SOBRE LA OBTENCIÓN DEL CONJUNTO DE COMPONENTES ELEMENTALES DE UNA RDPG

J. MARTÍNEZ, M. SILVA

Después de una caracterización algebraica del concepto de componente conservativa elemental, se propone un algoritmo muy eficaz para calcular todas las --componentes elementales de una red de Petri Generalizada.

1. INTRODUCCION

Las redes de Petri constituyen una de las -herramientas más interesantes para la modela ción de sistemas concurrentes. En función de la interpretación que se les asocie pueden modelar aplicaciones pertenecientes a campos aparentemente tan dispares como son los auto matismos lógicos, la programación de computa dores y los sistemas legales. A su simplicidad conceptual debe añadirse la potencia de su teoría de análisis de modelos, en contí-nua expansión. Entre los grandes capítulos de la teoría de redes de Petri se encuentran los desarrollos realizados al considerarlas bajo la perspectiva del Algebra Lineal /LAUT 74/ /LIEN 76/ /SIFA 78/ /MEMM 79/. Los -conceptos de componentes elementales (conser vativas y repetitivas) juegan un papel muy importante en la validación de propiedades como la limitación, las exclusiones mutuas entre marcados, etc. Propiedades que tienen, además, un notable impacto sobre las técni-cas de realización, (cableadas, microprogramadas y programadas).

En /BERT 79/ se aborda la determinación de - las componentes elementales a partir de la - Programación Lineal en Números Enteros. En - este trabajo se presentan dos versiones de - un algoritmo muy rápido que permite generar todas las componentes elementales de una red. En ambas versiones pueden generarse algunas componentes no elementales. La segunda ver-sión incorpora un resultado que permite dese char, en curso de ejecución, la mayoría de -

las componentes no elementales que se fuesen a generar.

2. TERMINOLOGIA BASICA Y RESULTADOS PREVIOS

Introducimos este apartado con el objeto de precisar la terminología y recordar unos resultados que utilizaremos posteriormente. El conjunto de la terminología se contiene en las referencias /AGER 79/ /PETE 77/ /SILV 82/, aunque conviene resaltar que existen ciertas diferencias entre las definiciones adoptadas por los diferentes autores.

Una red de Petri Generalizada es una cuádrupla R = $\langle P, T, \alpha, \beta \rangle$ tal que: (1) P es un conjunto finito y no vacío de lugares, (2) T es un conjunto finito y no vacío de transi-ciones, (3) $P \cap T = \emptyset$, (4) α : $PxT \rightarrow N$, es la fun ción de incidencia previa y (5) β: TxP→N, es la función de incidencia posterior. Una red se puede representar por un grafo bipartido orientado. Los lugares se representan por -circunferencias y las transiciones por barras. Los lugares y transiciones se unen mediante arcos orientados. A cada arco que lique una transición a un lugar, o viceversa, se le -asocia el valor de la función de incidencia correspondiente. La figura representa una -red en la que α y β sólo toman sus valores en {0,1} . Se dice que la red es ordinaria.

El marcado, M, de una red R, es una aplicación P+N. Una red marcada es el par $\langle R, M_{\odot} \rangle$ -

- J. Martínez, M. Silva Dpto. de Automática de la E.T.S.Ingenieros Industriales de Zaragoza.
- Article rebut el Setembre de 1982.
- Aquest treball va ser presentat a les 1^{es}. Jornades del Diseny Llogic a Barcelona del 15 al 17 de Juliol de 1981.

en el que R es una red y M_{O} es el marcado -- inicial.

Se define la $\underline{\text{matriz de flujos }\widetilde{C}}$ asociada a - una red como

$$\tilde{c} = \begin{bmatrix} \tilde{c}_{ij} \end{bmatrix}_{nxm}$$
 en la que:

*
$$n = |p|$$
 $y = |T|$

*
$$\tilde{c}_{ij} = \beta (t_{j}, p_{i}) - \alpha (p_{i}, t_{j}).$$

Un vector $Y \in N^n$ es una <u>componente conservativa</u> de R si $Y^T.\widetilde{C}=0$. Un vector $X \in N^m$ es una <u>componente repetitiva</u> de R si \widetilde{C} . X=0.

En lo sucesivo sólo consideraremos las componentes conservativas. Las componentes repetitivas se obtienen al cambiar \widetilde{c} por \widetilde{c}^T .

Se denomina soporte de una componente conservativa Y al conjunto de lugares asociados a los elementos no nulos de Y. Una componente conservativa es elemental si su soporte no contiene ningún otro soporte de componente.

TEOREMA 1 /MEMM 79/ /SIFA 78/: Toda componente conservativa de una red puede expresar se como combinación lineal con coeficientes positivos de componentes elementales.

COROLARIO 1: Dos componentes conservativas - elementales de una misma red e idéntico so-porte son linealmente dependientes.

Para facilitar ciertas demostraciones, se de fine la $\underline{\text{red }R^i}$ como aquélla que resulta de eliminar en R las transiciones $\{i+1,\ldots,m\}$.

3. OBTENCION DE TODAS LAS COMPONENTES CONSER VATIVAS ELEMENTALES

Se parte de la matriz $\left[I_n\right]$ \widetilde{C} y se modifica mediante combinaciones lineales de sus filas. Sea $\left[D^i\right]$ A^i la matriz obtenida después de la $i\frac{\text{Ésima}}{\text{I}}$ iteración en el algoritmo que sique. D^i contiene todas las componentes elementales de R^i y, eventualmente, alguna no elemental. Posteriormente se considerará la eliminación de éstas últimas.

ALGORITMO 1: Algoritmo para la obtención - de todas las componentes conservativas ele--

mentales.

1) A: =
$$\widetilde{C}$$
; D: = I_n

- 2) REPETIR DESDE i=1 HASTA i=m {no de tran siciones}
 - 2.1 Añadir a la matriz $\begin{bmatrix} D & A \end{bmatrix}$ todas las filas que resulten como combinación lineal de pares de filas de $\begin{bmatrix} D & A \end{bmatrix}$ y que anulen la i $\frac{-\text{\'esima}}{}$ columna de A.

TEOREMA 2: El algoritmo \mathcal{N}_1 genera todas las componentes conservativas de $R=R^m$. Estas están definidas por la matriz D final, D^m .

<u>DEMOSTRACION:</u> Para demostrar que el algoritmo anterior genera todas las componentes con servativas elementales, se razonará por inducción:

- (1) Inicialmente $D=I_n$ contiene todas las componentes elementales de R^O , red sin transición alguna. Cada lugar define una componente.
- (2) Partiendo de las componentes elementales de Rⁱ, el algoritmo generará todas las de R^{i+1} . En efecto, toda componente de - R^{i+1} , Y_{i}^{i+1} , será también componente de Rⁱ, aunque no necesariamente elemen-tal. De acuerdo con el teorema 1 todas las componentes de R^{i+1} pueden escribirse como combinación lineal positiva de dos o más componentes elementales de Ri. Ahora bien, cualquier Yⁱ⁺¹ generada como una combinación lineal positiva de más de dos componentes de Rⁱ no será elemental, ya que su soporte será superior o igual a alguno de los obtenidos al combi nar los pares de componentes de $R^{\dot{1}}$ que anulan su (i+1) ésima columna. En caso de obtener una componente con soporte idéntico al de otra generada al combinar sólo dos componentes elementales de Ri, el corolario l garantiza que se trata de la misma componente, si ésta fuera elemental.

La aplicación del algoritmo $\sqrt{_1}$ a la red de la figura conduce a la obtención de 33 componentes conservativas, de las que sólo 5 son elementales.

El problema que se plantea en el próximo párrafo es el de eliminar las componentes no - elementales.

4. ELIMINACION DE LAS COMPONENTES NO ELEMEN-TALES

Para eliminar las componentes no elementales se pueden seguir dos vías distintas. Estas son:

- 1) Aplicar el algoritmo \mathcal{N}_1 y, posteriormente, eliminar las componentes no elementales por comparación entre sus soportes.
- Eliminar las componentes no elementales a medida que sean generadas.

La primera de las dos vías sugeridas presenta algunos inconvenientes que podemos resumir en los dos puntos siquientes:

- a) El algoritmo de generación de componentes será, probablemente, <u>lento</u> en la ejecución, dado que puede generarse un gran número de componentes no elementales (esto suele suceder si la mayoría de las transiciones poseen varios lugares de entrada y de salida). Además, las componentes no elementales aumentan la ocupación de memoria en la ejecución.
- b) El proceso final de selección de componen tes elementales será tanto más largo, --cuanto mayor sea el número de componentes (elementales o no) generadas.

Por lo expuesto, se desarrollará la segunda alternativa. Una ventaja adicional de ésta - es que nos permitirá presentar una caracterización algebraico-lineal del concepto de componente elemental.

Sea L_i la i $\stackrel{\text{\'esima}}{=}$ fila de la matriz \widetilde{C} , y sea $Y^T = (\lambda_1, \ldots, \lambda_q, \ldots, 0, \ldots, 0)$ con $\lambda_i \in Z^+$, --una componente conservativa de R (el orden - de los términos de la componente no le resta generalidad).

TEOREMA 3: La componente Y es elemental sii
$$q = rango \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} +1$$
.

<u>DEMOSTRACION:</u> Dado que Y es una componente - conservativa, se puede escribir

$$\sum_{i=1}^{q} \lambda_i \cdot L_i = 0, \qquad \lambda_i \in z^+$$
 (1)

Sea
$$r = rango \left(\begin{array}{c} L_1 \\ L_q \end{array} \right) :$$

Si q>r+1, r filas entre $\{L_1,\ldots,L_q\}$ formarán una base. Por lo tanto, existirá una relación distinta de (1) de la forma:

$$\sum_{j=1}^{r+1} \lambda'_{j} \cdot L'_{j} = 0, \text{ donde} \begin{cases} L'_{j} \in \{L_{1}, \dots L_{q}\} \\ \lambda'_{j} \in Z \end{cases}$$
 (2)

Entre (1) y (2) puede eliminarse al menos uno de los términos L_i , quedando una relación (3) similar a (1), con todos los coeficientes positivos y con menor número de términos (s<q -términos):

$$\sum_{k=1}^{s} \lambda_{k}^{"} \cdot L_{k}^{"} = 0, \text{ donde} \begin{cases} L_{k}^{"} \in \{L_{1}, \dots, L_{q}\} \\ \lambda_{k}^{"} \in Z^{+} \end{cases}$$
 (3)

Si s>r+1, puede reaplicarse el razonamiento - presentado hasta llegar a otra relación (3) - con s' = r+1 términos. En este caso, la relación será única por serlo la representación - de un vector en función de una base. En consecuencia, (3) define una componente elemental cuyas coordenadas no nulas serán los valores λ_k^* .

La inserción del resultado anterior en el buche del algoritmo. 1 permite generar todas las componentes conservativas elementales y sólo éstas. No obstante, su utilización es poco eficaz desde un punto de vista algorítmico debido a la necesidad de calcular el rango de la matriz 1. Para mejorar las presentaciones se va a considerar un mayorante de éste que es rápido de calcular: el número de columnas no nulas en la mencionada matriz, r' > r. Procediendo de este modo no se puede garantizar la no generación de componentes no elementales, aunque prácticamente se suelen eliminar todas.

COROLARIO 2: Para que la componente $\mathbf{Y}^{\mathbf{T}} = (\lambda_1, \dots, \lambda_q, 0, \dots, 0) \text{ donde } \lambda_i \in \mathbf{Z}^+ \text{ , sea elemental es necesario que } \mathbf{q} \leqslant \mathbf{r}^t + 1.$

Su demostración es inmediata dado que $r' \geqslant r$ y la componente Y es elemental sii q = r+1 (teorema 3).

A partir de este último enunciado y del algoritmo \mathcal{N}_1 se define el algoritmo \mathcal{N}_2 , el --- cual genera todas las componentes conservativas elementales y, normalmente, sólo éstas. \mathcal{N}_2 se obtiene a partir de \mathcal{N}_1 al añadirle - como paso 2.3 el resultado del corolario 2. De esta forma, \mathcal{N}_2 elimina, durante el proce so de generación, aquellas componentes conservativas que no cumplan la condición de -- elementaridad (corolario 2).

La aplicación del algoritmo \mathcal{N}_2 a la red de la figura conduce a la obtención exclusiva - de las cinco componentes conservativas elementales.

Para calcular r', mayorante de r, se asocia inicialmente a cada elemento de la matriz \tilde{C} un booleano de valor FALSE, si el elemento - de \tilde{C} es nulo, o TRUE en caso contrario. Posteriormente, cada elemento $a_{ij} \in A$ tendrá asociado el booleano resultado de la unión lógica de aquellos asociados a los elementos que, por combinación lineal, lo generen. El entero r', asociado a una componente conservativa, es el número de booleanos que adoptan el valor TRUE en la fila correspondiente de la matriz booleana asociada a A.

5. CONCLUSION

La condición presentada en el corolario 2 es de muy rápida ejecución y elimina un elevado porcentaje de componentes no elementales generadas en cada paso, dándose frecuentemente el caso de que, en las redes que normalmente se utilizan, la eliminación sea del 100%. Es to puede comprenderse, en parte, dado que -- las matrices de flujo son normalmente casi-vacías y frecuentemente coincide el rango r y su mayorante, r'.

Por último, si sólo se desea disponer de las componentes elementales, el algoritmo puede

completarse con una búsqueda exhaustiva de - componentes no elementales, basada en la comparación de los soportes entre las componentes generadas dos a dos. En este caso, la -- operación deberá realizarse al final de la - ejecución del algoritmo y sobre un reducido número de componentes.

6. BIBLIOGRAFIA:

- /1/ AGER 79 AGERWALA T.: Putting Petri Nets to Work. Computer, December, pp 85-94.
- /2/ BERT 79 BERTHOMIEU B.: Analyse structurelle des réseaux de Petri, -Méthodes et outils. Thése Doc.
 Ing., Univ. Paul Sabatier, Toulouse, Septembre.
- /3/ LAUT 74 LAUTENBACH K., SCHMID H.A.:Use of Petri Nets for proving correctness of concurrent process systems. <u>IFIP 74</u>, North Holland Pub.Co. pp 187-191.
- /4/ LIEN 76 LIEN Y.E.: A note on Transition Systems. J.Information Science, vol 10, no 4, June pp 251-265.
- /5/ MEMM 79 MEMMI G., ROUCAIROL G.: Linear Algebra in net theory. Advanced Course on General Net Theory of Process and Systems. Hamburg, October. Lecture Notes in Computer Science, no 84, Springer Verlag.
- /6/ PETE 77 PETERSON J.L.: Petri Nets. Com
 puting Surveys, Vol.9,no 3, -September, pp. 223-251.
- /7/ SIFA 78 SIFAKIS J.: Structural properties of Petri Nets. Mathematical Foundations of Computer --Science, J. Winkowski Ed., --Springer Verlag. pp 474-483.
- /8/ SILV 82 SILVA M.: Las Redes de Petri en
 la Automática y la Informática.
 Editorial AC., Madrid, en pren