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POWER Bias INn MAxiMUM ENTROPY
SPECTRAL ANALYSIS
JUAN 1. EGOZCUE (*), JAUME PAGES +)

Several algorithms have been used in maximum entropy spectral analysis. Among them, the stan
dard Burg procedure and the forward-backward least squares method are considered.

When the autoregressive model, which is implicit in these estimation methods, is used to si-
mulate the analyzed process, the power or variance of the simulation can differ from power -
estimated from the signal in several orders of magnitude. This is specially dangerous in si-
mulated studies about the maxima of certain parameters.

Burg's method, although not optimal in the least squares sense, produces autoregressive mo—-
dels whose estimated prediction error power is consistent with the estimated total power, ——

while least squares method sometimes do not.

Suitable corrections to power bias are described and two numerical examples clear up diffe—-

rent situations.

Keywords: MAXIMUM ENTROPY.

SIMULATION.

1. INTRODUCTION.

The spectral analysis of autoregressive (AR)

processes has been the subject of a great --

number of studies and papers, and has motiva
ted a number of different estimation algo---

rithms, such as Burg method /3/, which we re
fer as Burg Forward-Backward method (BFB), -

and the method introduced by Nuttall /12/ --

and independently by Ulrych and Clayton /13/,
which we will refer as Forward-Backward Least
Squares method (FBLS).

The main goal of these studies have been the
detection of dominant frequencies and resolu
tion of spectral maxima. The evaluation of -
the power associated to each spectral peak -
and the total power or variance of the pro--
cess are secondary problems. This is possi--
bly because power estimate bias can be correc
ted by a scale factor, and also because in a
large number of applications, the estimation

of the power is not an important matter.

However, in simulation problems, as often --

stated in engineering, the correct estima---

AUTOREGRESSIVE.
MAXIMUM LIKELIHOOD.

VARIANCE ESTIMATION.

tion of the power is of central importance.
Indeed the extrema of a simulated process -
are, in many cases, the parameters that the
engineer 1s controlling, those extrema being
approximately proportional to the standard -

deviation of the process.

Clearly we could set up ourselves within the
general framework of variance estimation pro
blems, so that, in many situations it would
be enough to use for a zero mean stationary

process, the unbiased variance estimator --

given by
N
A1 2 _ 1 .t
(1) Po=x 1 X =g X X
k=1
where X = (xl,...,xN)t stands for real data

vector, and the superscript t indicates ma--

trix transposition.

The value of ﬁo can differ significatively
from the true value of the AR process varian

2 .
ce 0. Thus, a scale factor correction may -
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be necessary.

We will disting at least between two --
common cases when we try to analyze a data -~

vector X:

A.- The signal X is large with respect to --
the periods we must study. Then, ﬁo is a
good estimate of oi and the hypothesis -

N
o, = PO can be assumed.

B.- The signal contain low frequencies that
we do not want to reject and it have in
complete cycles of these frequencies. --
Perhaps then, ﬁo do not approximate well

the true value of oi

From now on we will discuss the power estima
tion capabilities of the BFB method and the
FBLS method.

2. BURG MAXIMUM ENTROPY SPECTRAL ANALYSIS,

This estimation algorithm (Burg,/3/) has be-
came a standard procedure in many applica---
tions and we shall be interested in the stu-

dy of some of its power properties.

We shall be concerned with m-th order autor~
regressive processes, shortly AR(m), descri-

bed by the well known egquations

m
(201 o Xyox = €y Imo = 1
k=0
2 _ \
Om = E(aj,
where E(.) is the expectation operator and -

Ej is a white noise process, assumed normal

and of zero mean. The coefficients Ik "7

. . 2
k=1,2,...,m and the noise variance o, are to

be estimated from the data.

The power spectral density of the AR process
(2) is given by

where T is the time sampling interval.

The so called normal equations

_ 2
(4) RS GS = Us Is
(Rg) jx = RUF=K]) = BOGx)  3,k=0,1,...,5
t t
GS = (1,81,...,s8) Is= (1,0,...,0)

are to be fullfilled by the coefficients of an
AR(s) model.

The BFB procedure assumes that 05 = ﬁo and ---

uses Levinson's recurrence

(5)

gsk gs—l,k + 9ss gs—l,s—k

to solve the normal equations (4) for subse---
quent orders s =1,2,...,m. At each step, we --
consider the unbiased estimator of the noise -

variance (prediction error power given by

(6) B = L TUoe? (k) + el (k)
s 2 (N-5) 1s 2s
8 k=1
where for any j=1,2,...,N-s
S s
(7 e15(3)= ) *j+s-k Isk €6 (3)= ) *j+k 9sk
k=0 k=0

and ﬁs is to be minimized as a function of Iss
at such an step. The errors (7) are often ca-

lled forward and backward prediction errors.

The minimization of (6) leads to the following

expression of
P Igg

N-S
-2 e g1 ke, o (k)
8 g =kl
SS
N-8
2 2
y l:el,s_l (ktl) +e; (k):]
k=1

which together with (5) complete the Burg ite-

rative procedure.

In this fashion, we subject ﬁm to a minimiza-~
tion which is constrained by the previous mini
mizations of all ﬁs s=1,2,...,m-1. Thus, BFB

is a suboptimal least squares method.

We now can ask about the estimate of oi that -
we should take in (2) in order to simulate --
the process, or in (3) in order to perform a -
power analysis. It is a common practice to ta-
ke the standard estimate Pm based in the Levin

son's recurrence as follows:
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- m 2
(9) p_ =P n (1-g-.)
m 0 j=1 JJ
By doing so we are placing ourselves within

case A.

On the other hand BFB has the property that

the expected value of ;m is Pm’ when the ade
cuate AR model coefficients are fixed and --
the hypothesis oi = Eo is assumed (see apen

dix). This is to say

(10) E(P

2 A
m | Gn(BFB), oo =P} =P

so that, if we define
-~ m
(11) P =P I
m =

as another estimator of og , then

-~

(12) E(P_

Numerical experience shows that PO fluctia~-
A
tions about the value PO can be ignored (see

numerical examples) .

Relations (10) and (12) do not hold if the AR
model is not adecuate, specially for orders -
higher than 2/3 of the data length.

Therefore, we conclude that the use of Pm (9)
as an estimator of Oi is equivalent to the -
hypothesis §O=Ug, often used in case A, ~-
However no significative difference is obtain
ed if we take gm as an alternative estimator

of ai for moderate m in BFB.

In case B, ﬁo=ﬂi can be a wrong hypothesis
and, as a result, Pm should be a bad estima-

tor of o Also Pm is not a reliable estima-

[SR=1N N

tor of am, because its value is controlled -
by (10). Moreover, in section 4 we shall ---
show that we cannot correct the estimated --
power ﬁo in BFB, by using a scale factor, --
without decreasing the likelihood of the ---
estimated model. Hence, BFB method should be

avoided in case B to study the signal power.

3, FORWARD-BACKWARD LEAST SQUARES METHOD.

This method was introduced by Nuttall /12/,--
and also by Ulrych and Clayton /13/. The algo
rithm presented by Fouguere /9/ added scme --
new features, while a recursive procedure de-
signed by Marple /1!/ improved some computa--
tional aspects of the FBLS method.
~

The main idea behind FBLS is to minimize Pm -
as a function of the AR(m) model coefficients
(Nuttall /1%/, Ulrvch and Clayton /13/) or as

a function of the reflection coefficients ---

gjj j=1,2,...,m /9/. The latter alternative
leads to a cumbersome non-linear problem, --
but having the advantage of guaranteing the

stability of the AR(m) model. The Nuttall --
method bahaves computationally better, but -
may give a non-stable prediction filter. In

the opposite case, the stable filter obtain-

ed by Nuttall method equals Fougere's filter.

The minimization of Pm as a function of ----
.. i duced to solve the line-

gml,gmz,. + Iy 18 redu

ar system of equations

(13) Qme = PmIm

where the matrix Qm is defined as

N

(14) () =

Qm ik 2 (Xr—j Xr—k+xr—m+j Xrﬂn+k)

r=m+1

3,k = 0,1,...,m

Like in BFB method we have some freedom to -
choose the estimator of ci For instance, we
could use P as estimator, but there is an al

ternative option using Pm(9).

If we select P, as the adecuate estimator, -
Nuttall's FBLS method requires the step down

Levinson's procedure

_ 9k Iss gs,s—k

2
ss

k=1,2,...,8-1
1-g
to find the reflection coefficients —----=----

o PO
3]
calculate Pm), because those were not expli-

j=1,...,m-1, (otherwise necessary to -

citiy obtained. This step can be omitted in
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Fougere FBLS method, because the reflection
coefficients are the variables of the minimi

zation problem.

In any FBLS method relations like (10) and -
(12)Ado not hold, and it may happen that Pm
and Pm‘differ in one or even twe order§ of -
magnitude. The same applies to PO and PO. An
example of this is given latter on.

In FBLS we can choose Pm as estimator of oi
which amounts to assume case A. (like in the
BFB}, while if we select gm as estimator we
are in case B. 1In fact, in this latter op--
tion it seems preferable to assume oi = E -
rgthef than the alternative hypothesis -----~

g =P
o]

o These two assumptions are not in--

compatible but often lead to different re---
sults in evaluating total power.

s

The hypothesis ci = ﬁm can be justified when
we analyze sinusoids with additive white noi
se:1f the order of the AR model is greater -
than Ewice the number of sinusoids, we ex---
pect Pm to be a good estimator of ci,Aand, -
on the other hand, to estimate oi by PO may

give substantial errors when incomplete cy--

cles are present. However sinusoids in white

noise are not regular processes and stationa
Ty AR models are not adequate to analyze --
these signals.

When FBLS method is applied to fit an AR(m)
model, with m greater than 2/3 of the data -
length, there are too many parameters to be
fitted given the number of sample prediction
errors. This causes drastic decrease of gm’
while the~model is brought close to singula-
rity and PO underestimates 03 in several or-
ders of magnitude. Moreover, these overfit--—
ting effects introduce numerical problems in
the FBLS algorithms.

4, MAXIMUM LIKELIHOOD CORRECTIONS FOR LEAST
SQUARES METHODS.

The Maximum Likelihood Principle can be use
to partially correct the estimated power, by
maximizing the likelihood of the data sample

X with respect to a scale factor of variance.

Assume X to be a gaussian vector sampled ---

from an AR{(m) process. The sample likelihood

is
2 -N/2 -1/2 1.t -1
(16) 1.(02,G, [0 =2m VR | T? exp(- S xE R %)

where RN_l is the autocovariance matrix of -
NxN order and |.| stands for matrix determi-

nant.

For a fixed prediction filtef Gm weAcan defi
ne a new power estimator by 05 = a PO with -
ﬁ; fixed and a as a variable. It easily seen
(Burg et al., /3/, Kay,/10/) that the value -
of a which maximizes L is

t -1
X TN—l

(17) a =
N

X

where TN—l’ is the NxN autocovariance matrix
determined by Gm with its main diagonal ---
being equal to ﬁo Then, an additional =----

amount of likelihood would be obtained correc

ting PO . The new estimates are

(18)02 2 6% = 4 p o2
0 [e) (6] m m m

From numerical experience, it has been found
that BFB estimated correction (17) is always
one. We conclude that, for fixed BFB predic-
tion filter Gm' the BFB estimate of oi, say

Pm,'is the optimum in the likelihood sense.

This does not happen in FBLS in which the --
scale factor (17) can differ from unity in -

several orders of magnitude.

The maximum likelihood corrected prediction -
power o is not equal to Pm, although those -

two values are usually gquite close.

If a , given by (17), is different from unity
and the estimated AR model is to be used in -
simulation studies, then there will be conve-
nient, in case B, to take gi as the predic~~--
tion error power. Only when we are sure that

go is close to 05 (case A.) we may choose Pm
as prediction error power.

The computation of (17) is an awkful task if N

is a large number. Then, it is convenient ---

416
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(see, for example, Kay,/10/) to use the follo
wing identity.

t -1 _ At
(19) Pm X TN_1 X = Gm Vi Gm
where
N-j-k
(200 v, =} Xpsg Xpgg  3/K=01,..m
ik r=1

The identity (19) was presented by Box- --
Jenkins, /2/ ). It is based in a factoriza--

. -1
tion of TN_l

in terms of G_.

m
In this fashion, the computational cost of --
the cuadratic form in (17) is drastically re-
N-1 has not -
to be inverted. The matrix Vi is easily calcu

duced as m is lower than N and T
lated by a simple recurrence (Dickinson /8/).
After formula (19) and introducing variance -

scale factor, the logarithm of likelihood (16)

appears to be proportional to

Gtanqn
(21) H(a,G,X)= - log|TN_l| - N log a -
aPp
m
where the determinant /10/
m-1
|yl = Pﬁ_m_l n P
j=1

is easily calculated from Gm making use of --
step down Levinson's procedure. In the nume-
rical examples, The function (21) has been -~

used to measure the sample likelihood.

>, NUMERICAL EXAMPLES.

An analysis has been made of a series of 35

annual means of the H component of the geo--
magnetic field recorded at Observatorio del

Ebro (Tortosa, Spain) from 1943 to 1977.

The data have been smoothed and the linear -
trend has been substracted. The signal is --
shown in Figure 1. Some signals related to -
these data have been analyzed by Courtillot
et. al./6/).

From the above mentioned series a value of -
A
PO = 527.35 is obtained. The FBLS analysis -

provides stable prediction filters up to or-
der m=10, and the use of Fougere algorithm
is necessary for orders greater than 10.
Total power FBLS eftimate ;o appear to be --
quiteNappart from PO (Table 1) . In contrast,
BFB PO appears to differ slightly from value

~

Po.

Overfitting effects are clearly detected for
higher order FBLS models and it is quite ---
apparent his down-biasing. Moreover, impor--
tant rounding errors appear in Fougere algo-
rithm for models greater then 20, and these
results in Table 1 have to be regarded as a

mere approximation.

The main features of the above described ana

lysis are

-The estimatsd BFB total powers ;o are cente
red around PO value.

-Most of the estimated FBLS total powers ;o
are well above Po (except for orders greater
than 26).

-Likelihood scaling of FBLS variance seems ha
ve little importance in simulation experien-
ces, but it provides an useful comparison --
between likelihoods associated to BFB and --
FBLS models.

-When as an effect of overfitting a model is
close to singularity (m227) the likelihood
scaling causes the power to get around go
The shape of the analyzed signal leads to --
case B., and, in a certain sense, we can —--—-

accept FBLS as the adecuate method of analy-

. 2
sis, and 3m as the estimator of the predic--

tion error power.

Figure 2 shows two simulations of the signal
based on each of the BFB and FBLS models, --
using for both of them the same realization

of white noise, however scaled to the predic
tion error power (Pm in BFB, 82 in FBLS).

A comparison of power spectral densities of

BFB and FBLS for an AR(12) can be seen at Fi
gure 3. The expected peak at an eleven years
period appears with a small shifting between

11.7 and 12.0 years, despite these periods -
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are masked by low frequencies.

The annual means of the Zurich Sunspot Num--
bers from 1943 to 1977 were also analyzed. -
This signal was taken up to 1957 from Cher--
nosky and Hagan /5/ and the following years
from Solar-Geophysical Data (Central Radio -
Propagation Laboratory, Boulder, Colorado), -

and it is shown in Figure 4.

This second signal provides us a simple exam
ple of case A., where PO can be taken as a -

good estimate of Ui .

After we have substracted the mean value, we
obtain PO = 2886.6. The results of the analy
sis are shown in Table 2.

The Marple FBLS algorithm does not give sta-
ble AR models from m = 17 onwards, as there
happened in our first example. Therefore we -
use again Fougere technique for those unesta-
ble models.

No significative bias from P, is detected in
neither BFB and FBLS algorithms. The varian-—
ce likelihood correction causes little modi-

fication of power and likelihood.

It is worth noting that likelihood of FBLS -
models is not necesserily greater than the -
one obtained from BFB method.

There is no problem in assuming Eo as the va
riance of the signal and Pm as the variance
of the prediction error in this second exam-
ple.

6. REMARKS AND CONCLUSIONS.

In many applications we have an interest in
variance or power measuraments, for instan-
ce process simulations to study the maxima
and minima effects.
We often get case A., where a} as given by
(1) is a good estimator of signal power; so
that we choose

as variance of the AR model input white noi-
se.

In case A., usually there are no important
differences between BFB and FBLS analysis, -
as long as we will not deal with sinusoids;
then, the BFB method seems suitable, being -
simple and numerically stable, and could be
often recommended to avoid the precision pro
blems and computing time inherent to Fougere
algorithm,thought as an alternative to Mar--
ple recurrent algorithm when an unstable AR
model is got.

However we can get to case B., in which go -
is not reliable estimator. Then it would be
advisable to study the power estimate ﬁ; as
given by both BFB and FBLS methods. For fi-
xed and acceptable model from BFB we would -
get

| 2

a ~ ~
o) =P, G) =P, , EP lo =P ,G) =P

E(® [¢] [¢] m' o [¢] m m

0
so that BFB 50 would not give significative-

ly different estimate from ﬁo'

However, in the FBLS method, Po and PO may -
differ by several orders of magnitude, and

the hypothesis
. =P , O = E
may be unrealistic.

It can be necessary a likelihood variance --
correction, that leads in many cases to grea

ter likelihood and better estimate.

Burg's method cannot be corrected in this --
way, because the fitted autoregressive model

maximizes its likelihood at value Po'

If it is necessary to use large order AR ---
simulation models the least-squares method

should be avoided, since it underestimate

These large order models are better analyzed
with maximum likelihood estimatory, like the

one presented by. Burg et.al. in 1982.
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TABLE 1.
FBLS
m %, (8FB) B, (FBLS) 52 (FBLS)  H,a=1 H,a(18) H,BEB
2 4.71 e02 8.70 e02 9.27 e02 -131 =125 -128
3 4.85 e02 9.47 €02 9.91 e02 -130 -122 123
4 4.99 02 1.18 e03 1.23 e03 -134 =117 ~120
5 4.82 e02 1.36 e03 1.39 <03 -134 -111 -115
6 4.92 e02 1.38 03 1.38 03 ~-130 -107 -I11
7 4,69 e02 2.52 e03 2.68 <03 -192 -107 -110
8 4.79 e02 2.00 <03 2.08 e03 -160 -106 -109
9 4.95 02 2.03 e03 2.03 e03 -159 -106 -109
10 5.14  e0Q2 2.42 e03 1.74 e03 -139 -101 ~105
11 5.19 e02 6.66 03 6.41 03 =404 -102 -104
12 5.05 e02 2.61 e04 2.77 eQ4 -1768 -105 -103
13 5.17 e02 1.38 =204 1.40 e04 -882 -104 -103
14 5.25 e02 2.78 e03 2.81 e03 -188 -95 -98
15 5.23 e02 1.71 e04 1.66 04 -1041 -94 -96
16 5.46 e02 1.29 e04 1.22 e04 =757 -94 -95
17 5.30 e02 4.43  e04 3.95 e04 -2530 -96 -95
18 5.33 e02 8.33 e04 1.0l 05 -6508 -101 -93
19 5.49 02 3.44 04 4,25 e04 -2733 -99 -91
20 5.55 e02 1.43 03 1.58 03 ~-114 -82 -87
21 5.77 e02 1.80 e03 1.82 03 -125 -82 -87
22 5.88 e02 2.19 e03 2.29 e03 -149 -84 -86
23 5.97 =202 1.03 <07 6.37 06 -4.2 e5 -102 -85
24 6.18 e02 7.18 e03 6.25 e03 -369 =76 -84
25 6.79 e02 4.86 e04 4.51 e04 -84 -29 -84
26 7.12 e02 3.18 e05 4.87 05 -3.2_ed4 -96 -83
27 6.11 e02 1.19 e00 7.17 e02 =27 =26 =73
28 5.99 eQ2 5.45 e-1 8.39 02 -30 -26 -73
29 6.25 e02 1.58 &0l 5.17 02 -45 -45 -71
30 5.60 e02 9.25 e-l 4.89 e02 -64 -64 =71
31 6.34 e02 7.22 e-3 4.34 eQ2 -64 -63 -70
32 7.60 e02 4.04 e-1 5.71 e02 -68 -68 -70
33 1.05 e02 9.40 e-2 5.36 e02 =70 ~70 =70
A
P = 5.27 e02
Analysis of geomagnetic field (component E ), 1943~1977.
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TAHRE 2.
FBLS
m %, (BFB) 3, (FELS) 62 (FELS)  H,a=l H,a (18) H,BFB
2 2.95 e03 2.83 e03 2.77 e03 ~255 -255 -255
3 3.04 <03 2.90 e03 2.76 e03 =250 =250 -250
4 3.04 <03 2.78 03 2.65 03 =250 -250 -250
5 2.98 03 2.53 e03 2.48 03 -250 -249 -249
6 2.98 €03 2.94 e03 2.85 e03 ~249 -249 -249
7 2.94 e03 3,05 e03 3.00 e03 -249 -249 -249
8 2.95 e03 2.94 03 2.91 e03 -249 -249 -248
9 3.03 <03 3.36 e03 3.29 03 -245 =244 -244
10 3.12 03 2.98 e03 2.92 03 =245 -245 -244
L1l 3.21 e03 3.15 e03 2.97 03 -243 -243 ~243
12 3.24 e03 2.99 <03 2.80 e03 =243 -243 =242
i3 3.22 03 2.53 e03 2.40 e03 ~242 -241 -241
14 2.82 e03 1.74 03 1.98 03 ~244 ~241 =241
15 2.95 e03 1.68 03 1.84 03 =244 -241 -240
16 3.00 e03 9.54 e02 2.07 03 =242 ~240 =240
17 2.93 e03 2.73 e03 2.94 03 ~240 -240 -235
18 2.91 03 1.78 <03 2.23 e03 -239 -238 -235
19 2.95 e03 1.17 <03 1.62 e03 -241 =237 -234
20 2.96 e03 9.21 e02 1.32 e03 =242 -234 -231
21 2.77 e03 7.74 e02 1.33 e03 -228 ~-219 -228
22 2.96 e03 2.09 e02 1.21 03 ~254 ~245 ~226
23 2.69 03 2.98 e04 1.78 04 =341 -223 -226
24 2.06 e03 9.43 e-3 1.65 e03 -116 -112 ~224
25 2.08 <03 1.1l e-1 3.20 e03 -142 -142 -221
26 2.18 03 3.63 e00 5.11 €03 -192 -185 -220
27 2.36 e03 3.92 <00 4.99 03 =200 -194 -216
28 1.87 03 1.08 eOL 8.55 €03 ~228 -198 =214
29 1.97 <03 1.22 00 2.14 03 -189 -188 ~213
30 2.02 e03 1.1 e-1 5.35 e03 ~218 =210 =212
31 1.70 e03 1.77 . e-4 4.90 03 -220 =214 =211
32 1.91 e03 4.29 e-3 1.09 e04 -280 -227 =211
33 2.19 03 3.45 e-4 3.67 e03 ~217 =215 =210
P,= 2.89 e03
Analysis of Zurich Sunspot mumbers, 1943-1977
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o

GEOMAGNETIC FIELD
1
<]

5

1943 1953 1963 1973
TIME (YEAR)

FIGURE 1 Annual means of terrestrial magnetic field
(component H) recorded at Observatorio del Ebro
(Tortosa, Spain) from 1943 tc 1977. The signal

was smoothed and linear trend substacted.

TIME

FIGURE 2.

Simulation of geomagnetic field.
Thin line: Fougere's AR(12) with 3§
Thick line : Burg's AR(12) with P

m
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FIGURE 3 Power Spectral density of geomagnetic field
estimated by BFB and FBLS with an AR(12)
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FIGURE {4 Annual means of the Zurich sunspot numbers,

from 1943 to 1977
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/. APPENDIX.

OTAL POWER ESTIMATOR IN THE M 0D,

Following (6) we take the prediction error --

power estimated with an AR(m) model to be

N-m
S~ 1 2 . 2
(A1) P = m:—) ) (em(K) + e2m(k)>
M x=1
with elm(k), e2m(k) defined as in (7).

From Levinson's procedure (5), error recurren
ces are derived
e = ey o K+ g ey ey (0
(A2)
ey k) = eZ,m—l(k) * 90 ©1,m-1 (k+1)
k=1,2, , N-m
By sustituting (A2) in (Al} we get
N+1-m
N 1 2 2
(A3) B = ——— 3 (L+g ) (el,m_l(k)-s—
2 (N-m) -1
2 2 2
+ezm4&U—(%Jwﬁh+e2mdmmﬂﬂ(H%w+
N-m
+'4gnn1 z el,nhl(k+l) e2,m—l(k)
k=1

If we are working with BFB,
(A3)

the last term in
can be compared to the numerator of (8)

N g m m m
~
2
@5) B =—2 1 (-gi)-—— [ u 1 (-gL)
N-m k=1 2 (N-m) j=1 J r=j
where for any j = 1,2,...,m
_ 2 2 .
(26) Uy = 1,51 (1) + €y, 4-1 (N+1-3)
Using (A5), we can write the total power es-
timator defined in (12) as
~ ~ ' -1 _
(a7 P = —EL-PO S S i (l—gir) !
N-m 200 J o=

Now, we start from hypothesis og = PO and --

. . . . t
fix the prediction filter Gm=(l,gml,...,gmm)

or the equivalent reflection coefficients --
gjj 3=1,2,..
to be taken as random variables,
13- (1 ey 5o (NF1=9)
random variables of zero mean.

.y, are still

and the ---

while the terms uj

errors e being normal

If the prediction filter Gm is a step in the

Levinson's recurrence (6) to reach the true

AR model, the variance of both errors in ---
(A6) 1is Pj-l‘ Therefore, if this condition -
applies, the random variables
2 2
el,._l(l) €5, 4-1 (N+1-m)
!
1/2 1/2
PyY PyY

are distributed as a XZ of a single degree -

and substituted into (A3). On the other hand of fredom. Therefore, if we take expectations
the denominator of (8) can be transformed, - in (A7) we set
after adding and substracting adequate terms,
in a function of ﬁm, so that finally we get (28) E(; ) = g
the ﬁm recurrence: © ©
l—g2

~ N-m+1 2.0 mm |, 2 2
(M) P ="—— (-g JP_, - —— (e (1) +e (N-m+1) )

m N-m '’ " me1 2 (¥=-m) 1,m~1 2,m-1

This recurrence applies also to complex data,
although we assume real data along this paper.
On the other hand,

expression (A4) is similar

to the one introduced by Andersen (1978).

From (A4) we obtain by index recurrence

=}

and multiplying by

2
(l—gjj) we also set

(A9) E(P) =P

m

We recall that derivation above relies on --
two main hypothesis, namely

PN
o =P
o] Q
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- Gm is the true prediction filter, or Gm is
an intermediate step in Levinson's recu---

rrence to get the true model.
Therefore, if a strong difference is found -
~ ~

from BFB Po to Po’ the above hypothesis -
are probably false.
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