LAGRANGE MULTIPLIERS ESTIMATES FOR CONSTRAINED MINIMIZATION
L. F. ESCUDERO

We discuss in this work the first-order, second-order and pseudo-second-order estimations of
Lagrange multipliers in nonlinear constrained minimization. The paper also Justifies estima-
tions and strategies that are used by two nonlinear programming algorithms that are also ———

briefly described.

1. INTRODUCTION

Consider the optimization problem, NLP (Non-
Linear Problem)

minimize F(X) xer? (1.1)
subject to ci(X)==0 i= l,2,...,ml (1.2)
ci(x)zo i=m1+l,...,m (1.3)

The functions F(X) and ci(X) are prescribed
nonlinear functions. The function F(X) is --
usually termed the objective function and --
the set {ci(X)} is the set of constraint ---

functions. It will be assumed for simplicity

that F and {ci} are twice continuously dif--
ferentiable. Let c==(cl,c2,...,cm)t. Under

certain mild conditions (see below) on F and
¢ there is defined at solution § of NLP a --

set of scalars known as Lagrange multipliers.

These multipliers express the gradient vec-

tor g(X) of F as a linear combination of the
gradient vectors Vci(X) (each vector being a
column of the Jacobian matrix A) of those -~
element-functions cy of ¢ which are zero ---

*
(constraint functions termed active) at X.

At points which approximate § it is possible
to define estimates of these Lagrange multi-
pliers. Methods which determine § use these
estimates in several ways /2/:

a) In conjunction with other information --
analyze if a given point X is a good ap-
proximation to §.

b) The constrained problem can be transfor-
med into a sequence of unconstrained pro

blems in which these estimates are para-
meters of the unconstrained objective -~
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function.

¢) Many methods determine  a step-direction
by solving a subproblem whose formula---
tion depends on the Lagrange multipliers
estimates

This paper is primarily concerned with esti-
mating the Lagrange multipliers of quadratic
programming, nonlinear programming with 1i--
near constraints and general constrained non
linear programming; the leading paper by Gill
and Murray /8/ is revisited.

We shall define:

The gradient vector

g (X) (zg) as the vector whose j-th element
is 6F(X)/6Xj

The Hessian matrix

G(X) (G) as the symmetric matrix whose —--
(1,9)-th element is 62F(x)/6xi6xj.

and the Jacobian matrix
A(X) (ZA) as the matrix whose i-th column is
the gradient Vci(X) (EVci).

The algorithms concerned with this paper are

assumed to generate a sequence of estimates

*
{Xk} of X, by generating a step-direction --
6k, a steplength d{and a step pk such that

p* = o¥6% ana x* = Xk—lﬁ-pk.
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In general there are no major difficulties -
in computing Lagrange multipliers estimates

for quadratic probiems. We consider the qua-

dratic case in detail because methods for --
estimating Lagrange multipliers for both ge-
neral-nonlinear constrained problems and li-
nearly constrained problems use the gquadra--
tic case. One important feature of this case
is that it is possible to define exactly the
Lagrange multipliers associated with an equa
lity constrained subproblem at any point.

The methods that estimate the multipliers as
we describe in Secs. 2 (quadratic case) and

3 (linearly constrained case) require that -
the set of active constraints at the current
point contains only constraints which are —-
satisfied exactly at the current point. But

the general-non-linear constrained case (sec
4) also requires to include in this set tho-
se constraints that are violated at the cu--
rrent point. Formally the (QP) gquadratic pro
gramming /5/ can be expressed.

minimize Q(X) =h Xd—l XtGX (QP)

5 (2.1)

t

subject to A"X 2 b (2.2)

where G is a constant nxn symmetric matrix,
At is the mxn constraints matrix, h is a n--
vector, b is a m~-vector and X is the . unknown
n-vector.

Let Kt be the gxn matrix of constraints acti
ve at point § and E the t-vector of right-

*
hand-side corresponding to A. If the follow-

ing necessary and sufficient conditions hold:

(see /14, 18, 8 and 11/ among others) then %
is a global minimum of QP if G is positive -
definite; otherwise, it is only a local ---
strong minimum.

i) point § is feasible.

ii) X is a full column rank matrix. It is -
only necessary for the uniqueness of the
Lagrange multipliers. It is important -
from the computational point of view.

iii) Lagrange multipliers are such that

*

Uy 0 for i=1, 2,...,ml (equality constraints,
i.e. set E)

*

u; = 0 for i=ml+1,...,m (ineguality cons----
traints), if the i-th constraint is non-

.

active (i.e. A?x>b_)

* i i

19 20 for i=m1+l,...,m (inequality cons----
traints), if the i-th constraint is acti
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. tx
ve (i.e. Aix_bi)'

Let C1={i|ui>0} and C2={i|ui=0} be the sets
of active inequality constraints for which
the corresponding Lagrange multipliers are -
respectively positive and zero Let -—---——-
I=EuC uC2 be the set of the t actlve cons-
traints; for this set the vector u is such -
that

Al=g=ck+h (2.3)
iv) Hessian matrix
= 2tck (2.4)
is positive definite, that is
ytitezy > 0 (2.5a)

g3 *
where Z is a nx(n-t) full column rank --

matrix such that

k4%
Atz = 0

(2.5b)
*

Since A belongs to the set of active cons---

traints, £t§==g and for any x=§+p=§+a6 —————

feasible solution to this syétem of active -

constraints, it results

* * *
At (X+as) = b; A% = 0 (2.5¢)
Considering eqs. (2.5b) and (2.5c¢), then Y -

will satisfy
(2.54)

That is, for each vector Y there is associa-
ted a vector § that takes the step direction
from § to feasible point X in the space of
active constraints. Then, condition (iv) ----

(2.5a) is equivalent to condition

stes > 0 (2.5e)

such that £t5= 0. If Cz#ﬂ then condition —---
(2.5e) must be extended to the feasible ----
region A §>0 for ¥1€C2. There are several --
ways to obtaln Z See /7 and 16/.

* *
Formally, X and u define stationary points -
of Lagrange function

*
L(X,w) = F(X) - u"(Atx-b) (2.6a)
and, then, satisfy the system
* * %
g-Au =20 (2.6Db)
*t* *
AX =Db (2.6c)

For QP these egs. have the form (see /2/)
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In Sec. 4 we will see that for the nondinear
constrained problem, it is not the Hessian -
matrix of objective function F(X) that is --
required to be positive definite, but the --
Hessian matrix of Lagrange function L(X,u).

In fact, in the linear case both matrices --

are the same because of the Hessian matrices
of linear constraint functions do not exist.

Using the strategy of active constraints at

each iteration (in the algorithm described -
in /5/ they will be the constraints whose --
slack variable is non-basic and then with --
zero value), we have an equality-constrained
subproblem (EQP) of the form

minimize 0(x) = htx+ixtex (2.8)

~t 2 (EQP)
subject to A%x = B (2.9)

where the full column rank matrix A consists
of a selection of £ columns of matrix A and
b is the vector composed of the correspond-
ing elements of b. We assume that matrix --
ﬁtGﬁ is positive definite where Z is a --—-
nx{n-t) full column rank matrix such that --
ﬁt§=0. If ﬁtGﬁ is not positive definite there
is no interest in calculating the Lagrange -
multipliers since the optimum X of EQP will
not be the optimum § of QP (conditions (i)-
(ii)). See in /9 and 10/ an algorithm that
in this case generates a direction of nega-
tive curvature.

Associated with EQP is the t-vector ﬁ that -
satisfies the overdetermined system of linear
egs.
Au=3 (2.10)
If system (2.10) is compatible, there is --
only one vector ﬁ that satisfies (2.10); and
ﬁ corresponds to %. If there are elements of
ﬁ that are negative and they correspond to -~
the inequality constraints of QP, % is not -
the optimum § of QP. If in this case we drop
from EQP these constraints, we may obtain a
better feasible point X(Q(X) <Q(§)) in QP; ~
see i.e. /11/.

*
In summary, the optimum point X of QP is the
optimum point X of EQP (see below) plus the
following additional condition: Lagrange —---—

multipliers u,; associated to active inequali
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ty constraints (1.3) must be non-negative.

By premultiplying both sides of eq. (2.10)-
by Et, it results.

ta A

A ~
ZAu= Zt

g=0 (2.11)

If YtZ GIY > 0, where Y is any vector such
that 6-—ZY is the step direction from X to
any feasible point, it results that X is the
optimum point of EQP. In effect, the Taylor
series of Q(X) from Q(ﬁ) are

1 t

Q(X+6) = Qm)+ga+ G§ (2.12)

Considering eq. (2.11) and substituting § for
ﬁY, it results

1 ,tat

Q(§+6) = Q(X) +3 Y7 GZy (2.13)

if Y'Y > 0+0(X) is a ---

strong local minimum.

Notating H= ﬁtcﬁ,

Points that satisfy eq. (2.11) are termed --

constrained stationary points and ﬁtg (where

g =g(X)) will be the reduced or projected --
gradient. The solution of eq. (2.10) is

Agn

i = 2*g (2.14)

where A' is the pseudo-inverse of A. There -
are several computational methods to obtain
A. A well-known method computes ﬁ+ such that
(see /7/)

u = (AtA)1atg (2.15)
In effect, p has to satisfy (2.10), what is

is analogous to minimize the norm
IR
g - 2Aull (2.16)

whose value is zero for g=§. The vector that
minimizes (2.16) is termed minimal least squa

re solution. The necessary and sufficient --
condition (see /17/, p. 309) for (2.16) be a
minimum is that
atg-am) = o (2.17)
Then, theoretically p is calculated by formu
la (2.15) if (gtg) is non~singular; but from
a practical point of view even in this case

(since the computers have finite precision)

the rounding errors produce a solution u that
does not satisfy eq. (2.17). Then formula --
(2.15) is not recommended. Using it, point X
may be the optimum & of EQP and this may be

the optimum § of QP and, since the ill-condi
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tioning of £+, the computed solution u with
formula (2.15) may not satisfy eq. (2.10).

On the other.hand, the solution of formula -
(2.15) may give incorrect information, drop-
ping from the active set an inequality cons-
traint of QP if the associated Lagrange multi
plier to the corresponding active constraint
in EQP is negative (and, because of rounding
errors, it is ill-calculated); as a result,

this unstable formula may produce a poor con

verging algorithm.

In order to avoid matrix £+, Gill and Murray
/8/ (see also /13/) suggest the following --
method that, based on the QR-factorization -
of matrix A /12, 17, 4, 6/ is more stable --
than formula (2.15). Let A be factorized in-
to the form

(2.18)

where Q is a nxn non-symmetric orthogonal --
(QtQ==I)matrix for which it also holds QQt=I
and R is a txt upper-triangular matrix (no -
necessarily with identity diagonal; see /6/).
Matrix Q may be partitioned so that

Q= (0 0,) (2.19)

where Ql is a nxt matrix and Q2 is a nx(n—%)

matrix, so that

A = QlR (2.20)
Recall that ﬁ is a full column rank matrix;
it results:
a) R is a non-singular matrix

t
Q

1) _ .t t
t] = 9191+ Q0

2

_ At t. _ t_ =1, k. _

I=207Q then 070, =TI (Ql-—Ql )r Q1Q, =0,

b) I=00"=( 9,

t, _ t, o t_n—1
050, =0, 0;0,=1 (Q5=0,7). (2.21)
© [r of\ . oA = R
= N A= i (2.22)
0 Q5 Q2 =0

~
then matrix Q2 may be taken as matrix Z.

d) The vector yu that minimize the norm ---
(2.16), i.e. the minimal least square S0
lution Wy, s is found (see /11 and 6/ among
others) by solving

_ At
RuL = ng (2.23)
Formula (2.23) is more stable than formula -

(2.15), since from (2.23) it results
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t
Uy =07, 9/Rep (2.24)
Ly~ 719 %%k
. =(o§ g - ﬁ: Ry My )/R;; for i=t-1,..,1
i i r=1+1 r

where Qliis the i-th column of Ql' Then for-
mula (2.24) is not losing precision, if the
computation Qig is correctly done. It is in-
teresting to point out that in this computa-
tion it is implicit the orthogonality of Ql;
if while obtaining Q1 there are rounding --
errors then this method, although better ---
than formula (2.15), is also unstable. Escu-

dero /4 and 6/ describes an alternate method.

The vector ur, (2.24) (or the alternate pro--
cedure) minimizes the norm (2.16). If the --
norm is zero, condition (2.10) is satisfied

and point X to which My, is associated is the
optimum point £ of EQP (being g=§) and then,
Uy, is the exact vector of Lagrange multi---

pliers of EQP. But if the norm is not zero,

point X is not the optimum X and then g(x) -
(Eg)#g(ﬁ) (E%). In this case, the next ite--
ration of the algorithm to minimize EQP is -
to be executed. How close the approximation

My, is to ﬁ?. If we denote the step to the s0
lution X-X by d, since EQP is quadratic it -
results

g =GX+h = GX+h+G(R-X) = g+Gd (2.25)
Eq. (2.23) will be for X

R = 07 (g+ed) = otca+r (2.26
U = 0,(g )—Q1+uL .26)
from which we obtain

A -1t '

U =R QlGd-FuL (2.27)
13 = up Il = 118 Yofeall= m 4| (2.28)

where M is a constant. The approximation Hy,

of Lagrange multipliers whose difference --

with ﬁ is of this form is termed first-order
estimate.

The algorithm described in /5/ obtains ﬁ ————
using the dual of the LP model in which EQP
is converted at point %. The result is the -
same.

An important simplification occurs when G is
the identity matrix, such that (see /7/)

U= (2.29)

Note that this is an expression for the ----
exact Lagrange multipliers but the formula -
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is computed at an arbitrary point X. Then --

for G=I egs, (2.24) give directly u and by

using eq. (2.10) we obtain z.

Returning to the general case EQP, we may --
note that using eq. (2.25) in eq. (2.10), we

have

Al = g + Gd (2.30)
If G is non-singular, we have

¢ an=c¢1g+a (2.31)

and by premultiplying eq. (2.31) by ﬁt and -
considering eq. (2.5e), it results

N At _—la -lat -1

1= (A% "3a)""A%¢ g (2.32)

Eq. (2.32), unlike eq. (2.15), obtains exact-
ly vector ﬁ, at any arbitrary point X. But -
both eqgs. are highly unstable /7 pp. 45-47/.

An alternate procedure that has not the abo-
ve inconvenience, obtains d and, by using the
QlR factorization of A in eq. (2.30), gives
the formula

i = R of (g +ca) (2.33)
The method for computing d(Eﬁ—x) is as fol-
lows: See egs. (2.5) and note that we may --
write d=2w. Then eq. (2.30) gives

280 = 2%q+2%8y = o (2.34)
p = -(2tcz) 15ty (2.35)
a = -2(2t%) 12ty (2.36)
Matrix % may be matrix Q, (eq. 2.22). See in

/5/ another method to express Z. Eq. (2.36)
is not less stable then eg. (2.32).

The algorithm described in /5/, that also --
uses matrix (ﬁtGi), explicitly uses the La-
(by -~

using the reduced cost of the slack varia--

grange multipliers; e.g. to analyze

bles) when a constraint must be dropped from
the set of active constraints or when point
~ *

X is the optimum point X of QP.

In summary, there are basically four ways to
estimate the Lagrange multipliers vector i
for the quadratic problem EQP: formulae --
(2.15), (2.24), (2.32) and (2.33). The first
two obtain My, (an approximation of ﬁ), the -
last two obtain exactly the vector {i, the --
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first and the third are very unstable, the -
fourth if recommended.

3, MINIMIZATION OF A GENERAL NON-LINEAR
FUNCTION SUBJECT TO LINEAR CONSTRAINTS

Consider the optimization problem, LCP (Li-
near Constrained Problem)

minimize F(X) Xer® (3.1)

(LCP)
subject to atxzp (3.2)
Function F(X) is non-linear twice continuous
ly differentiable at least for feasible ---
points.

*
Let At

be the ;xn matrix of active cons----
traints at point § and ﬁ the é—vector of
right-hand-side corresponding to i (i.e. -—-
£t§==£). If the following conditions hold --
(see /14, 18, 8 and 11/ among others) then §

is a strong local minimum of LCP (we don't

consider, as in the quadratic problem, the

*
case for which X is also a maximum) :

i) point § is feasible
ii) K is a full rank matrix. It is only ne-
cessary for the uniqueness of the La---
grange multipliers. It is also important
from the computational point of view.
iii) Lagrange multipliers are such that
ai% 0 for i=l,2,...,ml (equality cons~
traints, i.e. set E).

*
ui==0 for i=m1+1,...,m (inequality cons

traints) if the i-th constraint is non-
active.

*

u; 2 0 for i=m1+1,...,m (inequality cons

traints) if the i-th constraint is ~--

active.

Let Cl’ C2 and I be the same sets notation -
*

used in sec. 2. For the set I, vector u is -

such that

* % *
Ay =g (3.3)
iv) Hessian matrix

* *t**

H = 2"GZ (3.4a)
is positive definite, that is

k%%
Y ztGzZy > 0 (3.4b)

x % .
where G=G(X) being G=G(X) the Hessian matrix
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* *
of F(X) at point X, and being Z a nx{(n-t) --
full column rank matrix such that
L X
atz = o (3.4c)

In a similar way to the guadratic case (Sec.
*
2) for § = X-X we have

*
§ = Z2Y (3.44)
Eq. (3.4b) is egquivalent to eq. (3.4e)
t*
§°G6>0 (3.4e)

*
that is, matrix G must be positive definite
*
at least for the step direction § from X to
* *
any other feasible point X in Atx=b.

Then,

Ats= o (3.4£)
If C #Q then condition (3. 4e) must be exten-
ded to the feasible region A §>0 for ¥1ECZ.

We may note the similarity of the conditions
to the quadratic case. Conditions (i)-(iii)
and ﬁ being a positive semi-definite matrix
are necessary optimality conditions. Condi-
tions (i)-(iv) are only sufficient condi---
tions. Associated to LCP we have the (ELCP)

equalitv-linear constrained problem

minimize F(X) (3.5)
~t ~ (ELCP)
subject to A™X = Db (3.6)

where the nxt full column rank matrix A is a
selection of £ columns of matrix A and b is

the t-vector composed of the corresponding -
elements of b.

The optimum point R of ELCP must satisfy si-
milar conditions to conditions (i)-(iv) of -
LCP, but without any constraint in the sign

(positive, zero or negative) of the t ele--

ments of ﬁ. If the e—ml elements of ﬁ corres
ponding to the active inequality constraints
of LCP are non-negative the optimum % is al-
SO §. In other case, these constraints are -
to be dropped from ELCP (may be other cons-

traints are to be added to ELCP} and the pro
cedure goes to the next iteration: optimiza-
tion of the new ELCP.

Then, the vector ﬁ of Lagrange multipliers -
of ELCP must satisfy the over-determined sys

tem of linear egs.

~A

AL =g (3.7)
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But, unlike the gquadratic case, it is only
possible to obtain ﬁ if we know ¥ (and its
gradient g). On any arbitrary feasible point
X we cannot obtain exactly the value of ﬁ;—
only we may obtain the first-order estimate
N

L in similar way to eq. (2.23)

_ .t
Rup = Q79 (3.8)
and directly

I S
up, = R Q9 (3.9)

Estimation (egs. 3.8 or 3.9) is calcula--
ted in a similar way to estimation Uy, in EQP
(eqs. 2.23 or 2.24). For completeness, the -
estimation Uy, that is similar to formula --
(2.15) is

u, = (AFR)"1Atg

L (3.10)

This formula is also very unstable and it is
not recommended. Expanding the gradient § in
Taylor series around point X gives the analo
gue of egs. (2.25) - (2.28).

A

Al = g(x+d)

it

g+ad+o(]|d|? (3.11)

where d=%-X. Since R is non-singular and by
using egs. (2.22) and (3.8), we have

otAt = otg+otea+o (|| al?

(3.12)

0= R_lQ§g+R_thl:Gd+0(Hd||2 (3.13)
i -ug Il =liR" ofeall+ o (llalfy =

= mllalj+o(]lall® (3.14)

that is a logical extension of eqg. (2.28) --
/8/. Formulae of g, (3.9) and (3.10) are ter
med first-order estimate.

If we know the Hessian matrix G=G(X) (or it
is not a time consuming calculation), there
are two alternate formulae for calculating

the estimate of ﬁ. They are similar to the -
gquadratic case; but in the quadratic case,j

is obtained exactly and for this case only -
we may obtain an approximation of i. For --
This we use the Taylor series (3.11); note

that § can be expressed as follows
§ = g+GAa+D (3.15)

where D takes the truncation of Taylor se---

ries.

Let § be the estimation of d. Then eq. (3.7)



by using eq. (3.15), gives
Al = g+G&+D' (3.16)

where D' takes the deviation due to the esti

mate § and the Taylor series truncation.

If G(=G(X)) is non-singular, by premulti---

plying successively eq. (3.16) by ¢! and At

we have

h = (Ate71R)1ate g + B (3.17)
. (1) A

then, the estimate Ug of y will be

uél) = (Atc AT At g (3.18)

Eg. (3.18) is analogous to eq. (2.32). They
are unstable and not recommended.

An alternate way (similar to the quadratic
case), that has not the above inconvenience,
obtains the estimation § of step direction -
d=8-X so that, by using in eq. (3.16) the --
QlR factorization of A (eq. 2.20), we have

4= R_lQi(g+G6)+-D" (3.19)

from where the estimation uéZ) of 3 will be

ud? = r ol (gtas) (3.20)

that is similar to formula (2.33) in the qua
dratic case. Formulae of Ug (3.18) and (3.20)

are termed second-order estimate.

There are several ways to obtain §. One of -
them is as follows: It is similar to the me-
thod for the quadratic case (egs. 2.34 to -
2.36) . Considering egs. (3.4) and noting ---
that d=§¢.'. §= %v, where v is the estima---
tion of ¢, eqg. (3.16) gives

stan st L ot s

Z-Ajl =0 = 2°g+ 2 GZv + D" (3.21)

from where, by deleting the unknown D" from
eq. (3.21) since we assume that v is the --
best available estimation of ¢, we have the
best computable estimation § of d=X-X such -
that

v = -(z%%) 13ty (3.22)
s = -z(2%%) 12ty (3.23)

The reasons for the difference between § --
(3.23) and 4 (2.36), quadratic case, are: --
(1) in ELCP matrix G is the Hessian matrix -
at arbitrary point X (G is an estimation of
6), and (2) since F(X) is a general non-1li-
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near function the vector g+G§ is not neces-
sarily the vector § even for the case in --

which §=4d, except if §=d=0 (i,e., for §=X).

Hessian matrix ﬁtGﬁ is termed reduced Hes--

sian matrix and gradient %tg is termed redu-

ced gradient. There are several ways to ob-
tain Z; e.q. Z may be matrix Q, (eg. 2.22).
Escudero /5/ describes another way to re--
present 2; usually it is never explicitly---
computed.

Normally G(=G(X)) is unknown (or it needs --
much time for its calculation). Usually G is
approximated by matrix B (see e.g. in /3/ a
survey of the main important methods to cal-
culate B). The estimations uél) and uéz), -
similar respectively to estimations uél),——

(3.18) and uéZ) (3.20), are.

wio @Es18) 1ats g

(3.24)
(2) -1t
g = R Ql(g+Bé) (3.25a)
where
§ = -2(2t82) 13ty (3.25b)

Note that if ZUBZ is positive definite and -
§ is calculated with formula (3.25b), the --

overdetermined system of linear egs.

Au = g+ BS (3.26)
from where eqgs. (3.24) and (3.25) are deri-
ved, is always compatible: uéz)
él)) satisfies |Au-g-BS§||2 =0 what
ever value of B, since Ug

(and theore
tically u

) are --

) (1
(and Ug
the exact vector of Lagrange multipliers of

the gquadratic programming problem.

min {gt6+%6tB6l£t6=0} (3.27)

See egs. (2.32) and (2.33). Hence, uél)=ué2)

at least theoretically; this estimation is -

termed pseudo-second-order estimate.

In the rest of this work, the notation uG -

and U, will be equivalent, respectively, to

(2) (1) (1)
B g and g

commended and, from a computational point of

(2) 2

uG and u since U are not re
view, these calculations must be avoided. --
L (3.9), Ug (3.20)
and “B (3.25) is the best estimation of uz.

Let us revise some properties of Up s Hg and
U

What of the three vectors u

B*

If at point X an element of the first-order
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estimate y (3.9), say Ly (that corresponds
to the active inequality constraint i of pro
blem ELCP) is negative and, then, constraint
i is dropped from matrix A without being X -
the optimum point i, /8/ shows that if 6§ is
a Newton (3.23) or Quasi-Newton (3.25b) step
direction, where matrix a has been substitu-
ted by the nx(n—€+l) matrix Z such that Kt§=
=0 (where A is the new nx(t-1) active cons—-
traints matrix) then § is not necessarily --
feasible (that is, it is possible that £§5<®
even if the corresponding reduced Hessian is
positive definite, except if matrix ZUBZ is
computed as

o [z%2 o
Z2"BZ = (3.28)
0 1

in whose case § is descent feasible (i.e.,
gt6<0 and ﬁ§6>0). Formula (3.28) is used ---
when B is not computed, but the Quasi-Newton
approximation ZUBZ is obtained and vector —-
(0 1) is the unique available alternative to

compute its last row and column; see /5/.

Gill and Murray (/8/, theorems 4 and 5) also
show that if in the above strategy the first
order estimate My, is substituted by the ---
pseudo-second-order estimate Mg (3.25a) (or
by second-order estimate Hg (3.20)) such that,
after evaluating gradient g and reduced Hes-
sian 2°B2 (or 2tG2) at point X, § is calcu-
lated by formula (3.25b) (or by formula ---
3.23)) and Mg (oxr uG) is calculated by using
§ (and, then, by using ﬁtBQ or itGE) then --
the new stepdirection, say & obtained by for
mula {(3.25b} (or by formula 3.23)) is des--
cent feasible if 2 is substituted by Z such
that A®Z=0 as above and the new reduced Hes-
sian Z BZ (or ztGZ) is positive definite --

without requiring the special form (3.28).

In any case, note that the Lagrange Multi---
pliers estimates used in the theorems that -
have been referenced above are evaluated at
point X for UL’ and at point X+§8 for Ug and
Ug- Note also that Ue B’ but

normally it is not easy (or it is time con--

is better than u

suming) to calculate G, then generally Ue is
not used. gcte t?at we obtain ¥g by conside-
ring that X and g are estimated respectively
by X+6 and g+BS (eq. 2.15). Then, ug will be
better estimation of u than ur, if X+8 and --
g+BS§ are, respectively, better estimations -
of % and % than X and g. Note that if we ---

solve ELCP by using successively gquadratic -
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approximations as problem (3.27), such that
the new point is X+od, where the stepdirec-
tion § is the solution (3.25b) of problem --
(3.27) and o is the stepléngth such that o0,
it seems that the first-order estimation U,
for X+ad is at least as good as the pseudo-
second-order estimation Ug- In summary, if B
is not a bad approximation of G, Wg is better

than U, for X and g(X); for X+ad§ and ----

u
g(X+ad) is better than uLLfor X and g(X); --
and yp; for X+a8 and g(X+ad) is better than -
Ug- Since § is obtained with formula (3.25b),
if B is a bad approximation of G then it re-
sults that point X+aé will not be a good ap-
proximation of X. Terms "bad" and "good" are
intentionally vague. We may conclude that if
HL; for X+aé and g(X+ad), and EBi (being i -
each constraint of the set of t active cons-
traints) do not have the same sign ox

lug - up IR

2 (3.29)

fug
where € is a given tolerance, both estima---
tions are likely poor estima£ions of ﬁ; rea-
sons: B is a poor approximation of G, and/or
problem (3.27) is a poor approximation of --
ELCP. Usually, e=10"%. 1n any case, it does
not seem that ug, (eq. 3.9) for X+ad and ----
g{X+ad) is worse estimation of p than vg —=-
(eq. 3.25a).

In fact, even if B is close to G or ﬁtBﬁ is

close to ﬁtGﬁ, is still better than Ugr=

W
since g+G§ is on?y an approximation of —-=--
g(X+ad) and point X+ad is a better approxi-
mation of X than point X+6. Of course, if --
a+1 and point X+ad is close to i, it means -
that X+§ is close to X+ad and g+G§ is close
to g(X+ad), since the guadratic approxima--
tion of F(X+ad) based on X (and, then, based
on g and G) is close to F(X+ad); in this la-
tter case, both estimations 15 and ug con--
verge to u. Note that the superiority of uy,
over up in ELCP (even when B is close to G)
is not a discrepancy with the conclusion ---
from the comparison of egs. (2.15) and (233)
in EQP, since the quadratic approximation to
F(X) in ELCP is becoming better when the so-

lution is becoming close to ﬁ, and in EQP --

this approximation is always exact by defi-
nition.
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4, MINIMIZATION OF A NON-LINEAR FUNCTION
SUBJECT TO NON-LINEAR CONSTRAINTS

Consider the optimization problem NLCP (Non-
linear Constrained Problem)

minimize F(X) Xegr" (4.1)
(NLCP)
0, i=1,2,...,m (4.2)

subject to ci(X) 2
where F(X) and {ci(x)} are nonlinear twice -
differentiable functions at least for feasi-
ble points. At the strong local minimum § of
NLCP, a set of ; constraints (4.2) must be -
active; let {é(x)} be that set, then é(§)=0.
Let K(X) be the nxt Jacobian matrix of é(X).
At point §, the following conditions hold --
(see Secs. 2 and 3 for the appropriate refe-

rences and restrictions):

*
i) point X is feasible

ii) Z is a full column rank matrix. It is -
only a condition for the unigueness of
the Lagrange multipliers, and a cons---
trained qualification for the other op-

timality conditions.
iii) Lagrange multipliers are such that
;i 20 for i=1,2,...,ml (equality cons--
traints)
ﬁi==0 for i=ml+l,...,m (inequality cons
traints) if the i-th constraint is non-
active.
ﬁi > 0 for i=ml+1,...,m (inequality cong
traints) if the i-th constraint is ac--
tive.

Let Cl' C2 and I be the same sets notation -
used in previous sections. For the set I, --
vector : is such that

*
Au =49 (4.3)

iv) Hessian matrix

* *t**
H = 2 °GZ (4.4a)
is positive definite; that is
k- k%
ytztGzy > 0 (4.4p)

* * %
where G=G(X,u) is the Lagrange Hessian matrix
* %
at point (X,py). Note that it is a nxn matrix
(it only takes the second derivatives of X -

in L(X,u) {(eq. 2.6a), since those of y are -
zZero) .

e, =c- Y
iEI—Cz

* *
where G(X) is the Hessian matrix of F(X), --

* *
uiGi(x) (4.4c)

*
Gi (X) is the Hessian matrix of ci (X} for ---
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ieI—Cz, and E is a nx(n—t) matrix, so that
Ati=o (4.4d)
where for 6=X—§—¢ (being ¢ the curvature _—
along the feasible arc from § to X in conti-
nuous system é(x)=0, § the limiting vector
of ¢ and, then, £t6=0) it gives
§ = 7y (4.4e)
where Y is any (n—;) vector. Eq. (4.4b) is -
equivalent to
st&s >0 (4.4f)
that is, matrix é must be positive definite

at least for &, being §+¢ the step from the

local point § to any other near, feasible --
point to the set of active constraints. For-
mally, 6 and ¢ must be sufficiently small --
and must satisfy £t6=0. If Cz#ﬁ then condi-

tion (4.4f) must be extended to the small --
enougyh stepdirection & such that Vci(§ft6>0

for*VieCZ. The set Cz(i.e. ieC2 means that -
ci(X)=0, ﬁi=0 and i=m1+l,...,m) is termed --

degenerate inequality constraints set.

*
Conditions (i)-(iii) and H being a positive
semi-definite matrix are neccessary optimali
ty conditions. Conditions (i)-(iv) are only

sufficient conditions.

*
There are several ways to calculate Z /7/, -

/2/ and /5/.

The above conditions are similar to condi--

tions for LCP (Sec. 3). The difference is --

that in the linear constrained case we need

in (4.4c) only matrix G(X) since {G,(X)} is

* t*t** i

zero. Since §=2Y, Y Z GZY > 0 means in LCP --
* *

that étG6>O (the Hessian matrix G of objec-

*

tive function F(X)is positive definite) for

- * *

§=X-X (being X feasible in c(X)=0); and in -
t*t * &k %k t * %

NLCP, Y Z G(X,u)ZY >0 means that § G(X,u)8>0

* %

(the Hessian matrix G(X,U) of Lagrange func-
* %

tion L(X.u) is positive definite, indepen--

- * *

dently of G(X)) for 6=X-X-¢ (being X feasi-
*

ble in c(X)=0) with the specifications given

in the previous paragraphs.

*
Matrix H (eqg. 4.4a) is termed reduced Lagran

* *®
ge Hessian matrix. It is a (n-t)x(n-t) mae

*
trix and it is easier than G(§,u) to handle
it.

Like the other two cases, associated to pro-
blem NLCP, we have the (ENLCP) equality non-
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linear constrained problem

minimize F(X) (4.5)
(ENLCP)
subject to &(X)=0 (4.6)

where G(X) is a selection of £ elements of -
vector c(X). Let A(X) be the Jacobian matrix
of &(X). It is a nxt

matrix.

full column rank --

The optimum point X of ENLCP must satisfy --
analogous conditions to conditions (i)-(iv)

of NLCP, but without any constraint in the -
sign of the t elements of . If the (g—m

) -
elements of ﬁ corresponding to the activé -
inequality constraints of NLCP are non-nega-
tive, the optimum & is also §. In other case
these constraints are to be dropped from ---
ENLCP (may be other constraints are to be ad
ded to ENLCP) and the procedure goes to the

next iteration: optimization of the new ---

ENLCP.

Like in ELCP also in ENLCP we may use the --
set of active constraints to obtain the firt
order, second-order and pseudo-second-order

estimations of Lagrange multipliers ﬁ. In --
ENLCP many algorithms (see in /2/ the appro-
priate references) obtain, at intermediate -
iterations, points {X} that are not feasible,
then we may also obtain for these points {X}
estimations My and Wy of ﬁ including in the

set of active constraints: constraints for -
which {ci(X)=0}, and also {ci(x)<0}.

Let X be an approximation of ﬁ obtained in -
the sequence of iterations solving ENLCP., --
Like in Sec. 3, the estimation uL is

_ -1t
Wy = R707g (4.7)

and, alternatively (although it is not recom
mended)

up = (A% (4.8)

Gill and Murray (/8/, p. 35) suggest to re-

present the gradient § of optimum point % of
ENLCP in Taylor series around X, so that ---
(see Sec. 3)

A(x+d)D = §(x+d) = g+ca+o(|alP) (4.9)
But g is not a constant matrix. Then, repre-

senting Jacobian matrix A in Taylor series -

around point X, we have
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A A A 2
Al+ 2: u;G,a+o0(lall )=g+Gd+0(“d|2) (4.10)
ieI-C2

where ﬁ, G, &i and g are evaluated at point
X, being &i the Hessian matrix of eﬂx) the
residual values 0d|dH2) of both sides are —-
not necessarily the same. Fussioning both --
residuals and reordering eq. (4.10), we have

Al = grc(x,Ma+o(al|®) (4.11)

where

cx, ) = 6x) - 2 1.6, (X) (4.12)
Eq. (4.11) is similar to eq. (3.11). If func
tions Ei(X)iJ1ENLCP'are linear, then ai(X)z

20 and eq. (4.11)Zeq. (3.11). G(X,ll) is the

Hessian matrix of Lagrange function

L(x, ) = F(x) - 1% (4.13)
See also eq. (4.4c). Comparing egs. (4.11) -
and (3.11) we may recall the remark on condi
tion (iv) in the sense that for the non-li--
near case the matrix to study is the Lagran-
ge Hessian, instead of the Hessian of objec-
tive function.

Substituting G by G(X,1) in egs. (3.11-3.28)
of the linear case we may calculate the si-
milar estimations uél), uéz), uél), uéz)

for the non-linear case. However, we cannot
directly use eq. (4.11) to estimate ﬁ since
the right-hand-side requires to know ﬁ, ex-
cept if we know some estimation of this vec-
tor. It makes sense if this estimation is --
the first-order estimation U (eg. 4.7); then
the second and pseudo-second order estima---
tions are (similar to the linear case);

1 1

1 At -
ué ) A G(x,uL) g

(Bte(x,uy) TR

(not recommended) (4.14)

uéz) = R‘lgi(g+c(x,uL)6) (not useful) (4.15)

(1 ~t =12 -1t -1
My - (A"B(X,u;) "A) "A B(X,u) " g
(not recommended) (4.16)
2 -1t
ué ) =& Q{(g+B(X,1)9) (4.17a)
where
§ = —ﬁ(ﬁtB(x,uL)E)'lﬁtg (4.17b)

See e.g. in /2 and 3/ several ways to obtain
B. Point here the same remarks made at the -
end of Sec. 3 for the comparison among the -

estimations UL’ pG and UB‘
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The stepdirection § is calculated, in a si-
milar way to the linear case, by solving pro
blem

min {g%6+36%B(x,u ) §|A%=-3 (x)} (4.18)

since the linearization of the active cons-
traints around point X is produced at the gi
ven iteration of the given algorithm, /5/.
Note that it is possible that using 8 (calcu
lated by eqg. (4.18)) some constraint (active
or not) may be violated (then if it is non--
active we have to add it to the set in the -
next iteration) or some active constraint --
may become non-active (then we have to drop
it from the set in the next iteration).

Betts /1/ suggests an apparent different way
to estimate vector p in NLCP. Ler ut be this
estimation. In order to satisfy conditions -
(1)-(iii), given the point X and, then A(X)
(=A) and g(X) (=g), vector u* must minimize
the euclidean residual

tot

e(u) =||Pu+b||?= utetey+ 2btPy+0tp  (4.19)

where u is the m-unknown vector, P is a ----
(n+m) xm matrix and b is a n+m vector such —-
that

-A g
P = ;i b=
c 0

where A is the nxm Jacobian matrix of all --

(4.20a)

constraints evaluated at X; ¢ is the diagonal
matrix

(4.20b)

where cy zci(x) is the i-th constraint eva-
luated at X, g is the gradient g(X) and 0 is
the null m-vector. Then, minimizing (4.19) -
is equivalent to minimize the deviation from
conditions (i) and (iii), so that u;==0 —_—
(i=m1+l,...,m) for non-active inequality ---
constraints and with the additional condi---
tion u;z 0 (i=ml+1,...,m) for active inegua-
lity constraints.

Since b'b is fixed, problem (4.19) gives

min e = bth+%ut(PtP)u

(u)

(4.21)
with the above conditions on p. If PtP is -~
non-singular, it is positive definite. If --
there are only equality constraints, u is -

unrestricted and the vector y in (4.21) is -
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the vector u+ that satisfies the following
system of linear egs.

Ptry = Pt = (afa+c?)y = abg (4.22)

where AtA is a mxm symmetric matrix; then

u+ _ (AtA)_lAtg+c2

aty (4.23)

where ¢ is a m-diagonal matrix whose i-th --
element is 1/ci. If X is feasible, c=0 and -
the estimation u%(4.23) is the first-order
estimation L (4.8); it is unstable. However
it may be possible to calculate a QR-facto-

rization of (AFA+c2).

5, THE USING OF THE LAGRANGE MULTIPLIERS IN
AN ALGORITHM FOR NON-LINEAR CONSTRAINED
PROGRAMMING

We describe elsewhere /2/ an algorithm for
minimizing function (4.1) subject to cons--
traints (4.2) with bounded variables. It --
uses the estimation of Lagrange multipliers
as follows: At a given iteration we have ma~
trix BEB(X,uL) that (being calculated at the
end of previous iteration) approximates ma--
trix G(X,u). B is positive definite. We ob--
tain the stepdirection ¢ by solving the qua-
dratic programming problem (4.18) and as a -
by-product we obtain Mg (4.17); in this algo
rithm we also consider in problem (4.18), —-
the non-active constraints and the bounds on
the variables. The strategy that we use (see
below) is at an intermediate level between -
pure active and non-active set strategies; -
see in /16/ a full discussion of these al--
ternatives. Also we obtain the steplength «
and the new point X+«X+ad. We obtain the set
of active constraints (strictly satisfied -
and violated) {8§X)}, gradient g(X) and Jaco
bian matrix A(X) of ¢(X) all evaluated at --
the new point X. Finally we use formula (4.7)
to obtain the first-order estimation u, of -

~ L
Lagrange multipliers. With g(X), A(X) and u

L
we correct B(X,u) to obtain the new matrix -

B that will be used by the next iteration.

For solving the quadratic problem (4.18) /5/,
we use the strategy that classifies the va--
riables in basic, superbasic and non-basic.

The last type of variables are those whose -
value is temporarily fixed at one of their -
bounds; the slack variables that are non-ba-

sic correspond to the inequality constraints
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that temporarily are active (then, the value
of these variables is zero). The iterations
of the quadratic algorithm (termed inner --
iterations) obtain the stepdirection of the
superbasic variables by solving an unscons-
trained reduced quadratic problem. If in a -
given inner iteration there are no more su--
perbasic variables or the stepdirection is -
zero, the quadratic algorithm tests if some
non-basic variable may be converted in super
basic, given priority to the non-slack varia
bles. This test is performed by using the La
grange multipliers (or also termed reduced -
costs) of the non-basic variables, whose for
mula uses the pseudo-second-order estimation
g (4.17) that is obtained as a by-product -
while solving problem (4.18). The optimum SO
lution ¢ on problem (4.18) is obtained when
there are no non-basic variables whose sta-
tus must be changed, and there are no super-
basic variables or their step direction is
zero. Then in some inner iterations of the
quadratic algorithm we use the estimation —-

g’ but in the major iterations of the non--

linear constrained algorithm we use the —=—=—-
first-order estimation uy, (4.7) for point --
X4 & and gradient g{X+qé) .

Estimation yu; is no worse then ug (see the -
final remarks on Sec. 3) and, although the -
given algorithm alternatively allows to use

ug as it is recommended by Powe}l /19 and 20/
we have better computational results when we
Also Murray and Wright /16/ obtain -
better results with My, - We use the implemen-

us
e g

tation described in /4/ to obtain the QR-fac

torization of A and to calculate the vector

up, (4.7).

The given algoritEm uses also Uy, to analyze

if X is close to X; that is, we use by, as a

stopping criterium on the sequence of major

iterations to solve NLCP. The first conver-
gence criterium that the algorithm uses is
as follows:

i) Check the feasibility of X.

ii) Check the sign of the elements of Uy ==
that correspond to the active inequali-
ty constraints. In fact if they are --
greater than e, (usually, %f10_4), this

condition is considered satisfied.

iii) If the following inequality holds
lg ) -au ]l 2< ¢ (5.1)
g 1 2 .

where 52is a given tolerance (usually,az——-

Qtiestiié - V. 5, n° 3 (setembre 1981)

=10_4) we consider that X is quasi-optimum
(see conditions (i)-(iv)).. See in /4/ the --
method to calculate the residual (5.1) with
the maximum accuracy that it is possible in

a computer.

If criteria (i)-(iii) are satisfied but at -

the given major iteration k, uik)

selfor some
inequality constraint (4.2), this constraint
is temporarily deleted from the set I of ac-
tive constraints. Other different approach -
in dealing with the negative Lagrange multi-
pliers is suggested by Gill and Murray /8/.

In this approach, the non-negativity require
ment of the Lagrange multipliers of the ine-
quality constraints has top priority over --
the optimality condition(iii) (eg. 4.3). ---
Then the first-order estimation given by for
mula (4.7) to obtain u may be substituted by
the solution in p of the quadratic problem

min ||Ru - 0% g2 (5.2a)

subject to Mp. 2 0 (5.2b)
i

where {i~I and i=m;+1,...,m}. With this al--
ternate procedure, it never happens the case
for which (X,u) solves problem ENLCP (4.5) -
(4.6)7without satisfying restriction (5.2b).
We have experimented with this approach, but

more computational validation is required.

6. THE USING OF THE LAGRANGE MULTIPLIERS IN
AN ALGORITHM FOR LINEARLY CONSTRAINED
NON-LINEAR PROGRAMMING

We describe elsewhere (/5/, sec. 16) an algo
rithm for minimizing function (3.1) subject
to lower and upper bounded nonlinear cons-

traints with bounded variables (f£<X<u).

In the given algorithm, the status at each
major iteration is as follows. Point X is —--
feasible, Kt=(g,ﬁ) is the active constraints
matrix, N is the submatrix of AC related to
the non-basic set V of variables j, such ---
that jev if Xj=£jVuj, A is the complement --
matrix to N inAt, g is the gradient of the
objective function F(X) and H is the reduced

Hessian approximated at point X.

At each major iteration, a quadratic problem
(QP, see sec. 2) that approximates problem -
ELCP (see sec. 3) is solved, although its ob
jective function is not completely minimized
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in the subspace defined by set J-V, where J
is the set of all variables.

At each QP iteration, g and H are approxima-
ted and, once a quasi-optimal solution to QP
is obtained, the first-order estimates

up & min Hﬁtu—gllz (6.1)
— q - Rt
A= Iy N-up (6.2)

of the Lagrange multipliers are obtained, --
such that § is the gradient related to set -
J-V, and X is the Lagrange multiplier estima
tes vector of set V. Eventually, X is only -
obtained for a subset of V, such that the --
zigzagging phenomena is reduced and the mul-
tiple-partial pricing is used. See in /4 and
6/ the method to be used for obtaininf the -
QR factorization of At and its updatings when
a constraint or variable is added or deleted.

Test (3.29) is used at some major iterations.

A partial (exact) normalization of A (say ')
and u are used for selecting the variable -~
from set V in the first case and the inequa-
lity constraint in the second case, such --
that being dropped (that is, desactivated),
it is expected to produce the best descent -
feasible stepdirection, so that a new matrix
§t=(£,ﬁ) is obtained. An special strategy --
is used to avoid the stepdirection being in-
feasible.

The QP problem is solved by minimizing the -
reduced guadratic problem {ht5r+l/25;H5r| --
£~-X<8<u-X}, where h is the reduced gradient.
Vectors h and A' are updated by using the La
grange multipliers of the active constraints
in the associated linear program to the QP

problem. Note that 5=26r where §
duced stepdirection and Z is such that A

is the re-
t7=0.
The given algorithm uses an special strategy
fdr checking the sign of A and ur, when they

have not any clearly favorable element for -
desactivating the non-basic variables or ac-
tive constraints, but they have zero or near
zero elements. The aim of this strategy con-
sists in obtaining more information about --
the trend in the sign of these elements by -
means of an small perturbation in the active
bound of the variables or in the right-hand

side of the constraints. This strategy is ve
ry fast since only approximates the gradient
g of the new trial point and the rest of the
required data are based on the QR factoriza-
tion to be obtained for calculating ug.
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7. CONCLUSION

The first-order u;, second order Ve and pseu

do-second-order i, estimations of the Lagran

B
gian multipliers are discussed. The estima--

tion u. may be obtained for points X and --

L
X+08 with gradients g=g(X) and g(X+ad); the

other two estimations are only obtained for
point X+8 and the gradients are considered -
to be g+BS§ for Ug and g+G¢ for Uge

Estimation u, is always better than estima--

G

tions v for point X and Ug- Estimation Mg =

is better than estimation u_. for point X, ex

L
cept if B is a poor approximation of the Hes
sian G. Estimation Uy for point X+od is, of-

course, better than uL for point X.

In the quadratic case, estimation Vg

L

obtains
exactly the Lagrange multipliers; u. for --

point X is only an approximation.

In the non-linear function case, estimation

By, for point X+ad is better than estimation
Bai both converge to the true Lagrangian mul
tipliers when the solution X is close to the

*
optimum X. Estimation u. for point X+ad is

no worse than estimatioﬁ Mg but if B is a -
poor approximation of G then both estima---

tions are poor. Since G is not generally ---
available and My, for point X+0d is better --
than up, for point X, the selection of the es

timation to be used remains between u,. for -

L

point X+odé and Hg- Both types of estimations
have two alternate computational methods; --
formulae (4.7) and (4.17) are, respectively,

more stable than formulae (4.8) and (4.16).

In the non-linear constrained algorithm that
we describe elsewhere, we have obtained our

best results by using estimation Ug in the -
inner iterations of the qguadratic program --
solved at each major iteration (note that ma
trix B is the Hessian matrix of this particu
lar gquadratic problem) and by using estima-

tion u. for point X+ad at each major itera-

L
tion. In the linearly constrained algorithm,

we use U, for point X+adé at each major ite-

L
ration and an special strategy to avoid a non

feasible stepdirection.
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