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MAPS FROM Bn INTO X
Zdzislaw Wojtkowiak

Let n be a finite group and lets Bx be its classifying
space. With every subgroup ¥y €W there is associated a covering
ify,n) : By - Bx . If g e¢n then multiplication by g on Ex indu-
ces a map cg: By —~ B(g_lvg) . Let E be an infinite loop space.
Then there is the following exact sequence

ie,3%

-1
(*Y o= ([Bm;E] - O[Bxn_;E] ———» 1 [B{x_ngn J:E]
x p n_agén P pg
P
B
whare LS is a p-Sylow subgroup of = , products 1 ..., and
I ... are over all p-Sylow subgroups for all P primes p ,
T oJENH
i, = W il(x_ng=n g_l;n } and Jj, = 1 i(g_ln gnr_s1_Jec . (see [2]).
1 .g p B B - B PP 9
py p.g

From the sequence (*) it follows that a map from Bw to an
infinite loop space is homotopic to zero if and only if its restric-
tions to classifying spaces of all Sylow subgroups are homotopic to
zero. We want to see whether the same statement is true for an arbhi-
trary simply connected space. For example if x = nwp then we have the

P
following proposition
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Proposition 1. If X iz simply-connected then

[Br:X] = n[Bm_:X] .
P P

Proof, The map V Brp -~ Bn is a homological equivalence. Therefore
P

using an obstruction theory we obtain a reguired isomorphism for any
simply connected space X .
In further considerations we restrict our attention to a very

i -Sylow subgroup of =
small class of groups, Let L be a maximal p-8Y g P

Let N(n_ } be a normalizor of b3 in n and let W_ = Ni{n)/=n
P P B P |

Definition 1. We say that n satisfies Wp—condition if the map
W
) P

H*(N:Z(p}] -+ H*(np:z is an isomorphism.

(p}
Examples

1. If “p is a normal divisor in a1 then wp—condition is satisfied.
2. If “p is abelian then Wp-ccndition is satisfied.

3. Wp—condition is satisfied for the binary icosahedral group I*

and all primes p .

4, If n= GL(n;Fq) then Wp-condition is satisfied for some

primes p .
Notation. "~" means "is homotopic to"

We have the following sequence of cofibrations (np is a maximal

p-Sylow subgroup of x .)

i 3 & s{i)
(**} Eﬂrp — Bm — Cone(i) =¢ — S(Bnp)—“—’ S{Bx) = +-- .

50
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Let ( ) denotes the p-completion functor and let { ](p)

(p)
denotes the p-localization functor. After applying | }}p) to  (**)

we obtain the following sequence of cofibrations

i ] &

~

- 2 - P = p -
(Rl 8] (Blrp} (e) Bnp — (Bm) ey —™ c(p) c(p) . S(Bnp) (p)

S(i}p .
S(Bﬂp) ——= 5(Bm) {p) = 5({B7) (p} - e,

Further we shall deal only with a case of a fixed prime p and there-

fore we always drop the index p in 5

i Y TP
pp' PR

Theorem 1, (F. Cohen [1 ]} If n satisfies Wp—condition then

s{i} : 5(Bn) - S{Bw has a left inverse %k ,
< (p}

k : v S{B - 5(B is a homoto equivalence and
bv C(p} {Bx) (o) { np) PY eq

j o (131|r)p - c(p) is homotopic to zero.

Proaf. Let k = |Wpf . Every element gz« Wp induces a map
h r Bx_ - B=xm conjugation b ). Let ¥ = £ S8(h }: 5(Bn ) - S(Bxn)
g o p feoniug Y 9 g g o LS

and let k-N = k-id-N : S(Bx) > S(Bx ) . One P easily checks

that the natural map r = r,+ r,: S(Bnp) + Tel (M)v Tel(k-N} is a

homotopy egquivalence. Every element ge Wp induces alsoc a map
ﬁg: Bn -+ B¥ homotopic to the identity. Let N = % s{f{g)

€W
gli'

=k : (SBm tpy " {5B ) (o) - The maps

f: Tel(n) — Tel(g) and r.: (SBnx) (p} - Tel(N) are homotopy egquiwva-

1
lences. Let il: Tel (N} - Tel{N)wv Tel{k-N} be the natural inclusion.
¢ne can check that k = (r2+ r1]_1oilaf—1n;1 is a left inverse to
§(i} . Therefore &wvk is a homotopy equivalence, It rests to show

that j~0 . & has a right inverse ¢t . This implies that j~j. 6. t.

Hence we have that J~0 . H
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Corollary 1. If = satisfies Wp-condition and X 1is simply-connected
and p-local then the map f : Br = X is homotopically triwvial if and

only if its restriction to Bﬂb is homoteopically trivial,
Proof. If foi~C then there is £': ¢ - X such that £fej~f . This

implies that f£~0 . O

Let us suppose that we have a map f : SBKP - X . We want to

understand its restrictions to Tel(N} and Tel{k-N}

Lemma 1. Let us suppose that X = @Y . Then there is an isomorphism
[Tel(N) (resp. Tel(k-N}};X] = lim [ssnp;x]
N{resp. k-N) .

N(resp. k-M)
—_—

Proof. We have a direct system of spaces SB=r By, -~ -

p

There is the following exact sequence of Milnor

L1 i

0~ lim [SBr ., X] - [Tel(M) (resp.k=N});X] - 1lim [SBm ;X]- 0O
N{resp. k-N) P Miresp. k-N) P

Let us notice that NoN = k:N (resp. (k-N)o(k-N) = k({k-N)] implies

that our inverse systems satisfy the Mitag-Leffler conditions. This

implies that limi terms vanish, O

If fc¢ [SBnp;ﬂY] and Y is p-local then for any n ez( we

p)
can define n.f in the following two ways.

i) Maps.{sl:Y} = @Y has the same hamotopy type as Maps.(Sip};Y]

. 1 1
For any ne¢ Z there is a map n : S(p) -+ 3 of degree n and

{p) (P

we define n.f as a composition nef
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. 1 o ol 1 1 )
.. Th r S - S induces
ii) s°A Bnp 5{p)f\ Brrp . e map n (p) tp)

5 A B — 51 A Br . We define n-f as a composition £fon
(p} p {p) P

) 1
Let f & SBnP - ¥ = ¥ . Let us set f1 = ?-{fuN) and
_l - *=i i .
f2 = k.(fo(k N}) . Then f1 {kn fl}ne{l,Z...} elsm[SBnp,X] and
1 s
* = e 2 . 1 w 4
£3 {k“ f2}ne{1,2...}€ iéEISBHP'X] Therefore by Lemma £f7 an
f; define maps f;: Tel{N) - X and fg: Tel(k-H) -~ X . f;v f5

restricted to SBHP {i.e. (fIv f;)or where
r =+ Iyt SBup + Tel(N}v Tel{ksN} is a sum of inclusions onto the
first segments of the mapping telescopes) is homotopic to

1 1 _
i foN +i fo[k—N) = £ .

Proposition 1. The natural isomorphism

: 13 BR_ ; i iX] - [SBx ;X]
r*: lﬁm[SBﬂp’x]ﬁ’Ean[SB“p ] [ xp

is given by ([fn):(gn]) ~ £, +g, - The inverse map is given by

£~ (£F:E5) -

Procf. The map r : SBnp ~ Tel{N) v Tel({k-N) induces a map

[Tel (N} ;X! @ [Tel{k-N);X] ~ [ssnp;x] which is given by the sum of
restrictions to the first segments of the telescopes. This shows
the first part of the proposition. By the previous discussions

b (f;.f%] defines a map in the opposite direction which is the

inverse of r*

-

Corollary 2. If £+N is homotopic to k+f then
: »

i) £2~0 ,
ii) fob ~O

iii) for any gs Wp we have that fo S(hg) ~f .
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Procf. 1} follows Erom the definition of EE . We have that

-1 -1 . . :
o~ el o bl *D a - *o ol e o .- *u o o oh~0 .
£od~ (£X V%) orod ~fForod ~f¥ol olor oa~ el "oF 0S(i)

ii} implies that there is f': §8x - X such that £re5{i) ~f . This

implies that foS[hg] ~f . @

2 . .
Corollary 3. If X = QY and X is simply connected then

i oz Bnp - B induces an isomorphism
- Wp
(Br) _;X] = [Br_:iX]

[ P 1 =1 o

BProogf. We have that vrlesti)~f or, £ and P are homotopy egquiva-

1
lences. Therefore it is encugh to show that

W
r¥: [Tel{N);X] = lim[SBr ;0¥] - [SBu_:q¥] P
1 7 P N -

W
is an isomorphism. Let us suppose that f e[SBHp:QY] P Then

£

€ lim[SB"P‘QY] and r?(f{) = f . This
N

1
* ——
i R A N T

implies that r} is an epimorphism. ry is also a monomorphism and

therefore it is an isomorphism. B

Thecrem 2. If X is a nilpotent, p~local space and if n satisfies
Wp*condition then the natural map
W
{Bm:;X] — [BIP:X] P is a surjection.

If X is a loop space then

x W
[Bwsx] -~ [BnP:X] P 1is a bijection.

proof. We have already proved theorem when X is a double loop
space. Let us suppose that ¥ 1is a loop and that X has only a finite
number of non-trivial homotopy groups. Let us consider a part of the

Postnikoff tower of X ,
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X S ox 4 K{n .n¥+l} .
n-1 n n n-t n

Let us suppose that the theorem is true for Koy - We have the follow-

ing commutative diagram

[B'IE,QXn_l]—s— [B:(:K(ﬂn.n) ]'—t'" {Bi!:xn] S [Binxn_’_} —d" [BI(:K(‘J‘tn,ﬂ"'l) 1

uj i H%j 1*k U‘? 1 m
W. 94 W. b W_ ¢ w_ d, W
p . p_1 . p_ 1 . P_. . . p
IB"p,an_ll —_ [BHP.K{HH-H)] [B“p‘xn] {Bn 'Xn_ll [BHP-K(xnvn+1)}

we must show that k is a bijection. If k{x) = k{y) then

. -1
ci{x) = cly} . Hence there exists =z {Bn:K(nn;n}] such that z = x -y.
i

This implies that j{z} = ki{x) +k{y} . Therefore there is
. 1
wE {Bwp.nxn_il such that ai{w} = j3{z} . Let w=g I weh . Then
gEWp

W
= 4 . P ; .
ai(wl} j{z} and W, € [Bnp,ﬂxn_ll . There is5 v e[Bn,an_ll such

that (v} = W, . We have Jji{a({v)) = al(i(v}) = ai(wl} = j(2} . This

implies that al(v) = z and therefore x =Yy

W -1
Let us suppose that xe [Bnp;xh] P and let VR {Ci(X}) .

There exists z such that clz} =y because d{y} = 0 . We have

that ¢, (k{z)) = ¢,(x) . Therefore there is w¢[Br 3 K(x in)] such
) -1
that b, {0} = x:k 1(z) . Let w, = T Woh_ . Then by {w,) = {x-k (z))k.
gW 9
It follows from the standard

1k L ¥p .
(x:ki{z} ™) lies in the center of [Bnp;xn] . Therefore

properties of fibrations that

L) kit Loy kit w) . i
bl(k wl) = x-k{z) . We have also that bl{k w1) = k(b(k wij) . This

implies that x ¢€¢im k
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It rest to show the theorem for an arbitrary nilpotent, p-local
space X . We use once more the Postnikosff tower of X  and the same
diagram as before. The map 1 is an isomorphism because an 1 is

a loop space. We assume that [ is surjective. To show that k is

surjective we must use the following lemma,

Lemma 2. Let M be a finitely generated z{p)-module. Let us suppose
that the abelian group, M acts on a set X in such a way that iso-
tropy subgroups are Z(p)—submodulels of M . We denote‘ this action

by * . Let us suppose further that 2 finite group G acts on M

and on X , the action of & on M is Z(p)—li.near, the order of

G is ke Z* and h«x? = ('h*x)g .

(P

If x,xleXG and wsx = % then { 3z 3;ug}lvr:-: = x

1 i
GG

Proof. wax = Xy and x.Xy eXG imply that wlex = x4 for each ge¢ G .
mgt(uhug)tx)] = wdax implies that (w—wg)tx =x for each geG .

1 1 .
Therefore (; I (w—wg)B*x = x . We have that % 2 wds ES z (w—mg)= w .

g &G GG GeG
This implies (% b4 wg)*x =Xy . s} .
g¢G

The action of [Bnp;x(zn;n)] on [Byb;xn] satisfies the
assumptions of Lemma 2. We prove that % is surjective in the same
way as for a double loop space. We have that cl{k(z)} = ci(z) . There~

fore there is w such that wki{z) = x . 1t follows from Lemma 2 that

1 1 : . . .
{ = ?{mohg)}ik(z) =x . { = ;(mohg}} = 3{w1) implies that
W €«
g« o 9 o
k(ml*z) = x , The spaces Bnp and B"p have only finite homology

groups therefore we have isomorphisms

95
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H ~ lim[Bx, ; T , . i
{Br;X] 1%rn[ ‘an] and _[Ehrp Xx] lﬁm[B“p Xn] {If {Xn}neN is
an inverse system of p-complete spaces then the functor Llim[ :XnT
n
is representahle by Sullivan i.e. lim( :Xn] = [ 2] and Z = holim Xn.
n
In our case holim(X }‘ = X and
. n'p
Br {or Bnl; X {or X )] = 1{Bx (or B );XA or(x ).
[ > ) = 1Bx for Bm)ix) for(x )]

because Br and Bnp have finite homotopy groups.)

We have the following commutative diagram

[Br;X] —BX. lim[Bn;X ]
=] = n

n
al . blR
W pr W
iBr ,X] P—Le 1im[Br ;x 1P .
P =

pr is an isomorphism, b is an epimorphism {resp. isomorphism if
X is a loop space) and P, is a monomerphism. This implies that a
is an epimorphism (resp. isomorphism if X is a loop space). This

finishes the proof of Theorem 2. B

If we analize the proofs carefully then it appears that in fact

we have proved much more general result.

Let us suppose that a finite group G acts homotopically on
a space X ,i.,e., there is a homomorphism G — no{c{x]) where g(x]
is the space of all homotepy eguivalences of X . Let us suppose that
lal =% . X is p-local and % ez?p} . By the result of cooke there is

a space X, with a free action of ¢ and a homotopy equivalence

i X - X1 which is homotopy egquivariant with respect to the

homotopy action of G .
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Theorem 3. Let Z be a p-complete, nilpotent space. The natural
map

[X1/G=Z}—A»[X.Z]G is a surjection,
If 2 is a loop space then

[Xi/G:Z]—:+ [X:Z}G is a bijection.

Application to maps between classifying spaces. From Theorems 2 and
3 we deduce some corollaries concerning maps between classifying

spaces.

Corollary 4. Let X be & nilpotent space and let =a satisfies

wp—condition for every prime p . Suppose that there are maps

fp: Bnp - X; homotopy egqguivariant with respect to an action of W
fIBTr

Then there is £ : B¥ -+ X such that Bnp —_ P.X - x; is homo-

topic t £
oplc to ?

Corellary 5, Let n satisfies WP—condition for every prime p . Let

- . W -
x ¢ K (Br} be such that x £ Im(R+(u ) P LR (Bn )] where
o lBrrp ] o p

+ . i .
R [np) is the set of honest representations. Then there is

£ : Bx - BU(n} such that B« —£-+ BU{n} - BU is homotopic to x

Both these corollaries follows easily from Theorem 2 and the

arithmetic square of Sullivan.

Let G be a connected, compact Lie group, T maximal torus in

G and let W = N(T)/T . W acts homotopically on BT . Using the

. . 1
Coocke result we can construct a honest action of W on BT TET

such that the map BT - BT is homotopy eguivariant. The

IEl

1 .
standard result about cchomology of BG implies that BT T;ﬁ//% is
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1

1 . .
Zl—=r]-homologically equivalent to BG =——
[w] [w]

Corollary 6. If X is nilpotent, p-complete and {p;|W|) = 1 then

. i 1 W .
i) the natural map [BG TET;X]-*[ET TﬁT;X] is surjective,

ii} 1f X 1is a loop spacre then we have an isomorphism

1 = 1 W
[BG Wi;r:xl - [BT TﬁT;X] .
iii) H*(BT:Z/p) = H*{BG;Z/p}@® M{p) as a j\p-module, 2, is the

Steenrod algebra.

The points i}, ii) of Corollary & are conseguence of Thecrem 3. The

point iii}) follows from the suitable generalization ¢f Theorem 1.

Let us suppose that . p =2 and G = U{2} . Then one can check
that H*{BU(2)3;2/2) is not a direct summand of H*(BT;Z%/2) in the

category of a,-modules. This implies the following.

Corecllary 7. Let i : BT - BU{2) be the natural map. The map

BU{2) - Cconeli) is stably non-trivial, This map is zero on cohomology.

What does this map induce on stable homotopy?

In a subsequent paper using quite different method we are able
to show much stronger results than Theorem 3. We decided to publish
this paper to show what one can get in this direction using the

most natural way i.e. an induction on the Postnikeff system.
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