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5. A préperty of the exponential function.

6. Asymptotic behavior of some scalar ODEs and an
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1. Examples on propagation of singularities in the wave eguation

1.0. Introduction
The feollowing study arose from an attempt, 'in an
introductery graduate course in PDEs, to describe {without proof}
the general propagation of singularities theorem of Lax and
" #drmander. The customary catch-phrase
"singubanities propagate afong bicharacterisiies"
is, at best, misleading - not all bicharacteristics carry
singularities. The more exact version
"micno-focal singularnities propagate afong fhe corresponding
bicharactenistics"”
requires substantial explanation, but this effort is repaid by
a more complete understanding as shown in the examples below.
We first describe our examples. Then we define
characteristics and the wave-front set, state the propagation
of singularities theorem, and use it to interpret the examples.
Finally we give details of the calculation of the wave-front
set for the example of Fritz John { 2] (ex. 2}. Taylor's article
[5] describes also reflection and diffracticon of singularities
in boundary'value problems. Mathematical details of the theorem
{and generalizaticns) may be found in, for example, the books
of Taylor [ 6] or H&rmander [ 4].
1l.1. The examples
Example 1 Consider tempered distributions E, E , E_ on
R, ¥ mi defined by E{t,f) = £ “‘sintlfl (Fourier

t
transformation in x),
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é(trf]: E>0 0,t>0
E _(t,f) = e E_(t,8) =
¢ L, t<o0 o l-Ett 8y, £ <o.
Then as distributions on R x IRn,
(2%/0t% - BOE(t,x) = 0

2,..2 _
(3°/8e° - A JE, (t,x) = 8 (t,x)

and the singular support (outside which they are C ) is

shown in Fig. 1
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Fig. 1




Consider a point (t,,X,) of |x{*® = &%, ty # 0; only one
of the bicharacteristic rays through this point carries

singularities of E. No ray through (tl,xl}, tf # lelz,

Fig, 2

carries singularities of E; though they all pass through the
singular support of E. (5ee Fig. 2).

Example 2 (F. John [2], p. 572-574)

Imagine a wvast and troubled sea; and in the midst of the
sea, a circle: and inside the circle, everything is calm. Thers
are no special forces acting. The circle is not a physical
barrier. But the region of gquiet continues, neither expanding
nor centracting, while the storm rages without.

Sound impossible?

(&

For any positive integer k, if J, is the order

ion: 2 +8
Bessel function; Jy (kr) eiki{t+d) ., -, smooth solution (using plane

- ) . = +
polar coordinates} of the wave eguation Up, = U,y uyy on
R XR? so
- i +
u = b KA J, (kr) etk (t48) [ sum over powers of 2]
k = 20



is also a distributicn solution when A > 0. Taking A = m+3/5,

2
X '
g X R (x,v)

which is analytic inside the cylinder {x2 + yz < 1, t arbitrary!},

m = integer > 0, u 1is a ¢™  function on IR

Cm+l in the exterior {x2 + y2 > 1}, not Cm+2 Qn any open
set which meets {x2 + yz > 1} ana not Cm+1 on any open set
which meets {x2 + y2 =1}. If m=22, ‘u is a classical
solution.

The sinqgular support of u is {x2 + y2 =1, t
arbitrary} but the boundary {x2 + y2 = 1} is nowhere

characteristic. There are many bicharacteristic rays linking the

regular {xz + y2 < 1} and singular {x2 + y2 2 1} regions,

but these deo not carry singularities from cne region to the

other (See Fig 3).

\ : ,Tegular singular

x2+ yzﬂ H I

’__.-'"" JI_-_"—"J..\
e

Fig. 3

Not all rays carry singularities. (We show later, for

this example, that at most 4 bicharacteristic rays, through
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any given pcint ocutside the cylinder, can carry singularities -
they are the rays tangent to the cylinder).

1.2. Characteristics and wave-front sets

Let P(x,f) = % p, (x}t* be a polynomial in § € R"
|l <m
with ¢ coefficients, and supnose the prinecipal part

Pm{x,g) = I Hr(x)sa is real-valued and the real characteris
| ¢l =m
tics are simple: f € W%, P (x,t} = 0, 2 {x,£} =0 for
m BEj m
i=1,...,n imply § = 0.
As is well—knowﬁ, if u is a c© solution of P(x,é%}u:ﬂ
(r > m) which is Cr+1 on either side of a smooth hypersurface

S, but is not Cr+l everywhere since the (r+l)-order
derivatives have a jump discontinuity across §, then S must be
& characteristic surface: Pm{x,N(x)} = 0 when x € 8§, N{x)

is normal to S at x, and u is not Cr+l on any
neighborhood of x. Such a surface S may be represented as

{x 1 g(x) = 0} where ¢ 1is a smooth function with Quv(x) * 0

{in the region of interest} and Pm{x,vw(x)) = 0 where

g(x} = 0. We'may solve (locally) the characteristic equation

P (X,¥p(x)) = 0 by solving the Hamiltonian system

dx/dh = 3P /Bt (x,£), 4§/0h = - 3P /3x(x,£)
for appropriate initial values with Pm(x,$J = 0, and then
¢(x(X)) = constant, we(x(})) = £{7) along such integral curves.

{(This construction is classical, and more details may be found
(for example) in Courant— Hilbert {1], vol. 2}. The resulting

curves A — (x{\), £{)A}) are termed bicharacteristic strips

and their projecticns A — x(\) bicharacteristic curves or
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rays. The characteristic surface {y = 0} is then fibered by
such rays, and Lax[3] proved the magnitude of the jump in the
(r+l}-derivative across $§ satisfies a first-order linear ODE
along such a ray, so it is either zero everywhere or non—zéro
at every point of such a ray. In this sense, such "jump”
singularities propagate along the bicharacteristic rays. Taking
this as representative of other singularities, the socluticns of
the wave equation in example 1 behave more-or-less as expected,
though it is not clear why seme rays through a singular peint
do net "propagate” the singularity. But F. John's example (ex.2)
remains completely mysterions — the boundary of the regqular
region is a cylinder {x2 + y2 = 1, t arbitrary} which is
nowhere characteristic. Of course, there is no centradiction

- we are not dealing with a jump discontinuity - but it shows
that propagation of singularities is a more complicated
phenomencn than the classical treatment {or Lax’s theorem)
suggests.

For a more precise formulation, we must go beyond local
anpalysis ("near a point") to micro-local analysis (“near a
point, looking only in certain directions").

Definition Let A C R" be an open set and u a

distribution on A (u € P'(A)). The wave-front set of u,

WP(u), is a subset of AX{(IR"-{0})}, which we define by exclu-
sion: (xO,EDJ € aX URn—O) is outside WF(u},if and oply if
there exist ¢ € C:(A], v(xo) # 0, " and an open cone K C r" -0

containing EO’ such that the Fourier transform

(e.u) (£) =0 $l ) as & — = in K
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for every N =1,2,... .
Note We localize u near X, by multiplying by a cut-off
function ¢ with small support including Xy then we lcocalize

the "direction” near §{, by choice of the cone K. In fact,

0
we should consider £ a co-vector or co~-direction, the impor-
tant thing being the corresponding hyperplanes {f.x = const}.

After multiplication by v, we may suppose ¢.u is
defined and equal to zero outside supp ¥, se (v.u)” is well~
defined.

WF(u) is a conical set closed in the relative topology

of AX(R"™ - 0).

=
b
U

Examp
(1) If ¢ € C{A), WRlg) is empty .

(2} If & is Dirac’'s delta, < 5G,¢ > = ¢(0) for

§o

¢ €c, (R"), then WE(8 ) = (0,E)1E # 0} and

WE(3,80) = WF(8,), 3 =1,2,...,n.
o3

(3} If £2C R" is an open set and 32 is a €
hypersuface (with 2 on only one side), Xn =1
in £ and Xn = 0 outside £2, then
WF(Xg) = {(x,§)lx € 3LE # 0 is normal to 3f at x}

(4) H&rmander [4,v.l] shows, for each EO £0 in RT,

o0
there exists u € C0 (R™ n¢ (R" \{0}) such that

WE(u) = {O,tEG) : £ > 0}
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Note that the direction —EO is not included:
WF (u} need-not be a "deouble" cone.

(5) Let g : A— IR be C  with Vglx) # 0 on A,
and suppose f € CO(EU is not c”; then for the

composition we have

WE(fs>g) = {(x,E)IxEA, £ is not C on any nbd-, of g(x},

¢ 1is a non-zero multiple of gg{x}}

{6) WF(p.u) CWF(u) for any ¢” function v, and
WF(aju) CWF(u)} for 9§ =1,2,...,n

{7) WF(u + v) T WF{u} VU WF(v)

The proofs of ({1), (2}, (6), (7) are easily supplied,
while the others are in ESrmander {4, vol. 1|, for example.
We only prove a special case of (5): A = IRn, g(x) = Ko
f£(t) =1 for t >a, £(t} =0 for t <a. Then if ¥E&C_(R"

-1 E".x' -if x

(v.f£o9)"(5)=  ff e TR ik x )dx' dx,
{x =>a} r
n
-iaf . -if T
=e B Iy e n b(E* a+riar,
where
- ' _ _iE'-X' Wt 1
w(E,xn} = fmn_le w(.\'xn)dx .

Integration by parts shows (for any N)
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—iaEn
W09 =Sg— T 2 ¢ o ?as )™

=00 ¢ | L)Y as 1 — e,

If ¢(-,a) 20 and En —+ *w with ¢' bounded, the transform

does not go to zero rapidly (merely O(IEi_l))- But if & — oo
in such a way that |E&’| /£l = const., > U, 1.e. excluding some
conical neighborhood of the En-axis, then (¥.f. g) (E) =

BRI Y Th

o0&’ y. Thus, for this example, WF{f.g) =

fl

{{x, ) % =a, & =1(0,...,0,f ) # 0}, in agreement with (3).
Now we state the general propagation of singularities

theorem of Lax and HOrmander:
Theorem, Let P(x,f%) be an m~order scalar differential operator
with € coefficients whose principal part P is real and has

its real characteristics simple. If u € D'(A), A open, A C r",

WF {Pu) C WF{u) C WF({Pu} U Char P

where Char P = {(x,§)l§ # 0, P_(x,§} = 0}

and WF(u} \ WF(Pu) is a subset of Char P which is invariant

under the Hamiltonian f£low
x' = aPn/BE(x,f): o= - a?n/ax[x,f)

until ¥ reaches @A or (%,i() reaches WF(Pul.

Returning to the functions R, E,, E_ of example 1, we
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now see more clearly their signifance. With O = a2/at2 - ﬂx,

OE(t,x) = 0 on all R X IR so given any point (£gs% 417 ook )
of WFI(E)} C Char(, rg =i$6]2 # 0, the entire bicharacteristic

. . - . - < < =
through this point (ty + A7, X o = XE s 70, £.3, w < A '

¢
must lie in WF(E). Since E(t,x} 1is invariant with respect to
rotation in the x-variables, the same is true for WF(E).

Analogous cenclusions hold for E_,

but WF(OE,) = WF{&,) =

= {{0,0;7y,80) (rg,84) # (0,00}, s0 we can only follow the
bicharacteristics in WE(E ) wuntil x reaches the origin, and
can draw no conclusion about the other half-line.

We prove in the next section that, for John's example 2,

WE(ul , 5, ) € Q= {{t,x,y; 7,k,m x4y >1 and
xXT+y  >1

{r,£,n) 1is a non-zero multiple of either

V(t+6—C05-1 % -1:2] or V(t+B+Cos_l —]-:]:+r2)}

using plane polar coordinates (xX,y) = ricos #, sin 8).
The corresponding bicharacteristic curves-the only ones

that can carry singularities-are

2 . 2
(T,X,Y} = (t,r cosf,r sinﬂ)”\{ilfﬂ@cosﬂ—s—l;ﬁ,ﬁ@sinﬁ +_gc:;5_8) '

- o< A <xm ywhere o0 =*t1, so

%2+ v2 2 £2 4+ 2o véz-l T R W IV S
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and such rays are tangent to the unit cylinder. No ray carrying
singularities passes from the regular to the singular region.
The cylinder {x2 + yz = 1} is the envelope of rays carrying
singularities, which may {plausibkly) be related to the

additional "roughness" on the cylinder, coﬁpared to the exterior.

1.3, The wave-front set for F. John's example.

Let Q@ bhe the closed conic set defined at the end of the

last section. We show, for every positive integer W,

= . i C
u ay + RN with HF(uN x2 +y2 >l) Q
and RN 2 9 is of class CP(N], p(N) —* ® as N —* 9,
Xty 21 2 5

Given a point of {x~ +y~ >1} X (H%B-O) outside Q and any
positive integer Not choose N so large that p(N) = NO

and then {after micro-localization) the Fourier transform of
-N
0

(cut~off).u is 0Ofl §l } in an appropriate cone; thus

" WP (ul - ) € Q.
NEI

By the method of stationary phase,

Jk(k secp) = k"j—l/2 ikg(p} a;(n)e-lkg(p}])

I -]

+
(e
(aJ e

i=0

+ Ry (k,p)

+ +
where g(p} = tan p - 2, ag (p) and RN{k,P} are analytic
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in p on 0<p < a/2 ({so sec PP 1) and

2 N
Gp)° Rytkip) = 0N gk — e,

uniformly for p in compact sets of (0, 7/2). For example

{with N=0}
Jy {k sec p) = v/%—é%;; cos (kg{p)-m/4) +O(k_3/2j,

as proved in Courant-Hilbert [l, wvol. 1], and more details may
be found in Watson f{7].

Now defining
-A-j-1/2 _iks

fj(S) = z k fh=m+3/5}

k=2lnt- ;2

we see f, 1is 2r-periodic and Cm+j+l but the (m+j+2)-order

distributional derivative is nowhere locally integrable. We
have
N

= 3 + ] +0) + a. £.(- +E+8 + t,p,H
u j=0{a3(ﬂ} fJ(g(P]H: ) aj{p) J(g(pl Yh+ Ry(t,p,6)

i = a i 6
UN + RN at _{t,x,y) (t, sec p cos @, sec p sin ¥)
- i 7 .
where - RN(t,p,B) z. k A !{N(]-:,,ca)e'l'k“:+ ) is of class
k=210t =2 .
CN+m+2, and (by examples {(5), (6) and (7) of wave-front sets
above)
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WF{uN 2 2 ) € ¢ for each N,

X +yT21

s0o WF{u 2 2 1T Q.

R.

M.

M,

Ro+y© >1
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2. Non-decay of thermoelastic vibrations in dimension 2 3

Dafermos [1l] showed the equations of linear thermoelas-

ticity

pi=ab v + (e+f) § (div u) - 998

PCp

§ +p divu==x A8 in 1< ®r"
for an isotropic homogeneous material (g,u, 2a+ﬁ,cD, K positive

constants, and # constant # 0}, with boundary condition

u =0 or stress = 0

g =0 or x a8 /aN + B6 = 0 on &0,

define a semigroup of contractions in an appropriate Hilbert
space X with norm
2 _ | 2 2 2
1I(u,31,8)nx= {a Z (du,/#x.)° + (@) (@ivu)” + pl
a i, *+ 1

2
+ 8< 1
PCD

(In fact, he treats a much more general situation.) He also
showed (under plausible hypotheses on {3 that every solution
tends to zero in X as £ ——* eo,

- More recently, Orlandc Lopes and Anizio Perissinotto, Jr.
(Univ. Estadual de Campinas, S,P.,Brasil) showed, for the case
n = 1, that the solutions thend to zero exponentially.

It is easy to show that, if n 2 2 and we use spatial

periodicity in place of the boundary conditions, there are
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soluticens which do not decay =-in fact 6 = 0, pli=a 4 u,

div u =0, but u # 0. Dafermos showed there are n¢ such
soluticons satisfying the boundary conditions, for most regions f.
But if the boundary has opposing “"flat spots" {described below}
and n > 3, we show there are solutions almost of this kind, so
there are solutions which dacay arbitrarily slowly. In fact if

{eAt, t 2 0} 1is the semigroup, we have

= r{eAt) =r {e") =1

At
il
e "J:[x] . ess

for all t 2 0, where r{.), ress('} denote the spectral
radius and essential spectral radius.

Specifically assume {after appropriate rigid motions]
there is a cylinder {(i,xn) 1% <5, 0 < X < £} in & whose

ends (xn = 0,) are in 4%l (see figure). Then given any

\\\\\\\\\.

¢ > 0, there is a CW function v : IRn X IR — ®R"  with

div v =20, | - a A vl €£¢ satisfying the boundary

PVt
conditions at the ends of the cylinder and vanishing whenever

} X! 6. Further |[I{v,v Oy = 1.

tl'
If T >0 is given with sfa/g T/Z rational, we may

choose v to be T-periodic in time. If follows that the

44



solution wu,§ of the thermolasticity equations with initial

o

values u = v, u = Vv ¢ =0 fat t = 0) satisfy

I (u=v, %—vt, 8)ll, = ofe)

uniformly on 0 € t £ T. Thus

AT °
I e®T=1) (v, %00 o iy = 0Ce), I{v,v,0ill, = 1,

X

=]
s 1 E o(eAT}. In fact (v,v,0)] £=g tends weakly to zero as

¢ — 0D, so it cannot have a strongly convergent subsegquence,

AT
hence 1 € aessie .
= r(eAT) Zr (eATJ. S0

AT
= !
We already know 1 #lie i.C (X) ess

in fact we have equality.
It only remains to construct v, which is embarrassingly
easy. Let ¢ =+afp (the speed of transverse shear waves).
n-1 n-1

o0
Chocse ¢: IR —* 1R of class C , supported in

I xl <&, with div ¢ = 0; for example

91 (%) = @ (x8 " (X)) (xg- 0% _4)
~p2[x} = - g (xl)ﬁ (xz)'r(xy”xn_l)
\Oj(x) =90 for 2< 3 < n-1

where «,3, v are ¢~ real-valued functions with small support.

iwx ~coswet

(if n=3, y=1). Let w(t,x} =e {@(x},0), w>0,

where we use Rev if the boundary condition at X, = 0 {in
the cylinder) is stress = 0, and Im v if the condition is

u = 0. It follows easily that div v = 0 and
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Py, ~ @by = oW "y as w —> +o,
uniformly in {t,x). Since v is 27/w-periodic in x_, we
may choose arbitrarily large « such that Rev or Imv also
satisfies the appropriate boundary condition on {x_ = 4}
in the cylinder. Alsc note {if v is either the real or

imaginary part of the v above)

2 _ 2 2
H{v,vt,o)ﬁx = Jﬂ p{th + ol

2 1

= a% f | o + 0{w "} as w oo,

I xl <8
Multiplication by an éppropriate constant gives a solution with
nocrm 1.

Finally if ¢T/£ 4is rational, we may choose arbitrarily
large w so, not only is the boundary condition at {x =&}
satisfied, but v 1is T-periodic (since wecT/27 is an integer).

Two obvious questions:

1} Does the boundary really need to be flat?

2} What happens for n = 27
I don't know the answer to either, but will say the little I
know or speculate.

The construction is, ©of course, modeled on geometric
optics which does not regquire flat boundaries (for example,
Ralston's "sclutions with localized energy"):; but which beco-
mes much more complicated when the boundary is curved. We want

a solutions with div u = 0 for div u, atdiv u, ax div u

46



uniformly small), which is still true after many reflections at
the boundary. It may be possible to achieve this when the
"flat spots" reduce to points where the tangent planes are
parallel. This last condition is easily satisfied in a smooth
bounded convex domain Q:-maximize lp - q with p,q in 9 4.
The problem does not look impossible - merely difficult,

When n = 2 the above construction fails (div ¢ = 0
implies ¢ = constant}. There are analogous solutions between
"infinite parallel planes {x, = 0} and {x, =1}, but I am
not able to localize these. Consideration of non-normal reflec-
tions does not appear promising. Reflection at a plane boundary
always generates dissipative "waves", except at normal incidence.
I incline (weakly) to the view that n = 2 will be like the

case n = 3, rather than n = 1.
Reference
C. Dafermos, On the existence and asymptotic stability of

solutions to the equations of linear thermoelasticity.

Arch. Rational Mech. Anal. 29(1968) pp. 241-271.
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3. On some non-linear integral inequalities of Kielh&Sfer and

Caffarelli.

Certain integral inequalities from Kielh&fer's article
[1] have proved to be useful in the study of parabolic partial
differential equations., One of these (lemma A.l from the appen-
dix to (1], p. 218), sometimes cited as "KielhAfer's lemma",
though Kielhdfer attributes the argument to L. Caffarelli,
appears to be incorrect -at least the proof contains a grave
error. (I suspect the estimate itself is wrong, but have no
counter-example).

We will correct the proof and generalize the results,
Aside from this correction, our arguments are only mild variants
of those of Kielh&fer and Caffarelli. The resulting ineqguality
(Theorem 2 below) is significantly weaker than lemma a.1l[ 1],
for application to uniform (in time} estimation of solutions,
and we may hope Theorem 2 is not the best possible result.

Our first result is a generalization of [1l], lemma 1.2

(p. 205 and 218}.

Theorem 1 Let @,p,q be positive constants with
1Sp=<1l+ ag. Suppose A,B,C are non-negative constants,

0T <o and ¢ : [0,T) — ﬂi+ is continuous with
T q «
Ioso oa

and 0 <g(t) <A ity +B +cfS (t-5)%"L vis)Pas  for all
' 0

0= t0 <t <T.
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Then ¢ 1is bounded on [0,T! and there exists tl in

(0,T) such that

gi{t) = Max{l, 4B, ZAw{tl)) on t1 < ¢ <7,

Proof j'g 93 < o implies 1lim inf (T-t)¢{t)¥ = 0. Thus for
. t— T-
any positive €,,e, there exists t, in T-e, < ty < T such

- q
that (T tljw(tl) < €,
Assuming C > 0, to aveoid trivialities, we first

suppose B < 1/4. Choose e, > 0 so small that 1ee% <1

2 -2 g’
and €,r €, SO small that
p-i 4 .ptl
1 p-1 e 49 € a p
« C(2R) 1 2 - <3

Then choose t in [T—Ez,T) as above and apply the inequality

1
on the largest interval [tl, t2) C [tl,T} where
p(t) <L = max {I,ZAw(tl)}.

If t2 < T then

Pt opogy @l
w{tz) < Aw(tl) + B + CL It {t-s) ds

1

1 Py o
Bw(tl} + B+ 2 CLU(T-t) .

If 2A¢(tl) %1, then L =1 and
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Otherwise L = ZA@(tl) > 1 and

wi{t,)
22 1,1 <l L
I <2+4+CL (Ttl)

= + El C(2A)p_l E{p‘l}/q E‘;-(p—l}/q < 1.

>

In either case w[tzj <L, so t2 cannot be maximal unless

t2=T.

Now suppose B > 1/4 and let #(t) = ¢(t)/4B. Then
satisfies the hypotheses of the previous case so, for some

t, <7, ¢{t) < max (l,2A¢(tl)) on t, <t <T hence

1 1

g(t) < max (4B, 2A¢(tl}) on [tl,T):

Remark Kielh&fer [1] treats the case q =2, A =¢C = 1,
P=14+0ag, 0 <« S.% . In place of "B", he allows a function

of (t,to), whose important feature is that it is bounded.

Example If p > 1 + ag, we show there is an unbounded
continuous ¢ : [0,T) —* R, , satisfying the other hypotheses.
In fact let 5 > 0 be defined by p =1+ «/8, so 0 <ég <1,

8

and let ¢{t) = M(T-t) °, M > 0. Then fgwq < = and (with

A>1l,C>0, B=0 and M sufficiently large}

8

1 <AL+~ 8 pomPl fIg 0% 11407 % a0 for all N = 0.

On change of variables (N = (t—to)/(T-t); we see ¢

satisfies the inequality of Theorem 1 for all 0 < g £ t < T.

Theorem 2 Let «,p,q be positive with p <1 + ag, « < 1.
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There is a continuous function L on [0,“)3, increasing
in each argument {depending also on «,p, which are kept fixed),
such that:
for any 0 < T < =, non-negative a,b,J,K, and continuous

¢ : [0,T) — IR, with

(i) 0Se) Sa+b f (=51t y(s)Pas on 0<e< T,
(ii) J'gsoq < J and
PSK

r

Fo,ey nie < 1)?

we have » bounded and in fact
¢(t) € L(a,bd*, bK*) <= on 0 <t <T.

If p 2 g we may suppose K % J, The function L 1is given

explicitly below (at the end of the proof).

Example TIf p > 1 + @ag and a,b,x,q are peositive, let
p=1+a/, (€ =M(T-£) 0. If M,T are sufficiently large,
v 1is an unbounded function satisfying (i) and (ii} of the

thecrem.

Remark The error in the argument of [1, p. 219-22¢]-aside
from irritating misprints - is disregard of the set of t
where ¢ (t) < 1, so there is no dependence on K. (The proof
is wrong; it is not known wheﬁher the inequality claimed is

false). After correcting this peint, we follow fairly closely
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the argument of Kielh®fer and Caffarelli.

The form given above is independent of rescaling of time
(st in place of t, for any constant & > 0). The corollary
below gives a form also independent of rescaling of ¢ {Q¢ in
place of ¢, for any constant Q > 0}.

L 1is alse an increasing continuous function of p and

1/ec.

Proof Define A, = {t € (0, 1)1 2K k+ly

k
k=0 and a* = {t € (0,T) @f{t) € 1}, Then (0,T) is the

S yp(t) <2 for integers

disjoint union of A* and the A , k = 0, and (with|lA| =

kf
= measure c¢f A)

Fowed v DA 2% < T L9 < g,
a = 15 0

For certain X > 0 and integer M #» 1, depending only

-1
on o,p, &b, J,K (chosen below), we will prove ¢(t) < 22MU&R 7

on 0 <t <T. (To avoid trivialities, we suppose a,b,J,K gre
all positive; the final estimates are continuous when one or

more of these tends to zero.

kgl &, |
Let I, be the set of integers k =2 0 so 2 > A,
This is a finite set and in fact
kql &, | -
#1, = r 1< =z L7k gamis,
REI?\ kEIA
For large integers ¥ » 0, [vM,(#+1)M] does not meet Iy

and we let o # 0 be the smallest such integer. For each ¥



in ¢0Sv < 00 - 1, there is a corresponding point of I]\,.

and allowing for possible double-counting of end points,

-1 1
AT ER I)\ ?-2-(90—}.)

50

1

0<r, <1 + 2\ " J.

0

If ZM > a, as we assume, then {since ¢(0) = a)

olt) < 2% < MU0l for small positive t. Let t; be the
largest number in (0,T] such that
pte) < 210l on o we <.
We show{for appropriate choices of X,M) that t, = T. This
-1
says e{t} < 22M(1+)\ 9 on 0 €t <T, as desired.
s c s . SM{Itr,)
uppose for contradiction t <T, so 'p(tl) = 2 -
Then
(14w ) 1 -1 D
2 g = ¢(ty) <a+ b, (t-s) ¢{s)” ds
M{p 4+1)
: oyl P _e-l kp
§a+b‘r(0;t}03\‘(tl s) vis) " +2% k§0 I(Ortl)np‘k{tl shoas

Now 0 <¢ <1 on A" so forany h in 0 <hs<t

t
-1 P a-1 P 1 -l
f (O,tl)ﬂzx‘ {tl s) ¢({s)¥ds <h I {o,tl—h}ﬂA*‘p + ftl-h(tl s} “ds.
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Choose h =K when 0 <k < % and h = t when ¥ > t

1’ 1 1f

in either case wWe obtain an upper bound {1l + é)Ka. Thus
o M(90+l)
M0l <ay ndp® r R 5 2kPage,
o o k=0 k

Now !Ak[ = J 2—kq for every k = §, but we use thig sctimgts
only for 0 € k < M:b: [M;b,M{y0+l)] is disjoint from IR’
and for k in this interval, [A <A 279 substituting

these estimates

My -1
M(L+yg) Loa  2Pog® 87 x (p-qu)
2 % a + {l+g)bK + a kEO 2
Mi{y +1}
« ¢
s —292" z X {pmq)
k=Muo

Recalling p-gw < 1, we find

« My
MU0 < ap1dynx® —ZPEJ 2 0

o
SPFL A Mirg+ly
Tl .

+

5 p+l

This is contradictory if bha/a = %,

M

a +{1+§}bxor é-%.z . 2Pba%/a < 3, M

4 r

(Recall we assumed

since it says 2M(l+”0) g,% ZM(l+v0)-

earlier that a < 2M).

Thus choosing M as above, let M be the first positive
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integer > M., where M

0 0 is defined by

M, = max{0, log,(2P*?b3%/a), log, (4a+4(1+2)bK™)},

. . . . o o
an increaging continuocus function of a,bJ and bK . We have

M. € Mg M -+ 1 and
v w

AL g = (2P e I
sC
log,L (a,bd", bK") =
- 2{M0+1){1+(2p+3bJ“/a)l/“)
is the cdeszsired Zouni:

log, ¢(t) <M(ltv,) < 2(M+1} (1A71I) = log,L.

Remark
In the procf of Theorem 2 we used the following simple result:

If 0 <« <1 and A is any measurable subset of R,

a—-1 1 &
I(O'tl} AA (tl—s) ds = aIAI .

This is clear if A 1is a finite union of intervals in

(O,tl); 5 — (tl—s}a_l is increasing, so by moving the
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interval to the right we preserve | Al while increasing the
t

1 -1 1 o .
£ -la =5 lal". Any open A is a

countable uynion of open intervals, and the result for open A

integral to [ | (£y7s)

follows by taking limits of incrasing unions of finite inter-
vals. Finally, any measurable A may be approximated in
measure, from the cutside, by open sets, so we get the general

case,

Corollary We use the notaticen and hupotheses of Theorem 2, but

alsc, for scme Q > 0 and KQ > 0, suppose ¢ satisfies

Lo,Tm (o <q)?" < K-
Then on 0 € t < T,
e(t) < Q.Lia/Q, bs® QPTIL, px¥ gPIITITL),
The last argument on the right-hand side may also be written
ba® QPTI L (k077307 "

Note the simplification in the extreme case p =1+« q.

Proof Define ¥ : {0,T) — R, by ¥(t) = ¢(£)/Q, and
apply the theorem to . Returning to ¢ = Q.¥ gives the

corollary.
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4. An example in the spectral theory of semigroups

4.1, Introduction

If A € L£(X) 1is a continucus linear operator, the

Aty o etU(A). In general,

spectral mapping theorem says ole )
the generator A of a strongly continuous semigroup
{eAt, t = 0} is not bounded, and the most one can assert
{without further hypotheses) is that

At

o e?ty > eto{A}

for t 20,

and in more detail ([3], Th.l16.7.1,2,3,4)

Po(eAt]\{O} = etPG(A), Ra(eAt)\{O} = etRo(A}

and Ca{eAt) D_etCa{A)

fnote 0 dJoes not belong to the image of the exponential
function, though it may be in the spectrum cof the semigroup).
A remarkable example is given in Hille and Phillips
{[3], sec.23.16} of a strongly continuous group of operators
{éAt, —o0 < £ < o0} on the Hilbert space LZ(O,l), whose

generatcr A has no spectrum, while for any real € # 0

-ltln/2 ItIW/%

At = {z : e <lzl <e .

ofle ") = Ca(eAt)

The spectrum of this semigroup bears no relation to o({A)},
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since ¢(A) 1is empty; but a recent theorem of Gearhart and
Herbst [1,2] shows spectrum may also arise from lines
Re A = constant where the resolvent (A~A}_l is unbounded. Ve

prove

ESTE
-

.H(R—A)-lu_is bounded on-any line Re X = constant € [- %,

1

I (A\-2) "Il is bounded as ImA -——*+ += on Re A = constant.E(-E, %)

but is unbounded as Imh - - oo

in accordance with this theorem.
We will review the entire examnple, since certain details
are treated differently than in [3], and other details are

supplied that are omitted from [3].

4.2 The example ,
Given continuocus f : [0, —+ € and t > 0, define
-1

(1) 3Fe) = f% “‘]t; £(y)dy, x > 0.

L. £ t+s
For any positive -t,s, we have J (3%f) = g f:

I

t-1 5-1
35358 () = g Xl (L) ay f¥ A2 f;] £(z)dz

-1 s=1
= X X ix-y) (y-z} dy} £(z)dz

0 z re) I'(s)
s+t-1
=3 x=z)  f(z)dz .
F'(t+s)
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Further, if f 1is continuously differentiable,

t-1

£+ S5 BT sy -£xpay

JUe(x) = s

X
{t+l)

t
X - - t X, b Elx)=-£(y)
B0 + Upqerry ~ WEO) - gy So ey SR

— f{x) as t —/ 0+,

Defining Jof = f, we have (at least formally) a semigroup of

operators, 1_:he fracticnal integration semigroup, such that

7lex) = r¥(y)dy and ﬁ%{th{x)) =t e, £ 21,

(We estimate norms bhelow to show this is strongly continuous

on L2[0,1).J

In fact, the definition (l}) makes sense for complex ¢t
in Ret> 0, t — JUf is analytic in Re t> 0 and
t, 8., _ t+s . .
J(J°f) = J f for Ret> 0, Res> 0, by analytic continua-

tion. If f & C:: {IR+}, t — Jt f(x} extends to be an

t a™E (x)
entire analytic function with J7E{x} = ——n when
dx
t= -m (m = 0,1,2,...), as may be seen from the formula
t x (x-y)F7L N :
JUEix) = J {E(y) = Z £°700 (y-x)3/31} ay

0~ T(t) 5=0

N . ' j
AR LNV TSI SEP A VAT TS IR
3=0
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Note 1/T(t) and 1/({t+j)I{t)) may be considered
entire analytic functions of t, for any integer 3j 2 0.

We will work only in the half-plane {Re t # 0}, and we

show
(2y e < B(t) Il £l £ ec”
3 L2(0:l} () | L2(0,l) or all £ CC(O,l),
where B(t) = EEE—%TET— for Ret> 0, or for 0 < Ret< 1/2 we
may take
l lIl‘l‘Itl 1/2
B(t) = e /{1-2 Re t)

Note, on Ret = ¢ > 0, Stirling's f[ormula gives

id

- o4l/23' Tmel. 1

{l+0(m)} as Imt— ¢,

1
Ret| I'(t}}

= {_IImtl
o2

so our bounds for the norm are not too far apart. In fact, by
the maximum principle, we have 175 < 1.1292 /21 Im tl gop
0 < Ret< 1/2.

For the first estimate, define

ut-l/I‘(t) when u > 0
Kt(U) =
0 when u <0,

soon 0 <x<1, Re t> 0, supp £ C (0,1),

L
afEGal =4 Iy K (x=y)E(y)dyl = | fg K (x=-y) £ (y) dy | <
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1/2

< Uy 1k (x-y) a2 g1k xey)l FE1 2y t/?

so fo 0T E0l Pax < sl Ik, twldu SE 001K eyl axH £y 2dy

1 2 2
%(f_1 PR, (widw) ”fHLz(O,l)_'

Thus we may take

. . Re t-1 1
= | = L =
Be) = J_(IK (wHdu = [ 57 9 = gep TTOT

Before proving the other estimate, we note that this
alredy shows t —> th € L2(0,1) is continuous (and even
analytic) in Re t > 0, for any f € LZ(O,l), and it is also
continuous as t —* 0 in any sector {largtl|< n/2 - € < n/2}
strictly in the right half-plane.

Thus we have a strongly continucous semigroup in Re t > 0,

and in particular on the real axis {t > 0}.

Let A denote the generator of {Jt, t 2 01C £{L2(0,l]},
t At

so J =e 7, t # 0. Now the spectral radius
!.'{Jt) = lim "Jntu l/n < lim _'1—1/1‘!. = 0,
nroo £{L2J n+e I'{nt+l)
for any t > 0, so o(JtJ = {0}for t > 0. It is also known that
{0} = U(etA} > ew(AJ ; but 0 1s not in the image ©of the

exponential function, and any peint of ¢{A) would give a
non-zero point of o(etAJ for any t > 0; so o(A) is empty.
{Of course a b0unded.0perator always has spectrum, but A 1is
unbounded) .
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Now we obtain the other estimate, which shows the semigroup
may be defined (and is strongly continuous) in the closed half-
plane {Ret > 0 }. For £ € CJ(0,1), J°f is well-defined for all
complex t, and we consider in particular the strip 0 < Ret < 1/2,

kecause then

1 Ret-1
bl

3t eeol = it )/ mee) = o )
w _t 2 , t
for x = 1, so IOIJ fF{x)i“dx < = .Define J f(x) = ¢ for x < 0;

we compute the Fourier transform when 0< Ret < i/2

[th)- {(£) = lim f?Re-iE * g% () ax
R+oo
= Lim g e P8 ¥ stroax
Reoo
= lim [y dy {fg_y at e MGy niey e HYE(y) .
R+oo

Rotation of the line of integration to the negative {or positive)

imaginary axis when § > 0 (or §<0) shows

(ot (k) = £ T2 6y, (3= -sgn £),
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Then

e S TR S E IU ST
: Seo

o _t. 2
Sl £
< o= oTIIMEly =g TEREE prey? as

I R T ST L S (I TR PRI PR
m _ - 1
For the second integral, recall supp £ € (0,1) so| £(§) < Hf"Lz(O,l)

for all real f;Thus when ¢ < Ret < 1/2.

t |2 < I? [thl2 < ewiImtt ”f"2 {1+ 2 Ret )

" -vt.g-uz - 1 T L
I Jo 14 7 1-2Ret

which gives the desired estimate.
Now we have a semigroup in {Ret 2 0), and we will examine
in particular the behavior on the imaginary axis. First, a technical

point: determining the domain of the generator.

Lemma ([3]) , Th.23.16.1)

Let £ € Lz((o,l}, €) and define
Fix) = [ log{x-y) £(y) dy, 0 S x <1 ;
the integral converges absolutely {(Cauchy inedquality) and

Fix) - 0 as x + 0.

(i} if w # 0 is any complex number with Rew = 0, and if
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lim 1 (3%¢-f) = g exists as a limit in 1,(0,1), then F is

t
£ 0
absolutely continuous with derivate F' in L,(i.e. F € 8 (0,1))
N
and g = W(F' + v£), where y=-T'(1) = lim ( Z £ - log N) =
N+ oo 1 k

= EBuler's Constant = 0,5772... .

(ii) if P € H'(0,1) then as t = 0 in Ret = 0,

(3%-£) > F' + £ in L,(0,1).

[l

Thus wheter we consider (t = Jt} as a semigroup in (Ret = 0}
or in {t 2> 0, Imt = 0}, or on any ray or sector in the closed

right half-plane, we always obtain the same generator A:

D(A) = (£ € L, | F € H'} and

for £ € D{a), Af = F'+ y£f.

Proof: It is convenient to do our calculations on 7%t when

Ret > 0, and Ret may be chosen to be large to improve smoothness.
Then we extend results by analytic centinuation to the open
half-plane Ret > 0, and t©¢ Ret # 0 by continuity.

$

ey =3 Fenay -

(i) For Re > 0, T 1lg = J_1 3’y or 4

I - ¢
TG+ f’{;(x—yj f(y)dy.

Taking ¢ =wt with t > 0 {Rew 2 0, w # 0) we find
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XL Gt fyr-£(y))d L SR € ) R QP
0wt b4 yhidy =15 oF ' T(1+wt) y)dy.

By our hypothesis, the limit t -+ 0+ is

r‘ r
é.fg glyldy f: {log(x-y) - FTf%%} £(y)dy

Fix) + 7/} £

so F 1is absolutely continuous with derivate F' = é g - Tf in

L2(0,1), as claimed.

{ii} Now assume F € Hl, with F(0) = 0 as noted above, s0O

F = JYF' and JI_I(F) = F’F' for Ref > 1. We show 3

= -3% e - +3b s,

In fact, for Re{ > 1,

(F*') =

& -1 x X (x- )r-z
F(F'Y (%) =R (x) =S5 (S = 1og(y-z)dy} flz)dz

z I'{f-1)
= Jx iE:ElE:i {log (x-2) =il - L&) 4 £(py4z
0T El 1y T@) i
(The inner-integral was evaluated as 8/9¢ |, _ , of the identy
{-2 t-1+e
X (x~-y} o€ - (x-z) {L+e)
I, =iy (vo2) Ay Ti§ie) y.
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This for Rex > 1, Ref > 1,
Fe-o% =8 5—(J§f)d§ =B Er v

But the final equation holds (by continuity and analytic

continuation) in Rea 0, Ref = 0. Allowing a >0,

ﬂ (Pe-f) =

gJ§(F-+7de;, Reff > 0,

":Jh—-

and then we see this converges to F' +7vf(in Lz) as § +0 with

Ref = 0, completing the proof.
Now we are ready te close the trap!

The strongly-continuocus group {Jltl oo g Lo}

of operators on L,{0,1) satisfies

it" < eItl'fr/2
£(L2}

It J

Now J*% has spectrum -as does any bounded linear operator-

and the spectral radius

it it | tbw/2
e{I ) =17 "£(L } =
while the inverse of 'Jlt is J_lt, t=To]
ol Bl /2 12| < eltl w/2 }

U(Jit) C {z:



(We see below that these sets are equal whenever t # 0.But the
generator of this group 1s iaA, where A is the generator of
{Jt,t Z 0} {see the lemma if you don't believe me); and o{A) is
emp;y, s g(iA) is empty.

Just to make the situation definite, we show every z in
e_[t[“/z < |z < elt!ﬁ/z is in g(Jit]. Since the spectrum is
always a closed seﬁ, this holds egnalty for the closed annulus,
when t # 0. (Hille and Phillips [3,23,16] give as an open problem
whether the interior of the annulus is in the spectrum; it is,
as we show).

For any complex p with Rep > 0 define

g, (x) = xP JIRépFT , 0<x <1,

- C s it
S0 "gp"Lz(O,l}_l‘ By the definition of 7, we may compute

Jitgp to find

it Iy +'1)

- pr) o Tptl) it_
J gp F{p+l+it) gp (p¥l+it {x 1 gp{x}.

Now fé let-llzfgp(xnzdx-+0 as Rep -+ +w%=, for any real " t; and

we cheoose p with arg p fixed in {-7/2, #/2) and ipl = =, say

if
p—Rne

(-=/2 < 8 < w/2, R = exp fa+27n/ltl ) @ and @ fixed)
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Then T(p+1)/T{p+l+it) = p -C (1+0( pl ~1})
_ -it  -t# -1
= Rn e (1+O(Rn 1)
— e"te*it“(nom;l))
50 with 2z = exp (~ (t9+itm)),
o gitq —zg . > o, N gl., =1,
gp gp L2 gp L2

Any such z 1is in O(Jlt), and (#,x) may be chosen freely in
{-n/2, 7/2) X R, so the interior of the annulus above is in the

spectrum, as claimed.

4.3. Interpretation

From 1948 (in the first edition of [3]) until 1978, this
example was complately mysterious and outside the theoretical
-structure of spectral theory. Even after 1978, the theorem of
Gearhart { 1] -extended and simplified by Herbst { 2] in 1983-
was not applied to this example. We will apply it, and then see
it more as an example than a counter-example.

tAa

The theorem of Gearhart and Herbst says: if { e ., t & 0}

is any strongly continuous semigroup of linear operators on a

Hilbert space, then for any t > 0, z €C,

G(eAt}l if and only if either z € o(A), mod 271,

zt ¢
t

e

or z+2t;n & o{A) for all integers n but the resolvent

(z + E%iﬂ - A)_l is not uniformly bounded as n -+ *eo.
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(No comparable result is known for Banach space semigroups).

We compute and estimate the resolvent of the generator iA
ok iJit, t 20} on lines Re z = constant, or -what is the same
thing- consider (z—A)—l on lines Imz = constant.

First recall

-zt _t

(z-a)"F = ST o J" dt

0

for Rez large -and in fact, for all complex z, since both sides

are entire. Thus

- o _ t-1
{z=A) lf(xJ = ID e tht fﬁ i5?¥%T—— flyldy
= ,rg E{x-y;z) fly)dy, 0 <x <1,
where E{u;z) = .f? dt e %t ut_l/F(t} for u > 0.
As before
1 (z-a) N <Y iE;z)idu g

L,(0,1) 0 ' L,{0,1)
so I {z-&) Y < rY E(usz)l du.

£{L,(0,1))5 70 ‘

There is no difficulty when Rez 2 Const.>» - o=,

0



For example, if Rez = -1,

-tRez t=~1
u

fpdu |E(uiz)] < fpdu foat e /U (E)

-tRez

< j;ﬁt e /T{L+]l) € C/(Rez+2)

where C = max e2t/P(E+1) ~ 238,83.
£=20

In fact, by rotating the line of integration, we may
estimate E({u;z) also in the left-half plane, provided
| Imz| > #/2. Since E(u;z) = E(u;z}, it suffices to treat the
case Imz = # » #/2. Stirling's approximation shows we wav
rotate the line of integration to the negative imaginary axis,
and then.

17 (E-logu) e

. _ —i (=
E(u;f+lq) =0 IU NSty dt

for 0 < u <1, 7 > /2. Note IT(-in)i=+ Eg e_nr/2 as 7 — 4w

-T
but the integral converges since 7> x/2. In fact 7 ~ e 'n/F{if},
along with its derivates, tends to zero exponentially as 1 — +os,

£0 we may integrate by parts twice to obtain

2

o 3 _ -
Elu:E+inm) = ____i_.qﬂj {1 +if0 elf{E logu} _ii (fﬁ%Fj'}dr}
uff=logu) ar

This shows, when |(-logul® 1,
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| E {u;d+in)| € C/

ful £=-logul 2 ]

for a constant C depending only on 5. In case|lf-loqul < 1, we

use the earlier representation:

CE i 1 oo -7
| E{u:g +in)| éﬁ JodTle
where C, depends only on n.

Now for p >n/2 fixed and i<
E-1

fédu tElusE+in)] =(Je +[
g

% C 4-2Cl +

Thus || (E+ig-A) is uniferm

o
L£4L37)

T/Li-ir)l = Cy/u,

-1 (we estimated f =-L above}

F+l
€ +J 1 YIE| Qu
oEL ) gE+L

1

C(l_f

1< 2(CsC ).

ly bounded on = o= < f < e

provided >n /2 or 7 < -z/2, For any 7, it is bounded as § =+

but we prove it is unbounded when

In fact given any g € L,(C,1)

. -1
tErin-2) "N, gy B el

We choose, of course, g = gp(x] =

arg p = constant, as before. Then

t -
(J gp] (x) = qp(X)

£ s=c0, for -a/2 < n < n/2.

| {E+,j_n-A)g|iL2.
xP /2Rep+l , with Rep > + oo
I9p i, =1 and,

x5 (psl)
' {p+1+t)



so differentiating with respect to t,

= ' {p+1)
Agp(x) = gp(x) { log x - TTE%TT_}

But qu{x)log xHLE(0 - 0 as Rep —+ + and g{é+;}} =

= log p +0(T%T)so we mav choose

p = o (E+in)

then argp = -7 is fixed in {(-%/2, /2y, |l pl = e_E » +e  and

Rep—+ += as Eé—m’and “Rgp— ($+1n)gp"L2 - 0, "gp" Lo =1, so0
! oo . bid T

(g +ing-2) H£(L2)* +2 . In fact, uniformly on | 7| < 5—6( 3 .

I gtin=a) 1> 4o as fo oo
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5. A property of the exponential functicn

Thecrem Let @ be any subset of the complex plane, and define
X ={x € R 3 sequence z, € Q with Rez_ =X, [Imz, | > 4oa }

Of course, ¥ may be empty; but if-not, it is a closed subset of
IR and we set 2 = X + 1IR={ z € €: Rez € X}. For any real t,
et? is a{relatively closed)collection of circles or aanuli in

cN{0]}.

for almost all real t,

et? ¢ Closure etQ

and in fact

et? = n closure et (0}
N =1
where QN = { z € Q: { Imz|] » N} . The excluded set of t 1is of

measure zero and also meager (=Baire category I). If X is empty

and Q is closad, then etQ is closed in €\{0}for every real t.

Example Let Q = (0, %i, *2i, %3i,...}. so X = {0} and e"% is
t . .

the unit circle for t # 0. Then e Q is dense in the unit circle

if and only if /7 1is irrational.
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Proof It is sufficient to treat the case when Q ‘Jis*contained
= -

in the imaginary axis and X = {0}. There is a sequéhce- 38l

’ A

{iw} %, in Q , with |w |>=, and for definiteness. i

suppose W, T ¥, o7 )‘1 _u.‘,"i =, 3
Coia
For any real & and any & in 0 <& < r,-define "z 2o

Sa(‘” = {t € R | for some integers 7j,k, w73, t-a-2xkhi 8},

Note dist (e2%; %) < 2 sin 8/2 when t € 5 (8)imiGleaBly L
SQ(B) is open; we prove its (closed) complement has measure
zero, hence also has no interior. To do this, we estirgate the .
S = PR 5= TRb
density of Sa(ﬁ). h ) Y
Recall the density of 5, {8} at t &€ R is
lim ?le- meas {S,(8) N (t-e, te)}, - L
7ot P oL el
which exists for almost every t, equals 1 a.e. in'% §E%89%" dnats
4
equals zerc a.e. outside S (§). ENSE RN

Now any real interval of length > 1 contains Hh fntdger B

so for any real t and positive integer j, there is an integer

o oy
'y

Let t* = (2rk+a/w; then | t-t* < 21r/wj and (since & <wy.)

.

f A - ]

§ § k$s 3w
* 0 ¥ —_ - 20 27
{t w, ' £ w.) ¢ Sa(a) n (t w.* t + w,]-
3 ] ] ]
SO0 —=— meas {5 _(8) N (g-e, t+e)} = 8 when € = EL omore
2w o . ar ' w, "
J anfial

Thus the density of Sa(ﬁ) at t is 2 §/3r > 0, and is never
zero. But it is zero a.e. outside Sa(ﬁ). We concludeg‘vthat a.e.
t is inside Sa(b']-
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Let {&, ,a_,...} be a dense sequence in [0,27] and

1 27
— =] s
let S = u nz\sa;i). 5 1is a meager set of measure zero,
k=1 j .
since this is true for each IR\S, (i). If t € R\S, then

i J
t €5, (%) for all j,k, so {elaj, j # 1} is in the closure

tg? £Q
of e, so the whole unit circle is in. the closure of e ™.

For each N =1,2,... , there is a meager null-set

'STN C IR such that

Closure etQN 2 unit circle

when t € TIR\S.. Then for t € TR\S, § = U B8N,
N
N1
etQ

closure N 2 unit circle.

M
N 1
When Q is an arbitrary subset of €, we choose a

countable dense seguence {xn} in X, and for each n there

tQ

is a meager null set Sn such that Clousure e contains

txn} for t € BR\EA. Then for t € IR\V SA, Closure

n= 1

{tzl = e

. Z
etQ contains et .

Corcllary 1 Let & < f and suppose h(z) is an analytic
function in the strip o <Rez<'8 which is asymptotically

almost-~periodic, i.e.

h (z) - hy(z) > 0 as Imz — too  with « < Rez < §

where h, (.} are analytic almost-periodic functions in the strip.

Define

Xg = {Rezl h {z} =0, a <Rez < g}, o = ¢
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and let
Z ={z € €| Rez € Closure xa}

Then for a .e. real ¢t

Closure {eXt I ¢ < Rex<{ 8§ , h{x} = 0} 2 etz+ U etz—.

Remark In applications to difference equations, functional
differential equations of neutral type [1] , hyperbolic
systems in one space dimension with general boundary conditions,
and some other problems, we have a “characteristic equation®
(h{A} = 0} given by an asymptotically almost-periodic analytic
function h (.}, such that there are nontrivial solutions

with exponential time-dependence et if and only if h(A} = 0.
The set {etl t h{x) = 0} is contained in the spectrum of the
corresponding semigroup.

proof of Cor.l Basic properties of analytic almost-periodic

functions are described in {1, lemma 3.1-3.3] . One of these

[ 1, lemma 3.2 ] is:
If h, (A} =0, « < Re?\l <8, there exist A,, Aj,... with
hy (A ) = 0, Rex_ =+ Red, and o Imk_ — +=,
n n n
Using Rouche's theorem, we find:

if h (X)) =0, a < Reh <8, there exist A's, A'3,... with

n{x’ = 0, ReA'y, » Rer;, and o.Imd'p > = .

n)

77



It follows that the set ¥ of the thecrem, corresponding to
Q= hhl(O), is the closure of X U X_, and the Corollary is
proved.

In the spectral thecry of [1, th, 4.1.], the only
point left open is wheter the set éf circles (etz, in our
notation above) is centained in the spectrum of the semigroup.
This is proved by Cor.l for a.e. ¢ .#& 0 so0 we have:

At

Cerellary 2. If { e 7, £ 20} is the semigroup of [ 1} with

generator A, then for a.e. t 2 0
G(eAt}\ {0} = Closure eto(A)\ {0}

Remark. Corollary 2, as you may have guessed, was the original
motive for this investigation. I tried to.prove this about 1971,
and failed. In 1981, I found approximately the above argument
but concluded ¢nly meagerness, not realizing it proved measure
zero until 1984. Which shows sufficient patience may compensate

a lack of brilliance.
Reference
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6.Asymptotic behavior of some scalar ODEs and an ejementary

example of non-minimal &~limit sets.

A bounded positive-semiorbit of a finite-dimensional
autonomous ordinary differential equation {and some infinite
-dimensional equations) has a nonempty compact connected
invariant w~limit set. "Invariance” means the @-limit set is
composed of solutions of the equation, but it need not be a
single solution. Correcting an example in Hale's book [ 11 , ang
also in Coleman's article {2] , we show the 2-dimensicnal system
{in polar coordinates)

f=r (l—rz)3 , 8 = rzsin2 g *'{1-r2}2

has solutions r(t), &{t) with r(t)+ 1 and @ {t}—*4= as t=>+% .
Thus the «-1limit set is the unit circle, which consist of four
solutions : the eguilibrium points {(r,%) = (1,0) and {(1,7) ,
and the two orbits joining these. In the version given by Hale
and Coleman, the first equation is r = r(l-rz); but this
implies r(t)- 1 exponentially and #{t} has a finite limit
{ =0, mod w), so every solutionlapproaches an equilibrium.
More generally, we stuéy the asymptotic behavior of

solutions of the scalar eguation

() &= E(t,uw) = £ () + £ (6)u + £, (t,wu’

whera

fo(t) ~ 0, £,(t} =0 and fz(t;O) - a0
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as t™*, and give conditions for the existence or nonexistence

of solutions tending to zero as L+,

Theorem 1 Assume f£(t,u) and its partial derivate f (t,u) are

continuous on {to £ € w, -r. s u % ry! and

0
FEte,u)=£ (t)-£, (t)ul £ (t,u)-f, (&) |
1im o) 1 <lal , Iim u 1 < 2l al .
t> = u2 L I al
u= 0 u—D
Also assume m = lin t2 i £ {t)l, m, = lim tf fl(t)l are finite,
o oo o £ —oa
2
< -
my 1 and My < (m,-1) /alal.

Then there exists a solution u(t) (for t sufficiently large) of

© = £(t,u} which tends to zerc as t > *+ =; in fact,

fu{t)l = o(t™ 1y ag t = e |

Remark Many variations are possible by change of wvariable, for

1 o t
5a L (t) or u = v exp {J’o £,).. It seems
desirable to reduce or eliminate fl.

example u =v -

Procf The function r —>m0+(m1-1)r+ lal r2 has a2 minimum at

Trin = (1-ml)/2 lal > 0, where it is negative, by our
assumptions. We may choose r > 0 slighthy less than Toin *
s0 that

m, + m,r + |a r2 < r

0 1
and

my, + 2lal r < 1.
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Fix such r, and let € >0 be sufficiently small that these
inequalities remain true when mp, ml,lai are increased by €.

For sufficiently large A > (0 we have

| £, u)=Ey () -£, (Bhul < (Lal+e ) u?

| fu{t,u)-—fl(t}l < 2(lal+ve )| ul

| £ (001 < (mp+e /e 1 £ ()] < (mpre)/t

cn the set

{(tyu) : t=a, lvel< /2 3}

Now define

Sa ={kontinuocus u: {A,«) >R | tiuit)!< r for t=a}

a complete metric space with the distance dA

dA(u,E)= sup tl utt) - u (el
=Y

Also define - SA-> C([ A,~,R }] by

@ () (&) = —f:’f(s,u(s) yds, £ > A,
It is easily verified that & (SA) C 5, and

a, (®(w),®(U)) < (m

N +e+ 2r{|al+ e ]]dA{n,ﬁJ

1

For u,u in § so there is a unique fixed point which is the

A!
desired solutiomn.
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Theorem 2 Suppese a >0, ml> 0, m0> (m, * 1)2/4a and
I£, (£ |<m;/t for large t. Then no solution u(.) of
n Fa u2 +m0/I:2 + fl(t)u tends to zero as t>®; in fact,

every solution blows up {to +=} in finite time.

tul{t): then

Proof Let vit)

. 2
v

t21’1 + tuz my + v—mllvl"‘ av

2 2
;aa(v+(1tml)/2a) + mo—[liml) /da
# constant > 0

so v(t} > (Constant) logt > 0, for large t.

Choose C; > 0 such that

a 2

a(v+(1i'rn.1)/2a)2 + |, - (ltml)2/2a = 3V +v

0

whenever v 2 Cl' Now v = Cl for large t, say t & £y hence
t\}?%v2+v and sc u >0 and a4 2 Euz for t > t;, so
2

u blows up.

Returning to our example
t =gir) , 8 = r? sin29+(l-r2)2
ith _ 2,3 2 i L
with g(r) = r(l-r™) or r(l+r”) {or something similar). We study

a solution rit} = 1 as £ = + = _

We apply the thecrem with
£(e,8) = ri(t)? sin® + (1-r(t)%)?,

say £, () = (a-r(01%?, £ ()= 0, and a = 1.



By Theorem 1, there exists a sclution 8(t) 0 as t =+

provided Tim (l-r(t)2)2 % < 1/4, which certainly holds if
- o

g(r) = r(l—E ), since r{t)+ 1 exponentially. Since 8 (t)+ krx

ig also a sclution for any integer k, it follows that every

solution # (£t} is bounded. The sclutions are monotonic so they

have limits, necessarily = 0 {mod 7). Thus in the examples of

[ 1,2 ], the w-limit set is always a single point.
3

Suppose instead that g(r) = r(l—rzj . then every sclution

r 2 0 satisfies -rit}+ l= l/{4vrz)so tzfo{t) = t2(l~r{t)2)2
‘% t/4 as t= += and by Theorem 2,there is no solution 8 (£t} which
tends to zero as t= +*. This means there is no bounded solution.
2 bounded solution has a limit which (after possible shifting,
= 8+ ¥ ) we may assume to be zero; which is impossible. This
is the desired example of a non-minimal «-limit set.

A more delicate example is obtained when gi{r) =-r (l—rz)z.
Then tzll-r(t}z)2 = 1/4 as t~ *° (assuming r{t) > 1, sc r{t)™ 1

as t—+ + o . Thus if | Al <1,any solution {r,?) of
; = —r(l—rz)2 . g = r2 sin2 g + R(l-rz}z

with r> 1 tends to an equilibrium [(z,8) = (1,0} or (1,7)] as
£— to; put for A>l, ri(t)— 1 while 8(t)* ** and the w-limit set
is the whole circle {r=1} . All these examples may be written as

polynomial systems in the plane: the last case, for instance, is

x —xll—xz—yz)2 —y(y2+ R(l—xz—yz)z}

—y(l-xz—yz}z +x(y2+ R(l-xz—yz)zJ,

[
n
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