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ON THE TRUNCATED-NEWTON APPROACH
FOR THE HYDROPOWER GENERATION MANAGEMENT
L. F. ESCUDERO
I.B.M. SCIENTIFIC CENTER

In the paper we present the motivation for using the Truncated Newton methodology when obtain
ing the superbasic stepdirection in an algorithm that mazimise the hydropower generation in a
multireservoir, multiperiod power system. The decision variables are the water to be released
from and stored in each reservoir in each time period over a given time horizon. The function
that relates the hydropower generation with the decision variables has a special structure —-
that allows to use second-order information without requiring too-much computer storage and -

time-conswning.
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1. INTRODUCTION.

PROBLEM DESCRIPTION.

This paper reports the motivation for using
second-order information about the objective
function of a nonlinear network flow problem
so that the computer storage and time-consum
ing are affordable even for very-large cases.
The problem consists in the maximization of
the hydropower generated along a time hori--
zon (usually, one year) by a multireservoir
power system. The decision variables are the
amount of water to be released from and stor
ed in each of the interconnected reservoirs

in each time period (usually, The -

a week) .
constraints are of two kinds: linear egua---
tions to ensure flow balance and bounds on -

the variables.

The purpose of the bounds on the variables -
is threefold. First, to ensure that the wa--
ter released serves the flood control, irri-
gation and navegational purposes. Second, to
ensure that the amount of water released ---
from a given reservoir to any of its direct-
ly downstream reservoirs must not exceed its
canal capacity, so that the overflow is not
used for producing electricity. Third, to pe
nalise the amount of water stored that ex—--

ceeds a safety capacity in a given reservoir.

NON-LINEAR PROGRAMMING. NUMERICAL ALGORITHMS.

The constraints form a linear system that can
be represented by a special direct graph who-
se nodes and arcs correspond to the state of
the reservoirs in each time period and the -
decision variables, respectively.

Assuming a multireservoir system of 40 reser-
voirs and a planning horizon of 52 .time pe--—-
riods, the graph has over 2000 nodes and 4000
arcs. The dimensions of the problem are affor
dable for linear objective functions given --
the current state-of-the art of special data
structures for storing and updating the net---
(see /5/, /13/, /14/, /15/ among others) ;

a sounding nonlinear network algorithm must -

work

require a computing time with the same order
of magnitude of the linear ones /7/.
Recently, new algorithms have been designed -
for specializing linear primal data structu--
res to nonlinear network flow problems; see
/Y0 /870 /177, /187, /20/
rences. Apart from recent developments (see -
/2/, /3/, /7/, /8/ the methods

use a linearized subproblem to generate step-

and related refe-
among others),

directions so that the reduced gradient metho

dology is used in the basic-nonbasic environ-
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ment /19/ or in the more efficient basic-su-
perbasic-nonbasic environment /16/. The con-
vergence is very poor since no second-order
information about the objective function is
used. The current methods that use the —-----
Hassian matrix are designed for solving me--

dium scale problems.

This work proposes to use the Truncated New--
ton method to solve the hydropower genera---
tion problem. It was introduced in /9/ for -

general unconstrained nonlinear problems, ex

tended in /10/ to linearly constrained pro--
plems, and specialized in /8/ to network ---
flow problems. The new algorithm (whose de--
tails and computational experience with real-
life cases are reported elsewhere /11/) uses
second-order information in a very large sca
le network flow problem, given the special -
structure of both the objective function and

constraints.

The paper is organized as follows. Section 2
presents the network flow formulation of the
reservoirs management problem. Section 3 des
cribes the hydropower generation function. -
Section 4 summarises the variable-reduction

environment of the algorithm. Section 5 pre-
sents the approach for obtaining the superba
sic stepdirection in the hydropower genera--
tion problem and introduces the new concept

of independent superbasic sets. Section 6 --
describes the de-activating process and in--
troduces the new céncept of independent sets
of candidate nonbasic arcs to be de-activa--
ted. And finally, Section 7 outlines some to

pics for future research and experimentation.

L.EM FORMULATION.

Let J denote the set of reservoirs, T the ti
me periods set, WeJ the water storage reser-
then,

river plants),

voirs (and, J/W is the set of run-of--

EcJ the set of reservoirs ---

that are not used for hydropower generation,

Pj (Qj)

tream (downstream)

the set of reservoirs directly ups--
from reservoir j. The de-
cision variables are denoted ttji’
of water released from reservoir j to reser-

the amount

voir i in period t and stj
ter stored in reservoir k at the beginning -

the amount of wa-

of time period t. The flow balance equations

are

- r .. = S,. + z r,... + s . =b_ .,
iep. tij tJ ico, tji t+1,3 tJ

J J
YteT, Jjed

(2.1)
where btj is the next exogenous inflow to re

servoir j in time period t, and s

15 and 553,j
are fixed.

Letting X be a vector of all decision varia--
bles and b a vector of the exogenuous inflows
system (2.1) can be written

AX = Db (2.2)
where A is the node-arc incidence matrix. For
]Qj!:l this network is refered to as a tempo-

rally expanded arborescence /18/. Since in --

our case, it is not excluded, although it is

not frequent, that |Qj|_>l let us term it, tem
porally expanded guasi-arborescence. Each co~
lumn of A corresponds to an arc {(whose flow -
is rtji or Stj) and each row to a node for --
each pair (period, reservoir). The nonzero -—-
elements in a column are +1 in the row corres
ponding to the node where the arc originates

and -1 in the row where the arc terminates. -
In addition, there is a root node which repre
sents the Exit in all time periods for the re
servoirs jeJ such that aier, i = |INJ|+1.

The bounds on water released and stored are -

given by

ljisrtjiguji Vler, jed (2.3a)
mtjssthMtj ¥teT, JeW (2.3b)
such that usually, mtj:mj and Mtj=Mj VteT,
where mj and Mj are constant values, being --
mlszlj VieW.

Following a traditional approach /16/, matrix
A can be partitioned as follows.

A = (B S N)

where the columns of B form a basis and -----
correspond to the basic arcs, and the columns
of S and N correspond to the superbasic and -
nonbasic arcs, respectively; let B, S and N -

denote the related basic, superbasic and non-

basic sets of arcs. Nonbasic arcs are tempora
rilly fixed to their bounds, and the flow in

sets B and § vary between their bounds.

By construction of A it can be shown
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(1)

(5}

Any basis B may be ordered such that it
is upper triangular /6/.

The arcs corresponding to columns in any
basis form a spannhing tree of the net---
work /5/.

A maximal basis spanning tree for a gi--
ven feasible solution avoids a basic-su-
perbasic degenerate pivot /8/; otherwise,
null steps are more freguent than in pro

blems with a general structure.

Let Z be the variable-reduction matrix -

whose columns form a basis for the null
space of A, given AZ=0, such that /16/

7 = I a-n (2.5)

where n denotes the number of nodes ~- -~
without including the root and a denotcs
the number of arcs. Let Basic-Equiva--
lent Path (BEP) define the unique path -
in the basis spanning tree that leads --
from originating node, say ik in superba
sic or nonbasic arc k to determinating -
node, say jk; let Bk denote the set of -
arcs in the BEP of arc k. Arc k‘eBk --
has a forward orientation in the BEP of

arc k if p(ik.)k=jk, , where p(.)k ig -
the predecessor of arc (.) in the BEP -
of k; it has a Yeverse orientation if --

p(jk.)k=ik. - Let o denote the column -

- l N
(B S)k i in any case, o, is not expli--

citly stored. The nonzero elements of Ok
for keSuN are +1 for a forward orienta--
tion and -1 for a reverse orientation. -
The inexpensive implicit computation of

matrix Z (2.5), via specialized network

data structures as in /18/, and the -~--
structure of the Hessian matrix G (3.5)

(see below), makes affordable the using

of second-order information in this very
large-scale problem.

The temporally expanded arborescence net-
works have the property that a-n=n; note
that, usually, a-n>>n in a general net-
work. As a result, ISk] is very small. -
Any time segment of our network is a gua
si-arborescence and, then, |Bk[ is still
relatively small; this property will be
exploited in the related algorithm.

3. THE HYDROPOWER GENERATION FUNCTION.

The important property of the hydropower ge-
neration function is spatial and temporal gua-

si-separability. See /2/,/7/, /8/ for separable

functions, /8/ for temporal separable and spa
tial nonseparable fuctions in very large-sca-
le problems , The hydropower generated in re--
servoir j at time period t can be exnressed

as follows.

hey = Ky ) Tiit YteT, JjeJ/E (3.1)
ieQj

where Ktj may be constant or a nonlinear func

tion fnZ of the s-variables for each reser---

voir in set J/E. Let j be termed linear reser-

voir (and, then, (t,j,i) is a pure linear arc)

if Ktj=Kj’ where Kj is a constant; otherwise,

j is termed nonlinear reservoir such that ---

function K, . can be written

t3
= Y /2)
Ktj fnﬂ((ctj+ct+l,j'/2’ (3.2)
where ctj is the water level in reservoir j

at the beginning of time period t, such that

ctj = fnﬂ(stj) (3.3)

Let PL denote the set of pure linear arcs ---
(t,j,1i), VL the set of linear arcs (t,j,i) -=

with variable coefficients, and NL the set of

nonlinear arcs (t,j). Arc (t,j,1)ePL if -----
Ktj=Kj. Arc (t,3j,1)eVL if Ktj is a nonlinear
function given by (3.2)-(3.3); note that htj

is a linear function of g rtji if Stj and ---

are fixed. Arc (t,j)eNL if K is gi--

St+1,4 £3

ven by (3.2)-(3.3), since Stj and St+l,j are

nonlinear variables.

Without penalizing any amount of water stored

or released, the objective can be written

max 3 h . (3.4)
teT jeJ/E oY

Let gtji for (t,j,1)ePLuVL and gtj for —-—-—----
(t,3j) eNL denote the gradient elements rela--
ted to the r-variables and s-variables, res~-
pectively. Note that the gradient related to
set PL is constant, gtj=0 and gtji=0 ¥jeE, -
and gtji for (t,3,1i)eVL does not change for -
fixed values of s, . and s .. The Hessian -

t3 t+l,3
matrix G has the form
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PL VL NL
——
G,=0 0 0 PL
G = 0 = .
G,=0 G,y VL (3.5)
0 Gt
G3 G4 NL

such that G3 is a two-diagonal mateix for --

[Qj|=l Vjed and Gy is a symmetric tri-diago
nal matrix; see an example in form (3.6).

T3 | X
L X X (3.6a)
Gy = 512
612 rrox
712 X
$31 %41 Ss51 Sg1 S 7

Note that the off diagonal elements in a gi-
ven column of matrix G3 have the same value
for {Q.]>1, jew/E

J

$31
541 X
Gy = 51 XX (3.6b)
561 X X
s71 X

31 %41 %591 Sgq1 Sqq

Let Rji denote the power generation capacity

of canal (j,i) for jeJ/E, and T a safety -

upper bound on the amount of watér to be sto
red in reservoir j for jEW at the time period
t; note that upper bound uji may be regarded
as the maximum physical capacity of the seg~
ment (j,i) in the river. Now,since water ---—
overflow rtji_Rji (where ZjiSRjisuji) cannot
be used for hydropower generation, and it --
could be interesting to penalise the excess
of water stored Stj_th’ the objective can -
be expressed by (3.7) instead of using (3.1)
and (3.4).

max {} I oho. - 3 ] P, .max{0,s_.-T,.}}
teT je¢I/BE ©) ter jew I t] t3
(3.7a)
where
htj = Ktj ) mln{rtji,R..} (3.7b)

X i
1eQ.
J

and Ptj is the unit penalty for excess on wa

ter stored. The nondifferentiability introdu

ced by (3.7) can be treated without great -~--
difficulty (see Section 6).

4, SKELETAL ALGORITHM FOR OBTAINING FEASIBLE-
SCENT SOLUTIONS.

Let d define the stepdirection from feasible
solution, say X such that the new iterate ~-
can be expressed
X: = X + od (4.1)

where scalar o is the steplength. Given egs.

(2.2) and matrix partition (2.5), by lineari
ty it results

dB
(B S N) ds =0
dN
being d=(dg,d§,d§)t. The basic stepdirection
dB is used to satisfy the constraints system
(2.2), the elements of nonbasic stepdirection
dN’ say dk for keN are temporarilly fixed to -~
zero, and the superbasic stepdirection ds is
used to maximise the objective function —---
(3.7).

At each iteration, the problem then becomes

determining vector @ and scalar o, such that
od is feasible and ascent enough, and the al
gorithm is globally and, if possible, Q-su--
perlinearly convergent. Direction d is feasi
ble if system (4.2) is satisfied. Since dN=0

and ds is allowed to be free, it results

dB = -B SdS (4.3)
such that

= 4.4
d zZdg ( )

The ascent enough stepdirection ds can be ob

tained by 'solving' the problem

t t
max{h ds + 1/2dSHdS} (4.5)

where the reduced gradient h and the reduced

Hessian H can be written

hEZtg = gg —StuB (4.6)

H=z7 Gz (4.7)

such that the basic estimation UB of the ---~

constraints Lagrange multipliers solves the
system

_ ot (4.8)
9 = B g
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and g = (gg,gg,gg)t Note that the solution
of problem (4.5) and, then, the solution d

S
of system

Hdg = -h (4.9)

is feasible-ascent for a positive definite -

matrix -H and a maximal basis spanning tree.

Solving the n-system (4.8) when the arcs ---
corresponding to the columns of B form a ---
spanning tree does not need a great computa-~
tional effort /5/, but the LP simple rules -
for updating My do not apply when the objec-
tive function is nonlinear (even if basic --
set B does not change) . From other point of
view, using (4.8) in (4.6) is computational-
ly advantageous, since (1) a-n=n for any ---
arborescence tree and, then IBk[ is small --
for k€SUN, (2) the cardinality of the set to
be used while iteratively solving problem --
(4.5) is much smaller than a-n, and (3) Bk -
must be used, in any case, for oktaining the
upper bound @m of the steplength @. Then, it
can be written /18/

hy =g, - 1 YkeS (4.10)

Kis Pk k9%

k

Matrix H is likely very dense even for spar-
se matrices Z and G. Since our problem is ve
ry large, we cannot afford to use matrix H,-
nor any of its approximations suggested in -
the literature. We suggest to use the Trunca
ted Newton method at independent series of -
iterations {(see Section 5), such that matrix
H does not need to be stored and the compu--
ter time and storage are within affordable -
limits. Note that system (4.9) is not needed
to be completely solved at every iteration -
for getting, under mild conditions, a Q-su--

perlinear rate of convergence /9/.

The steplength o must be feasible and ascent
enough. Being d ascent, a feasible o« must be

such that O<a$am, where e is the upper bound

for keeping feasibility; an is obtained by -
analysing the sign of each element dk and --
k in the di-
rection of the sign for ¥keBuS. Let a s 8 -
or mtj)'

'intermediate' bound (Rji or th, see Section
3) and upper bound (uji or Mtj) of the feasi-
ble flow in arc k, respectively. The active -

bound abk is obtained as follows.

the related active bound, say ab
a
and ék denote the lower bound (1ji

(1) If dk<0A§ks5k, ab, :=a

(2) If dk<0AXk>ak, ab. :=a

(3) If dk>OAXk<ak, kT3

(4) If dk>0Axk2ak, KTy

After obtaining an ascent enough steplength
o at the current iteration (here, termed ma-

jor iteration),
X:=X+ad is obtained and, theoretically, the

say £ , a new iterate -----

algorithm continues till || hl|] =0 or the su--
perbasic set is empty and, then, the de~acti
vating process is executed; the Lagrange mul
tipliers if the solution is optimal or their
estimates if the solution is quasi-optimal -
are used for selecting the nonbasic arc to -

be deactivated (see Section 6).

While maximizing in a given manifold, it is
possikle that either a basic or a superbasic
arc strikes a bound during the search. If a
superbasic arc strikes a bound then it beco-

mes nonbasic, the cardinality of the basic--

superbasic set on is reduced by one, and the
search continues. If a basic arc strikes a -
bound then it is exchanged with an approprie
te superbasic arc and the resulting new su--
perbasic arc is made nonbasic. Note that the
related pivoting and, then, the new (maxi--
mal) basis spanning tree may be easily obtain
ed by using LP special data structures with-
out any matrix manipulation; we use the data
structures described in /18/.

5, OBTAINING THE SUPERBASIC STEPDIR

10N,

5.1. BRIEF REVIEW OF THE TRUNCATED NEWTON-
METHOD .

See in /9/, /10/ the motivation for using --
the Truncated Newton methodology when 'sol--
ving' sistem (4.9); it is a natural extension
of the conjugate gradient method for solving

system

- -h = 5.1
Hdg-h 0 ( )
At each iteration, say i (here, termed minor
iteration) of the conjugate gradient method,
a stepdirection 6él) is obtained as a linear
combination of the residual error ----------

e(l—lL‘Hdél_l)-h and the stepdirections ----
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{ééj)} of previous minor iterations such -~-- -f is pd the rate of convergence on {X}+§ is
that they are conjucate. superlinear iff
(1) _(i-1) (1) o (1) . . )
Let ds ‘dS + q GS be the solution -- lim I[e|[/||h||+0 (i.e., nK*O) (5.4)
(probably, inexact) of system (5.1), where -- such that its order is t+1l, where 0O<t<1l iff
u(l) is thef(exact) steplength that solves --
Lin [l e]l o/l nj 17F <« (5.5)
the guadratic problem 1+t 1+t )
. t . .

min {e(l D) udél)—l/z u28él>tH§él)} (5.2) Thus, tolerance N, can be written

(1) ne=min{n_,y| h|| £ (5.6)
Note that e can also be written £ oY 1+t :
e(1) - e(l—l)_u(l)Hdél) (5.3) for O<n0<1 and vy>0; for t=1 the rate of con

vergence is quadratic as the Newton method.-

If H e(i)llsatiafies the accuracy tolerance gi e [|hl‘ is largé (X is away from §)' only.-
venat major iteration £, then dszdsl is theA‘ few minor itera?lons are required fir obtain
truncated solution of svstem (5.1). The pro- ing ds; when X is getting close to X then -~
cedure is as follows: I h|| 0 which implies Ng*0 and, then, dg is

getting close to a Newton stepdirection. To-

lerance 1, i1s a safeguard against unstabili-

SKELETAL ALGORITHM Al ties on calculating q(l). Although ¢, only -
1 Yy
needs to be positive, it is other safeguard;
(0) assign e(O):=_h; 5(1):=_e(0); q(1):=H6(1) it avoids that ds is not ascent (e.g., if -H
S s . . _1/2
N 1s not pd). Typical values, El = EM ; where
(1 1
If 5 ) q( )2—s1|[6é1)|[§ -+ dsz=6é1), stop €y 1s the machine precision in floating —---
point calculations (in our case, 10E-15), --
(1 alM e (M, S0 o) () _ '
S s T,=3/8] , =1 ang Ng=1/L', where £' is the
Stopping rule: major iteration of the subproblem defined by
(1) (1) . the current manifold; £' is reset to 1 when
. . =4 , stop -
1f I]e I|1+t/||hll1+tsn2+ds S set S is changed.
i:=2
5.2 INDEPENDENT SETS OF SUPERBASIC ARCS.
i i-1 2 i-2 2
) 81 e [ BT 2 iRy 2
Note that algorithm Al does not require the
s (1) __ -1) (i)é(i-1). (1) _ s (1) . . .
s e +B s i g +=H s calculation of any Hessian matrix, but the -
(1t (1) (i) (2, . (i-1) product
If 65 q 2-E1ffds [|2+ds.—ds , Stop
) o vt (i) _ (1) t (1)
1 2 = =
(3) &(l):=‘lle(l )Ilz/éél) q(l) q = H@S = 7 GZCSS (5.7)
(i) (i-1) (i) (1) i -
dg™ r=dg +o Sg For obtaining q(l), superbasic set S is par-
(i) titioned into, say |{P| disjoint so-termed --
If i=t_ -»d_:=4 , stop .
s S independent superbasic sets, such that
e(i):=e(i—1)_u(i)q(1)
Say §@ (5.8)
(4) Stopping rule: peP
(i) (i) (P z(a) _
1f e HHt/HhHHtSnQ*dSFdS , stop 577 ns {9} ¥p,qgeP (5.9)
(5) i:=i+1, go to (2) For stating the necessary and sufficient con
ditions for the unique valid partition (5.9),
It can be shown /9/ that for €,>0 small ----- let 5(P)c3 define the set of basic arcs co-
enough, dS is an ascent stepdirection, the -- vered by the superbasic arcs included in set
(D) -
steplength a=1 is ascent enough in the vecini S(p ; that is,
ty of the local optimal point ¥ of the -—--—o (0)
current manifold (if -H is positive definite B'P A U By (5.10)
‘nd) and n£+0 for £+w), and the above algo--- kES(p)

rit.m is globally convergent; in addition, if

442



Qtiestiié - V. 7, n° 2 (juny 1983)

(i) Superbasic arc k will be included in set
§(p) if the following condition is satis
fied
5% ng 2 (g (5.11)
That is, two superbasic arcs will belong to
the same independent superbasic set (and, -
then, they will be simultaneously used for
obtaining the independent superbasic stepdi
rection dép)) if, at least, any flow change

in one of them effects the other's solution

feasibility. Note that condition

BknBL={ﬂ} (5.12)

is not sufficient, since it could be possi--
ble that Bk and 8[ are disjoint sets and the

following condition is satisfied

5PVag 2 (03 a B®ag,2 () (5.13)

(1i) Two superbasic arcs, say k and £ will -
belong to the same independent set if -
any flow change in any of them effects the -

other's objective function coefficient.

Let E(p)éﬁ(p)ué(p) define the set of basic

and superbasic arcs to be used for obtaining
(p)
ds .

Superbasic arc k will be included in set ---

§(p) if the following condition is satisfied

HGgg.#O such that
(gs{k}uek)A(g-EE(Pb (5.14)

Then, arc k will be included in set §P) if
conditions (5.11) or (5.14) are satisfied.

Now, assume that there is other independent

set, say §(q) for which, at least, one of the

two following conditions is satisfied

ﬁ(q)nek# (g} (5.15a)

G__,#0

99 such that

(ge{k}uek)A(g-ea(q)) (5.15b)
In this case, the new independent set will
be

g(p)ug(

q)u{k}ugk (5.16)

Since i6k| is small, G very sparse and, like
ly, ]a(p)| and |6(q)| are also small (note
that the de-activating process is only used
for optimal and guasi-optimal solutions in -
the current manifold) then the number of si-
tuations for which conditions (5.15) are sa-
tisfied, could be reduced without too-much -
time-~consuming. In any case, analysing the -

two above conditions is not time-consuming.

Let VLcVLn(BuS) define the set of variable-
coefficient linear variables whose coeffi---
cients are only related to nonbasic set N. -

Let cr U c(P).
~peP

Note that at major iteration £, |P| inde--
pendent iterations are consecutively execut-
ed; note also that there are {i} minor itera
tions to be executeu at each iteration p for

peP.

The advantages of using independent sets at

sucessive major iterations are as follows.

(1) The computational time for obtaining vec
tor q(l):=Zt(G(Zdél)

duced.

})) is drastically re

(2) Faster minor iterations at the price of
more (but much cheaper) major iterations.
Note that the elements of matrix G out -
of set E(p)

ing dip).

are not modified after obtain
Note also that only the ele----
ments of matrices G3 and G4 related to --
set C and the gradient related to set ---
C/ PLUVL are to be evaluated at the begin

ning of a given major iteration.

(3) S.rong reduction on the number of arcs --
{i.e), cardinality of 6(p)) to be used --
- or obtaining the steplength related to -
set E(p). Note alsc that only the terms -
of set E(p) in the objective function ---
(3.7) are to be recomputed for obtaining
the objective function value F(Xég)) re--
lated to each trial step.
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5.3. REDUCED GRADIENT USED AS A SUPERBASIC
STEPDIRECTION.

Assume that the p-th stepdirection is being
obtained for peP. Assume that —-—-—-—-——=—-—-—-o
E(p)/(PLqu)={Q}; in this case, a LP-network
subproblem must be maximised, such that the

related stepdirection d(p) can be rxpressed

d(m:= 153

K k%% T kves, Prkx vxes ()
(5.17)
cé?: -3 o rry Ay vKes (P
ksg(p) k'K
(5.18)
Note that, in this case, a(p>—a(p) See also

Section 6.6.

5.4. OBTAINING VECTOR q(l) IN THE TRUNCATED
NEWTON METHOD.

Assume that q(l) is related to the superbasic

stepdirection d(p); see Section 5.1. Let ---

Eép)é(a/a(p))uﬁ define the complement of set
z(p)
C .

(1) Obtain intermediate vector Q(i):=Z(p)6éi),
such that
(i) =(p)
Z_(p)kaék Y2¢eB
0 k ¢S .
§(1 .= aél) vges (P) {5.19)
¢} Vlea(p)

n

Note that the(O,il)matrix p is not required
to be explicitly stored; we use data structu
res very similar to those described in /18/.

(2) Obtain intermediate vector S(i):=G§(l),

(3)

q(i) —Z(p)g(i)=§;i)-(B_lS)(p) Sgi’, such that
S(ﬂ=(5(i)t,g(i)t,§éi)t)t
°B Vs )

q P =5 () 5.7 xes

“k k k'eSkpk‘k k' (5.21)
6. DE-ACTIVATING STRATEGY.
6.1. DEFINITIONS.
Let the following stopping tests (with va--

lues true and false) for the optimization -

on the manifold, provided that the solution

X=X+0d is feasible and ascent.

t1:|1h[|2g52v]1d\|2/(1+}]x1|2)gg3v§={z}

£2: [F(X)=F(X) |/|1+F(X) |se, in the last =t

4 2

major iterations

t3:|]h[}2595

An optimal solution is assumed to be found

in the current manifold if t1; the current -~

solution is quasi-optimal 1If [t1a(t2vt3). --

Typical values for the (positive) tolerances

are = =
82 63 €

€5=e6|]hI|E , where h' is the reduced gra---

4=10E—04,T2=3, initial

dient related to the initial feasible solu--

tion, €. is dynamically adjusted, and ¢ _=0.2.

5 6

Let U define the set of unsafe arcs;

a unsa
fe arcs is a nonbasic arc that we made basic-
superbasic and, again, become nonbasic at --
any major iteration executed after obtaining

the optimal solution of the previous manifold.

such that
0 vzséép)uPLu€E
) G s —
(1) gtea(®) g 3%9' =g ¥9eVL/VL (5.20)
§ = .
L (i) (1) = (p)
—  Gagug 8500 ¢ y (o Gaggrlqr VieT PNt
g'eVL/VL g'eC nNL

Computation of vector S(i) is very fast since
each row of G3 and G4 has only two and three
nonzero elements, respectively,
of g(i) related to set Eép) are
then,

the elements

zero (and,

the related columns of G3 and G4

not used), and only the rows of the Hessian
matrix related to set E(p)/(PL Vi) are used.

are -

(3)

Obtain vector
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Let us define indicator Yk ¥keN as follows.
yk=0 means that nonbasic arc k is not a can-
didate to be de-activated; otherwise, it ta
kes the sign of its de-activating direction
(+ for up-direction and - for down-direction)
A nonbasic arc will not be a candidate to be
de-activated if it is an unsafe arc, the pri
cing is not favorable or it is a blocked arc;

see Sections 6.2 and 6.3

Let D define the set of nonbasic arcs to be
de-activated; that is, the arcs that will be
moved from the nonbasic set to the superba--
sic set. Let Béggpﬁ(p) and P o5 (P2 {g}, -
(

where D p) is the independent nonbasic set -
to be de-activated and, then, joined with in
dependent superbasic set g(p)_ A candidate -
nonbasic arc will not be de-activated if ‘5‘
is at its (upper) bound and there is, at ---
least, other candidate arc with higher -----
(first-order) guarantee for a stronger in---
crease in the objective function; see Sec—-~-

tion 6.4.

6.2. PRICING NONBASIC ARCS.

When a solution on the current manifold is -
quasi-optimal, Yk=0 ¥keU; when the solution
is optimal, set U is declared empty.

The nonbasic Lagrange multipliers estimation
Acan be written

YkeN/U
(6.1)

Mo T 9 L Py T 9 - g,
ksBk

For szgk (lower bound), Yy =t if Yk>€7;

otherwise, Yk=0, where 67 is a positive tole
rance, (typically, 10E-04). For ikzék (upper
bound) , Y= if Ak<—e7; otherwise, Yk=0. No-
te that Iyr is the usual k'~-th gradient ele-
ment for Xk.¢ak.

But for ik'zék' ('"interme

diate' bound), Iy for k'eBk is assigned as
+, +

fo}lows: Iy 1 359 for (gk an? ok.k=—l) or -

(gk and pk,k=+l), and Uy v 359 otherwise =--

(see below) .

In general, gz and gz are the gradient ele-
ments of arc £ (gz=g£ for iz#at)related to -
its up-direction and down-direction, respec-—
. + -
tively. Note that gz—O and gt_Ktj for —-=—-=-
£z(t,3,1), see (3.7); it is assigned -------
. . +

max{O,stj—th}:=stj:Tt. fer obtaining g, for
£z(t,3j) such that g£:g£+Ptj' Note that the

computation of Iy r {and, then, ék) ————————

for kIEBE and ik,=5k, is based on Prvy and

Yp i then, the ambiguity of Iy s for k'eSknBK
is solved by blocking the nonbasic arc that

satisfies test t5 (see below); note that ---
there is not a null step for [ t5 since X is
used as the stepdirection of set D (see sec-
tion 6.6) and a maximal basis spanning tree

Ax'e 5P ypeP such that
ik' is at any of its bounds).

is assumed (i.e.,

T == [ : ] : _——
For Xk—ak ('intermediate' bound), Yk is

assigned as follows:

0 if (gy-gs€,)A(gL-g,2-5,)
+Af (gmg e, Mapmgae,)
- if (g;—éksa7)A(g;—§k<—e7)
j such that

]gi_§k|=maX{lg;_§k|'lg;_ékl}

Finally, assign gk:=gi for i=Yk and, then,
expression (6.1) may be used for

A VkeN/U|Xk=akAYk#O.

Let the following anti-zigzagging test for
any nonbasic arc being priced out.

tyllhll g=egln, |

where €g is a positive tolerance (typically,
0.9). When the solution on the current mani-
fold is quasi-optimal, arc k will not be con
sidered as a candidate to be de-activated --
(and, then, yk=0) if Tt4.

6.3. BLOCKING NONBASIC ARCS.

A maximal basis spanning tree avoids degene-
rate basic-superbasic pivots, but it does --
not prevent null steps when a nonbasic arc -
is de-activated /8/. Therefore, a mecanism -
is needed for testing whether a nonbasic arc,
say k must be considered as a candidate to be
de-activated. It may be carried out at the -
same time the nonbasic arc is priced (i.e., -
its Lagrange multiplier estimate is calcula-
ted) and, then Yy is set to 0 if otherwise a
Thus, yk=0
if t5vtévt7, where t5, t6 and t7 are the re-

null step could not be prevented.

sult of the following blocking tests:

£5: Ak=min{[Akl,[AZuXk,=ak, for k'eB nB,

such that Keﬁlyz#o and X >0}

K Pk kPr e
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Note that [t5 if the flow in basic arc k' --
changes in the same direction for any flow -
change in the appropriate direction of arcs

k and £ (given by Ak and AZ’ respectively).

t6 (case yk=+): k'eBk such that

pk‘k:_l (reverse)A(Xk,=§,) or

pk'k=+l (forward)A(Xk,=§k,)

t7 (case yk:—): k'eBk such that

ok.k=-lA(Xk.=§k.) or

=+1A(Xk,=a

Pxrk 3 )

If t5vt6vt7 we refer to arc k as a blocked -
arc and, then, it will not be a candidate -

to be de-activated.

6.4. OBTAINING SET D TO BE DE-ACTIVATED.

A multiple de-activating strategy is allowed

such that as many as possible candidate nonba
sic arcs are to be de-activated up a given --
bound, say min{r3,59|ﬁ / Ul}, where Ty and gg
are positive tolerances (typically,T3=30 and

€9=0.5).
and storage required by the Truncated-Newton

method, it is interesting that the cardinali-

For reducing the computational time

ty of any independent set §(p)u5(p) does not
exceed a given bound, say T4 (typically, 60).

Given the dimensions of our problem, we sug-
gest to use for partial pricing if ——-————--
]N/ﬁ]zelo(a-n), where e,, is a positive tole
rance (tipically, 0.1), such that only a sub
set of N/U 1is priced at each de-activating
process. Basically, the procedure consists -
in pricing sequentially the arcs in se: N/T
so that they will be candidate to be de-acti
vated if the pricing result is favorable. --
Once D reaches the allowed bound, the next
candidate scanned arc will replace thas arc -
from set D with the worst pricing result ---
till r is not greater than a given bound, --
say €44 (tipically, 0.1), r takes the ratio
of the number of replacements to the number
of candidate scanned arcs. When Esell the -~
Scanning is interrupted; it will be restart-~
ed, at the next de-activating process, by --

pricing the arc where it was left out.

Let the following de-activating tests:

t8 :|D]<min{T3,€91N / U}

t9 :(|Ak|>min{|A[[V£eB})Aft8
t10: |N/T] >e,,(a-n)

tll:;ssll

Formally, DADu{k} for ykﬁo if t8vt9.

After the de~activating process, if the solu
tion on the current manifold is quasi-opti--

mal, tolerance 85 is reset to

€ :=min{92,85(l—el2)} (even if D={g}), ----

5

where €12 is a positive tolerance (typically,

0.3). If the solution is optimal, U is decla
red empty and 35:=‘|[Akvk65|[2 for D#{@) if

D={g}, stop since it is assumed that the op-~
timal solution of the problem has been found:
note that (t5vtévt7) for t1a|D|=0; that is,-
there are not blocked arcs when the optimal

solution of the current manifold is found --
and there is not any nonbasic arc with a fa-

vorable pricing result.

Finding the most suitable values for the to-
lerances is a subject for experimentation, -

mainly for the multiple pricing tolerance Tye

6-.5. OBTAINING THE INDEPENDENT SET 5(p) TO
BE DE-ACTIVATED.

Recall Béggpﬁ(p) and B 05D =(0} . Let
Eép)gﬁép)uﬁ(p) and Eép)ékgﬁ(p)ﬁk. An arc, -

say k o be de-activated could be included -
in set 5(p) if any move dk#o effects the so
lutior. feasibility or the objective function
coefficient of any arc from set E(p)uéép);
formally, 5(p)é5(p)u{k} for keD if ——-———-
t12A(t13vtl14), where tl2 for o=1l, t13 and

tl4 are the result of the following including

tests:

e 15PN 15 v ocn
. (=) =(p)
tis: (BUIUuB S )ng #{g}
£14% 36,4, 40] (gelkIugy)n(g et Py (P))

It is suggested to perform the testing in --

the following sequence:

t12, t13 and til4.

How, to assure that sets 5(3) ¥jeP are inde

pendent, it is required to analyse if any mo
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ve dk#O ksB(P) will effect the solution fea
sibility or the objective function coeffi---
vgeP/{p} i -
in that case, both sets must be joined. For-
mally, ﬁ(p)éﬁ(p)uﬁ(q) and B(q)é{ﬂ} if —==
t124 (t15vt16) such that o=|5§ D |+5(D |

for t12 and where tl1l5 and tl16 are the result

cient of any arc from set ﬁ(q)

of the following joining tests:

trs s BP BP0 (5D D) » gy

tl6: HGgg,#O|(gea(p)uéép))A(g'ea(q)uaéq))

It is suggested to perform the testing in --
the following sequence:

tl2, t15 and tle6.

If keD is not included in D'P) (and, then,
ji=|p|+1, B3 aik} ana PapPu{j}) or 'Y is -
(p) due to tl1l2 then 5(3) in -

the first case and 5(q) in the second case -

not joined to D
will be used for obtaining a(p) and uép)

Selecting nonbasic arcs to be de-activating
may be performed in several ways; one of the
main criteria could be reducing lﬁ(p)| ¥peP
and, then, increasing the number |P| of inde
pendent sets of arcs to be used for obtaining
the stepdirections of the next manifold. Fin-
ding the best procedure is left open at this
point.

6.6. 'SOLVING' THE NEWTON EQUATION AFTER DE-
ACTIVATING.

The new ascent independent stepdirection ~---

t
(p)_, 5(p) (p)
dg™' =(dg S

direction related to the old superbasic set
s(p)
S

(p) 5t
gsp )", where d takes the -

and gép) is related to set 5(p) is ob-

tained as follows.

0 if ||h\|2=32v§(p)={ﬂ}

g(p) -
Truncated-Newton direction in
Hgép)=—h, otherwise
(p) _ =(p)
dg = {hk keD }

where h and H are related to the current so-
lution X=X+ad and hy =X, . Note that the new -
direction is a mixture of the scaled stepeest
ascent direction and an accurate Truncated- -
Newton direction; since the flow change in --

set Eép) has the appropriate direction (see

avoided provided that B

Sections 6.2 and 6.3) then a null step is ---

g(p) is a maximal basis

spanning tree.

/. _FUTURE WORK.

The work covered by this paper is in progress
and we cannot say too-much about computatio--
nal experience. We have experimented with a -
shorter version (6 reservoirs and 24 time pe-
riods) of the real-life problem. It seems ---
that the ideas described in this paper (main-
ly, the concept of independent sets of super-
basic and de-activated nonbasic arcs) are =---
worthy of extensive experimentation; a care--
ful implementation of the algorithm is plan--
ned. In the sequel of this paper /11/ we are

planning to report the results of the current
algorithm as well as the results of the modi-

fications described below.

Computational time is important because the

model is to be run frequently for planning -
purposes under several assumed inflow pat---
terns. It is important to solve the 6-reser-
voirs problem efficiently if the computing -
time for the full 40-reservoirs system is to
be within affordable limits; in some cases,

aggregating the last, say 14 weeks of the ti
me horizon into 3 time periods (months) does
not strongly deteriorate the planning objec-

tive.

Topics that are worthy of future experimenta

tions are the following.

1) Selecting candidate nonbasic arcs.

The procedure could promote small indepen---
dent sets of arcs to be de-activated, while
de-activating as many as possible arcs up a
given bound and the first-order estimation -
of the objective function gains is not strong
ly deteriorated.

2) Maximizing the hydropower benefit function.

The important property of this function is --
temporal separability and spatial non-separa-
bility. Since there is an economic interac---
tion between the decision variables of all re
servoirs in the same time period, the whole -
system must be treated in the same run, even

if the reservoirs are not physically intercon
nected. By using the strategies described in

/18/ for selecting candidate nonbasic arcs, -
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it seems that the Truncated Newton methodolo-
gy could be used to obtain independent super-~

basic stepdirections at each major iteration.

3) Activating as many as possible superbasic

arcs at each major iteration.

Note that, barring exceptional circunstances,
at most one
set C(p)

basic-superbasic arc per each -
peP can be added to nonbasic set N
in the algorithms based on manifold subopti-
mization and active set strategies as above;
so if, say 1000 arcs are active at the opti-
mal solution X and the initial feasible solu
tion is interior, then the method will requi
re at least 1000 major iterations to conver-
ge. Let

p)

az"’ =min{] wkeB(P)y (7.1)

(ik—abk)/dkl

p)

=min{| wkes (P}

(
B
g

(ik—abk)/dkl (7.2)
denote the upper bounds on steplenath u(p) -
for keeping feasibility on sets ﬁ(p) and §(p)
respectively such that amb)—mln {a p) ép)}_
If a(p)—ué p) (p) is obtained w1th a tradi-
tional linesearch /12/ that preserves (-su--
perlinear convergence, If aép)=aép), fewer -
major iterations could be reguired by allo--
wing more that one superbasic arc from set -

(p) to be activated at each major iteration;
given the special structure of matrix p (re-
call that it is not explicitly stored ) y ==

the time consuming is likely to be within --
affordable limits.

See in /4/ a nonlinear algorithm for a gene-
ral system of linear constraints; the objec-
tive function F(X) is expressed as a func---
tion of ¥ such that Y=AX, where A takes the

submatrix related to 'active’ constraints --
and bounds and, then Y gives the solution --
vector of 'active' slack and structural varia
bles. A kev point in the new algorithm is the
transformation X=T(Y) such that the problem,

at each major iteration, becomes:

ad arg max{f(§+udy)

1 <Y+udv<uy, 0<u<a } -
where Y is the feasible solution at the pre~-

vious iteration. The feasible set is referred

te as the active rectangle at the current ite

ration. The algorithm has, under mild condi--
tions, O-superlinear convergence.

In out context, a version of this algorithm -
is as follows. Assume that the independent su

perbasic stepdirection d(p) has been obtained

as follows: d, = h vkEI(p), where I(p) -

k k

denotes the set of guasi-active arcs in the

p-th superbasic set such that
(p) z(p)y 3 (p)
1'P) = (ke I 1X -ab, [<e P/}

where scalar s(p) is given by

E(D)=min{el3,]]is—[is+h]#|l} (7.4)
for e,3>0 (typically, 0.01), [.]# will be -
described below and, by slight abuse of the
active bound notation used un Section 4, aby
denotes the active bound in the direction -
of the sian of h, . Let 1( a5 1P, a, -
for keI tp) is a Truncated Newton direction
and dk—O for keN. Anv new feasible solution

_re(p) (p (p)
BS—{XBS ¥peP}, XBS ={x, vk eC Y,
(p)

p)_ = (p) AP
XB —{Xk vkeB }, and XS
kes the form

={xk weed Py, ta

(P = (BP0 (P) g (0] ¥y

(7.5a)
(P)_5 4+p(P) (v (P)_z(p)

XB —XB P (XS XS ) (7.5b)
where o(p) is the submatrix of p related to
set E(p), 0<asaép), and [.]# denotes the oro
jection on the feasible superbasic rectangle
for X(D) such that, it results
(i ) case 2k<5 ke 8 (P)

a if x <a
# -k . k —k B
[xk] =9 %k if apexp<d,
a, if x >3
(ii ) case % >3 ke§ (P)
ak if xksak
[x 1t x if a-<x <a
k-~ _k k "k =k
a if x>a
—k k. ~k
(iii) case X =a, keB (P}, dép) is obtained
as described in Section 6.6.
# 2 PEoxgsay (ease y,=-1)
[xk]‘ ={x if ak<xk<3k

ik if xkzak (case yk=+1)

Note that the strategy used for de-activating
nonbasic arcs (see Section 6) prevents degene
rate pivots, provided that a maximal basis —--
spanning tree is used.

Following the same approach described in /4/,

it can be shown that, under mild conditions,

the solution Xég) (7.5) is feasible and as---

cent enouah, such that
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(p)_ _m(p)
“ =B (7.6)
where m(p) is the first nonnegative integer
m (0,1,2,...) that satisfies the two follo--

wing conditions

smsaép) (7.7)
(p) z(p) n_(p)
FX JT)=F(Xp") 2 u(By ): ( ?kdk +
kel p
n
+ ) hy (X, =X, )) (7.8)
kel(g
where Be{0;1}, 1e{0;0.5} (typically, 8=0.5
and u=10E-04) and the scalar y(p) is given -
by
y (P min{1, | (X, -ab,)/d, | Vkelx(lp)} (7.9)

Note that for m»0, the right-hand side of --
(7.8) is nonnegative and it is positive iff
iég) is not an optimal solution in the cur--

rent manifold.

It is suggested to start the linesearch with
m; such that BmI=min{aép),Bo}; if at any ma-
jor iteration a fixed number T (typically,
2 or 3) of trial steplengths fail to satis
fv the Armijo-like condition (7.8), then, --

Y(p) is used as the next trial value.

The main advantage that the new linesearch -
offers over the manifold suboptimization-ba-
sed algorithm as described in the above sec-

tions is that as many as |S5| new arcs mav be

come active in a single major iteration. Ho-

wever, the computational performance of the
new approach and the comparison with the ma-
nifold suboptimization alternative is a sub-

ject for future experimentation.

8. ACKNOWLEDGEMENT .

I wish to thank Ron Dembo for various guiding
comments and suggestions that have stronglv -
improved the algorithm. In particular manv --
thanks go to Phil Gill and Walter Murrav for

providing their linesearch routine.

9. REFERENCES.

/1/ P. BECK, L. LASDON and M. ENGQUIST, "A
reduced gradient algorithm for nonlinear
network problems", ACM Transactions on -
Mathematical Software 9 (1983) 57-80.

/2/ K. BELLING-SEIB, "An hvbrid reduced New~-
ton algorithm for nonlinear network pro-
blemsy NETFLOW 83, Pisa (Italy), 1983.

/3/ D.P. BERTSEKAS, "Algorithms for optimal
routing of flow in networks’, Coordinated
Science Laboratorvy , working paper, Uni-
versity of Illinois at Champaign-Urbana,
1878.

/4/ D.P. BERTSEKAS, "Projected Newton methods
for optimization problems with simple ---
constraints,” SIAM J. of Control and Opti
mizaton 20 (1982) 221-246.

/5/ G.H. BRADLEY, G.G. BROWN and G.W. GRAVES,
"Design and implementation of large-scale
primal transshipment algorithms”, Manage-
ment Science 24 (1977) 1-24.

/6/ G.B. DANTZIG , "Linear programming and
extensions (Princeton University Pres. -
Princeton, N.J., 1963).

/7/ R.S. DEMBO, "The design and implementa---
tion of algorithms for large-scale nonli-
near network ootimization", NETFLOW 83, -
Pisa (Italv), 1983.

/8/ R.S. DEMBO and J.G. KLINCEWICZ, "A scaled

reduced aradient algorithm for network --

flow problems with convex separable costs"

Mathematical Programming 15 (1981) 125-147,

/9/ R.S. DEMBO and T. STEIHAUG, "Truncated-New
ton algorithms for large-scale unconstrain

ed optimization", Mathematical Programming
26(1983) 190-212.

/10/ L.F. ESCUDERO, "On diagonally-precondi---
tioning the Truncated Newton method for -
super-scale linearlv constrained nonli---
near programming", QUESTIIO 6 (1982) 261-
281.

449



Qtiesttié - V. 7, n.°o 2 (juny 1983)

/1y/

/12/

/13/

/14/

/15/

/16/

/17/

/18/

/19/

L.F. ESCUDERO, "Computational experien-
ce with a Truncated Newton algorithm --
for the hydropower generation manage—---
ment . A nondifferentiable nonlinear -

network flow problem” (in preparation) .

P.E. GILL and W. MURRAY, "Safequard ~--
steplength algorithms for optimization
using descent methods", National Physi-
cal Laboratory, report NAC 37, Tedding-
ton (UK), 1974.

F. GLOVER, D. KARNEY and D. KLINGMAN, =~
"Implementation and computational compa
risons of primal, dual and primal~-dual
computer codes for minimum cost network
flow problems", Networks 4 (1974) 191-
212.

M.D. GRIGORIADIS, "On the implementation
of primal, dual and parametric network -
simplex methods", Department of Computer
Science , working paper, Rutgers Univer-
sity, New Brunswick, 1982.

D. KARNEY and D. KLINGMAN, "Implementa-
tion and computational studv on an in-
core, out-of-core primal network codeﬁ
Operations Research 24 (1976) 1056-1077.

B. MURTAGH and M. SAUNDERS, "Large-sca-

le linearly constrained optimization",

Mathematical Programming 14 (1978) 41-72.

R.E. ROSENTHAL, "The status of optimiza-
tion models for the operation of multi--
reservoir systems with stochastic in----
flows and nonseparable benefits", Tennes
see Water Resources Center, report 75, -
The University of Tennessee, Knoxville,
1980.

R.E. ROSENTHAL, "A nonlinear network ---
flow algorithm for maximization of bene-
fict in a hydroelectric power system", -
Operations Research 29 (1981) 763-786.

P. WOLFE, "Methods for linear cong——-—-—-—
traints", in J. Abadie (ed.), Nonlinear
programming (North-Holland, Amsterdam, -
1967) 99~131.

/20/ M.Z. YAKIN, "Deterministic and stochas-

tic water reservoir management models”,
College of Business Administration, wor
king paper CBA 1982-98, University of -
Houston, Houston (Texas) 1982.

450



	
	
	
	
	
	
	
	
	
	
	
	
	
	

