogr the defini-
tion of which is analogous to the definition
of z

2t
rewritten as

in (3.2). Expression (5.1) can now be

y = w! 3 = '
Ye/r-1 it © e Yoo@

+ W !
1,7-1 2T T271-1 T T-1
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where
J
, o, A, s
"ir TR L e 1" ds (5.3)
and
§
Mar = L7 (5.4)
s=1
The prediction error is
v_ o= -y x _
T T Ve T Vpgpey ToMpleiyTer ) !
{6 s A.(s-u)
’ J e ° n,(t +ulducs +
+ 2 I
1]0 o 1 -2
8 s
* X Zzsj nzltT_1+u)du (5.5)
s=1 [u]

where the partitioning of the disturbance in
(4.2) into nl(t) and nz(t) corresponds to the
l(t)

and az(t). Writing the covariance matrices of

partitioning of the state vector into a

ﬂl(t) and nz(t) as 51 and 62 respectively,
and bearing in mind that they are independent

of each other, the variance of the prediction

error is
'F=E_2 = ) ' f+F
T (vT)’ K Pr-1 h'c ’ zi OlT O
g §
min(Cr., .z? ooz
5=1 rgl Tre)tas 92725 (5.6)
where
ce (5 §/min{r,s) Alﬁs-u] _ Ai(r-u}
QT1T=JJJ e 0, e du dr ds
o0 ‘0 (5.7)

Now consider the modifications required for
the Kalman filter. The prediction equations,

(3.3) are unchanged, but by following Harvey

and Stock /14/ , it can be shown that the
updating equations, (3.4), need to be replaced
by
= a pf v_/f
81 T/T-1 t/1-1 V't (5.8a)
and
- -1 4
P. = P f
T Pasrer T Posre1 To Poea (5.8b)
where fT is defined by (5.6) and
£ £’
f = W '
Pr/r-1 T Peor "¢ 7 [alT q21] (5.9)

The (n - w - w - 2)x 1 vector qfr is defined
b _ A
Yy ay; = QlT z, where

S (s A (8-u) _ Al(8-%)
ot - f J e ! g, e * du ds (5.10)
0

1

while the (w+ w' - 2)xl vector qu is

s 3 =

91 T Zl s 0z 2gs (5.11)

The modified Kalman filter can be applied to

yield a likelihood function for the y's exact

ly as before. However, in order to make it

operational it is necessary to be able to
ff £
1)
evaluate wlT'Zl QlT z1 and qje Fortunately

the block diagonality of Ay

possible to obtain expressions for the trend,

and Ql makes it

seasonal and cyclical components independent-
ly.

Trend - the trend elements in w!_ are

1T

The trend contribution on the term z! fo z

1 1

in (5.6) is

§¢8minir,s) _ _
J [ J {2 + T%(r-u)(s-ulldu dr ¢s =
0’o /o n &

. , 8, 5 80 5.13
G 3 o; ( )

2
n 20

Finally evaluating the appropriate block in
QfT and post-multiplying by the first two

elements of zy, i.e. (1 0)', gives the follow
ing . two elements of qu
2 L 3 !
0" =3 8 ) _6____2 .
5 On + ra GE R 3 GC (5.14)

Seasonal/Cycle - In considering a trigono-

metric component of the form (4.10), only the
case p = 0 will be considered. Formulae can
be obtained for p < 0 but they are rather

more tedious to derive.

A pair of typical trigonometric components
3 )
in w;_ are
8
J [cos As, sin As]ds =
o]
= A-ltsin A§ , 1 - cos A6

The contribution to the term zi fo z1 is

evaluated by first noting that the covariance

matrix of the disturbances is scalar,

52, and that if A_ denotes the matrix

i.e.

then Ac + Aé = 0. Thus the appropriate block
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in (5.7) is

[of e . B

c

_ S8 minf{r,s) ACs Aér
2 { J du dr ds

[alngeings)

The top left hand element of this matrix, i.e.

the appropriate term in Zinl' is

min(r,sl).cosAl(r-sidr ds

By similar reasoning, the corresponding pair
of elements in qu is:

62 (1 - cosA8)/A2 . 01' (5.17)
Lc i
Predictions

In making predictions of future values of

flow variables £ steps ahead it is necessary
to distinguish between the total accumulated
effect from time tT to tT + £, and the amount
of the flow in one time period at time tT+£ ,
i.e, from tT+£—1 to tT+l. The prediction of
the former quantity is given by expression

(5.1) with § = £ and a o Pre

dictions for the latter are obtained by a

replaced by a

similar formula but with the limits of inte-
gration being from £ - 1 to £. It is predic-
tions of this second kind with which we are
concerned below, i.e.

~%
Y1al/7

ZZ[S}GSWE

27"
(5.18)

For the trend component, the first term in
square brackets on the right hand side of

(5.18) is, when pre-multiplied by =z!,

L 1
J {1 s)ds = (1, & - 5]
-1 (5.19)

Thus the forecast function for the trend com~

ponent is linear.

For a trigonometric term with 5 = 0, the term

corresponding to (5.19) is

£
f (cosAs,
-1

sinisids

Post-multiplying by the appropriate two ele-
ments in A and re-arranging, gives a fore-

cast function of the form

GT.coskﬂ + do.sinAl

T (5.20)

where Cp
in aT.

and dT depend on the two elements

The last term in (5.18) indicates that the
appropriate forecast for a daily or calender
effect is cimply the latest estimate of that
effect. Taking this result together with
(5.19) and (5.20) therefore shows that for
a flow variable, the forecast function for
nonstationary components takes the same form
as the corresponding forecast function for a
stock. Thus, for equally spaced observations,
a flow variable can, for practical purposes,

be treated in exactly the same way as a stock.

6. EXPLANATORY VARIABLES.

Explanatory variables, such as national income
or rainfall can also be introduced into . the
model. Thus, if xt denotes a kxl vector of ex-
planatory variables at time t and ét denotes
a corresponding vector of parameters, the

model in (2.1) becomes

L A
t=1,...,T (6.1)

The parameters in 6t change over time accord-

ing to a random walk, i.e.

T t-1 yt (6.2)

where Vi is a vector of random disturbances
with mean zero and diagonal covariance matrix.
Models of this kind have been proposed quite
frequently in the econometric and engineering
literature; see, inter alia, Cooley and --
Prescott /5/ , Garbade /8/
/22/ . The appropriate statistical treat-

and Mehra

ment consists of adding 6t to the state vec-
tor in (3.1).

The continuous time analogue of (6.2) is

d -
d_'t §(t) = vit) (6.3)
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and if the covariance matrix of vu(t) is
diagonal, the implied covariance matrix of
v is
T
the time between observations, §. When Yo

also diagonal, and proportional to

is a stock variable, the appropriate values
of the explanatory variables at time tT
simply appear in the measurement equation.
When yT is a flow variable, matters are
more complicated since the term
$

z! !

3 L} aB(tT’l + S]X(tT'l + sl)ds (6.4)
needs to be added to the right hand side of
(4.16) . The notation in (6.4) is such that

u3(t) denotes §(t) while z, is a vector of

ones. The problem arises bicause x(t) is
continuous and so a continuous record is
needed to evaluate (6.4). If this is not
available some kind of approximation must
be used; cf. the paper by
/2/ , Ch.8).

tory variables which are flows need to be

Phillips in
Bergstrom Note that explana-
handled slightly differently from those
which are stocks.

/. CONCLUSION.

Setting up a time series model in continuous
time provides a rationale for certain types
of fofmulations in discrete time. More spe-
cifically it leads to a class of models which
do not depend on a particular, arbitrary,
time interval. Furthermore it enables irregu-
handled.

Although the emphasis in the paper has been

lar patterns of observations to be

on daily observations, all the techniques
discussed are relevant for monthly, quarterly
and annual observations. It is also possible
to extend these

techniques to situations

where observations are available several
times a day. Situations ot this kind arise

in modelling the demand for electricity or
telephone calls; see Buan /4/ . In this
context a set of sines and cosines may well
provide a viable means of modelling the "pro
file" of demand for a particular day of the

week.

8. APPENDIX - DAILY EFFECTS.

'

The definition of Owt in (2.12) implies that

the disturbance term,

gwt’ obeys a similar

restriction, i.e.

e A

This can be written in matrix terms as
A S
£ K K'ogy

wt w

where k and Et are defined as for (2.13),

and so
var(g ) = k2 kv vy (e
wt ” ar (E)r
= k% k(1 - kP kk')k.o?
W 13

-2 L S , 2
=k ek xRk k] o
%

) - ) 2
= o2k ? [kewlkrkekZy -t k)Tl
W W

= ofKk'K/K = c?[K—kz)/K = o}
S

Z .~
: . £ - Kw/nj

This is the same expression as (2.10).

Furthermore
3 w-1
ELE 4 Eipd = -k, T kg ECE &)
h=1
2 2 Z
-G K K- k (K-k%)=
. E[K-Jz hJ=-gz_;I'-‘ ;
Kw J K g kw!‘— K =
k, K
, S
T 9% —¢

which is (2.11).

9. FOOTNOTES.

This paper was written in August 1983 while

I was a visitor at the Institute of Mathema-
tics, Federal University of Rioc de Janeiro.

I am grateful to CNPq and FINEP for financial
support. I am also grateful to the SSRC for
support in connection with the LSE Econome-
trics Programme on Dynamic Econometric Models,

Bxpectations, Innovations and Choice (DEMEIC).

1. When the model contains calendar effeéts
it will not always be the case that starting
values are formed from the first n observa-
tions due to multicollinearity. Brown, Durbin
and Evans /3/ ,( p.152-3) discuss how to
handle a situation of this kind in recursive
least squares and the solution in this more

general case is similar. If the large kK
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starting value technique is used, however,

no changes are needed.
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