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BLOW UF ON ENERGY LEVELS IN CELESTIAL MECHANICS

Ernesto A. Lacomba®

We want to describe here how to study the asymptotic
behavior of total cellapse and escape orbits for the n~body -
problem of celestial mechanics by using blow up procedures.. -
This approach was begun for total collapse motion by Mc Gehee
191 in 1974, and has been subsequently exploited by many -

authors (see Devaney |2|, and references therein).

The application of said procedures for escape motion
by Lacomba and Simé {7| appeared in 1982, and it has been -
refined since then, by this author |3|, [5]|, |6]. We will -

also refer in the examples to the expository paper |4].

Except for negative energy escape behavior, we can
give a general method for describing the blow up, and describe
asymptotic motions with a little more effort. However, only
when the number of degrees of freedom is small it is possible

to have a more or less global picture.

This research was partially supported by CONACYT {Mexico)
grant PCCBNAL 790178.
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In general an n-body problem can be stated in the

form

pa’l

el
I

]
grad U(g}

e
fI

where p ¢ IRk s e NC ]Rk the set N is an open cone, and

U:N -+ Hf+(potentia1 energy) 1s analytic homogenecus of degree-1.

The kxk matrix A 1Is positive definite. The Hamiltonian or

total energy is Hi{g,p) = X{pl-U{g) where

K(p) = 1/2 pa~tp®

is the kinetic energy. Given h ¢ IR, we define the corresponding

énergy level by = [(gq,p} & ¥ x rF . Hig,p} = h} . The -~
By,

{2} Kip} = U{g) + h.

The projection of By to configuration space is the
so called Hill region U + h > 0. This is a manifold with -

boundary U = -h {zero velocity points).

If h < {, in some sense U as attracting potential

predominates over K, energy due to the motion (see (2)), gi-

ving the possibility of bounded or recurrent motions.

If on the contrary h » 0, then K predominates over

U, making it easier to escape.
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For example in the n-body prbblem in md(d =1,2 or
3 dimensibns) with the usual coordinates we take g = (xl,...,xn};

p=(mlil,...,mnin) where xi,ii € Rd are positions and velocities

of the bodies respectivély. Then

m, W
U(xl""'xn) =.E. S+
i<j ji

where = Ix.—xi| and G 1is the gravitational constant.

T
Ji ]
The kinetic energy is simply

2

S )

Kip} = Emiliil

We remark that for an n-body problem system (1} has
no  egquiltibrium points, since forces are internal and attracting.
On the other hand, (1} does have singularities, corresponding
to collisions of 2 or more bodies. It is an open question.-

if more complicated singularities can occur for n > 3 or -

d > 1. Of these singularities, binary collisions can be -

treated by the so called regularization 8], while total -

collapse for any number of bodies is studied by a2 blow up.

1. Blow up at the origin |9]. The idea is to pass

to "polar coordinates® in configuration ¢ - space with a co-
rresponding consistent change in momenta variables so that -
the energy relation is not singular at g = 0 any more. Since
energy relation corresponds to a fixed energy h, we work on a
fixed energy level. Since differential equations will still

stay singular, we take an additional change of time scale.
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The natural radial ccordinate or "norm” is the -

radius of inertia r = quqt ; With respect to which unit -

vectors or “angelar" variables are ©Q =

r_lq.

Substitutiocon

into (2) by taking into account the homogeneity of

{guadratic},

Since K

rK{p} = U(Q) + rh.

U0 gives

is also homogeneous but of degree 2 -

giving the energy relation

already regular at

coordinates

When eguations

{r,0,P)

(3}

r

K(P}) = U(Q} + rh,

0 (i.e.qg

= 0).

{1) are written i

n

orm

they are still singular at r

the right momenta transformation is P

]

v

= 7 P, -

of the new

¢. This -~

singularity is easily removed through the change of time scale

3
at = /2 dt, which slows

to total collapse of the system r

down orbits where r + 0.

Approach

= 0 takes place in infinite

T-time (asymptotically), while it happens in finite physical

t-time.

where

We get the system

(4)

d/dt, v = g-P,

in the submanifold.

160

{5)

Q‘
?!

s

rv

pa"l —vo

grad U{Q) + {v/2)pP,

r > {0 and coordinate

Q

takes values



The new momenta P is constrained by the energy -
relation (3). We verify from (4) that the vector field is -
still defined for r = 8. In the new coordinates the flow has
been extended to the boundary C (obtained by setting r = {)
of the following manifold with boundary

B WC = {{r,Q,P): r >0, @ € 8, K{P}) = U{(Q)} + rhl

Since r = ¢ implies r' = 0 in {4}, C is an invariant
manifold for the flow. OQrbits in Eh going to or coming from

total collapse will now approach C asymptotically as T > o,
In terms of the physical problem, ¢ and its flow are

fictitiocus but give information about total collapse.

There are eguilibriuvm points for the vector field
{4) . They belong to C {r = 0) as expected, since we remarked

above that (1} has no eguilibrium points.

Said points are defined by the eguations

]

(4') grad U(Q) =U(Q)IQA

P = Y2UQRA

*

L+

The solutions to the first eguation are known as -

central configurations of the system and they are interpreted

as the critical points of the restriction Uls' We state the

most important result |1| for the study of the flow:

HI}



Proposition 1.- If U}s is a Morse functicon, then
atl the {isclated} eguilibrium points for the flow on C are
hyperbolic and the flow is gradient-like with respect to the

function wv.

We will end this section by describing a couple of
examples {see 14i,where_figure5 are shown for each transforma

tion).

Example 1. Consider the Kepler problem .in 1 dimen

sion. 1In this case the differential equations are

Y

for x > 0, y € IR. The enerqy

N

relation reads as follows,
giving soclutions as level

curves (see figure 1, right}.

6) vy /2= x 1 + n.

Notice that y » +* if x -+ G. Fig., 1

Blow up at origin x = 0 for one degree of freedom
amounts to keep x as radial coordinate, with a momenta -

transformation v =/x y. The energy relation (6) becomes now
(73 v'/2=1 + bx,

3
and the time change is dt/3t = x /2
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The phase portrait is very much like Fig. 1, except
that now the orbits approaching collision have exactly 2 -
asymptotic finite values, since v * tJ? ‘when x + 0. The -
collosion manifold €  consists of those 2 (equilibrium) -
points (0,:/?) glued to level curves for each fixed h. Topology
of E_UC is a closed interval [p,ll if h < 0, and two half-open

h
intervals [p,l)xsnif h > 0.

For comparison with blow up, let us consider the -

regularization of binary collisions x = 0 (Levi-Civita, Sundman) .

This is performed throuch the substituticn u = xy, which gives

a new energy relation.
{8} w¥/2=x + hx2,

with a different change of time scale dt/dT = x to take away
the singularity in the transformed differential equations, -

getting a non homcgeneous linear system

X' = u

{9)
2hx + 1

u 1

Again the result is valid only for each fixed h.
MNow the orbits approaching collision go towards the origin in
configuration space, which is not ap equilibrium point, as -
we see from (9)}. Moticn has been preolonged through x = 0 -
like an elastic bouncing, contrasting blow up, where x = 0
is approached in infinite t1~time. The topology of a regularized
E_ is S’ if h < 0 (periodic motion) and R if h > 0 (unbounded

h

motion) .
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In our 3- and 4- body examples to follow, binary
collision singularities will remain after blow up of total
collapse. A regularization can usually be applied, so that we

assume it was performed.

Example 2. <Consider the isosceles {planar) three
body problem. We are given a particle of mass © moving along
an axis and two particles of unit mass symmetrically situated
with respect to the axis. Using Jacobi-like coordinates the

energy relation 1s

1 fa

Ly 2aix?4ey?)” 24 n,

(10) 1/2 pa~Ypt = (2x)”

where b = diag {(2,2u/{2 +a}} x >0 ry & R

This problem has been studied by several people,

including Devaney, the author with Losco, and Simd.

The simplest triple collision orbits are the so-called
homothetic solutions: homotheties in time of the collinear or
cf the 2 pogsible equilateral triangular central configurations,
Such orbits are regularizable, but without a continuous dependence

on initial conditions to nearby orbits |[1].

From {4') we conclude that these 3 central configura-
tions generate 6 -equilibrium points for the flow on C. Said
points are hyperbolic for the flow on Eh u ¢ for anya, all

of them having inwvariant submanifolds of dimensions 1 and
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2. 1In Figure 2 we show the flow on C (which topologically is
% minus 4 points), the homotheticlorbits and invariant submani
folds near C. We assume a < 55/4 so that the flow on C spirals
at the eguilibrium points on the symmetry axis. The gradient-
like structure with respect tc the "height" v ié also made .

clear.

As expected from our remark in the introduction
about motions for h < 0, we can apply symbolic dynamics |1| -
to show the existence of ejection - collision orbits, periodic
orbits or orbits with scme other kind of recurrence. We start
by remarking that in this case respective homothetic orbits -

connect in E, (outside C} as shown in Figure 3. The spiraling

h
in variant manifolds intersect each other a countable number
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of times in the plane v = 0. This implies the existence of

heteroclinic orbits.

2.- Blow up at infinity |7{.- We have to consider

here three cases, according to the sign of the energy.

If h > 0 wa modify the "polar coordinates

Ih

1 by replacing r by p r *, so as to blow up the infinity of
configuration space with an appropiate momentum transformation.

The case h < 0 is quite different, as we see below.

-1
I) If h = ¢, let P =p /2 p. This amounts to the
substitution r = p_l everywhere in McGehee transformations, -

with energy relation
K{p) = U{Q}

and time change dt = p—?é dt, a speed up when p + 0. The -
vector field is like (4}, except that the first eguation is

replaced by p' = -pv. It is also defined for p = 0, which
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defines an invariant infinity manifold NO, whers

BuN = {(p,Q,P}: p > 0,0 ¢ 8, K(P) = B(O)}

In global terms we have an energy level with 2 -
boundary components: EOUNOUC. In this case the flow is -
‘projectable on € or NO aleng r or p, in a sense which can

be made precise.

We can check that the flow on NO is identical with
that on € and equilibrium points are the same. This recovers
the classical result that for zero energy, escape to infinity

is asymptotically identical to total collapse.

II} If h > 0 the above transformation does not work,
since energy relation (3) -with r = p_1 is singular for p = 0.
We change momenta transformation to the trivial one P = p, which

gives an already regular energy relation
{11} K(P)} = pU(Q) + h,

nontrivial at p = 0 only if h > 0.

In the new coordinates p,Q,P, differeantial eguations

annihilate for p = 0. We speed up orbits with the change of -

time scale dt = p_ldt to get the following system of equations

p' = —pv
(12) o' = PA t-vQ
P' =pgrad U{Q}

Il
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The flow is again defined and nontrivial for p = 0,

having a corresponding infinity manifold Nh’ where

EhuNh = {(p,Q,P): p > 0, 0 e 8, K(P} = pU{Q) + hl
In this case the equilibrium points for p= 0 on Nh

form two submanifolds

S,= = {(0,Q,P)i0 = 0,0 ¢ 5,° = + /2R Qalen,,

with a very simple flow structure studied by the author |3]:

- Proposition 2.- The vector field on EhUNh has S%

as normally hyperbolic submanifolds. In fact, S;-is an attractor

and S; is a repellor. Besides, the flow on N 1s gradient-like

with respect to v,

Any asymptotic direction of escape to infinity is

possible, since S; {and S;) has cone peint for each direction

Q@ e S§. This is in contrast with the case h = 0, where only -
central configurations are possible. That the flow is gradient
like with respect to v is seen by checking that

vt = Q'AQ't >0 if p =0, with v’ = 0 exactly at egquilibrium

points.
We consider again the examples in §1.

Example 1.- Set 2z = x_l in the energy relation {6§)
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for the Kepler problem. We get

with the ctange of time scale dt/drt = z 1. This is a transfor

mation type 11, good for h > 0.

From {13), we see that solutions are parabolas [4],
truncated by equilibrium peints at x = 0 (since h > 0}, because
of the condition x > 0. We can now give the complete topology

of E, UCuUN as two closed intervals [0,1] x SO, the endpoints

h h'

being of course egquilibria.

The description in the new coordinates is still -
good for h < 0, only that the motion is then bhounded {relation
{13} gives parabolas bounded away from z = 0), and there is no

infinity manifold.

Example 2. The topology of EhUNhUC for h > 0 in the
planar isosceles 3-body problem is (S2-4 points) x [0,1] .-
However, the flow on EhUNh changes with h. If h = 0, Nh has

6 critical points as in Fig. 2; for h > 0 we have two curves

+
SH of critical points.

Consider the case h = 0. Because of projectability
of the flow, the invariant submanifolds of hyperbolic equilibrium
pocints on NO and C connect each other across EO. In Fig. 4 a)

we show one of those submanifolds W, which comes from €, while
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its outer orbit T is in N There is an orbit ¥ in W coming
from collinear configuration escape as t * -® (with oscillations
if o <55/4), asymptotically ending up in an equilateral configu
ration escape as t * 4+, passing as close as we like to triple
collisicon. The projectien of Y to configuration space is shown

in Fig. 4b).

Similar motions in the collinear 3-body problem for

h = 0 were considered in |7 l.

a) Fig. 4 b}

ITIY If h < 0 the situation is more camplex, since at
least cone of. the mutual distances rij must be bounded, because
energy relation (2) implies U > -h > 0. Hence, the above -
spherical blow ups along rays Q £ S do not wérk here, since -
for one thing they do not distinguish at infinity between bounded

motions and collisions.
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Another way to see that is by observing that -
U{g) - 0 when g + = on a fixed ray, because of homogeneity
of U, If in addition h < 0, eventually there is no value of
p satisfying (2} and hence, no motion{see |6]| for a detailed

discussion) .

In the particular case n = 2 bodies there is no

infinity manifold, because U[. is bounded and all the negative

s

energy solutions are bounded.

The answer for n > 3 bodies ip general is to keep
track of all the possible partitions into particle clusters,

to construct the different patches of the infinity manifold.

We will sketch the ideas of the modified blow ups
for the isosceles |7| and the trapezoidal |3| problems on -
negative energy levels, but our method is valid for n > 3 beody

problems in the plane or the space (see the forthcoming
paper |5|}.

Example 2.- Coming back to the isosceles problem,
we can sSee from energy relation (10} that if h < § escape -
occurs only for y » + @ or y + -«

we let y = p © > 0 for the first possibility, -
which can be interpreted as blowing up of a portion of the -

x—-axis, transforming (190} into the form

(14) 1/2 pA‘lpt = (2x) L 4 200 (14p?x2)” 72 4 h.
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We see that no momenta transformation is needeg,
since (14) is regular for p = ¢. WNo change of tine scale -
either, as we check from the transformed differential egquations.
The flow at the correspondiné infinity manifold N; describes
an unmatching at infinity of a binary with fixed negative -

energy, going away with constant velocity from the third -

particle.

We have similarly a symmetrical component N; of
infinity manifold by letting y =<p_1 < @. The topology of -
-+ -
EhUNhUNhUC in this case is more complicated than before:

Eh is a 2-heole solid torus, N; and N; are both topoleogically

St- 2 points, and C = - 4 points as before. See |4| for the

descriptive figure.

Examplie 3.- Consider now the trapezoidal
4-pbody problem in tﬁe plane. In this case we are given 4 -
particles: two of unit mass symmetrically situated with respect
te an axis in the plane. The other 2 partic¢les of mass @ are
also symmetrically located with respect to the axis. Using -
Jacokbi-like ceoordinates x,y > 0 and z € R, the snergy relation

reads as
1 1
pi/4 + pi/(4a)+{l+a” Ip2/4 = {2x) + a¥(2y)+20/R,+20/R. +h.
1 2 3 1 2

where R, = Y (x-v): + z¢, R, = Y{x+yIZ+ 2%,
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A description of the quadruple collision manifold C

in this problem has been made by the author.

To get an idea of the behaviour at infinity for h < 0,
we see that the Hill region in configuration space (IR+)2x r

is limited by the half-planes x = 0, v = 0 and the zero -

velocity surface U = -h which is asymptotic to the cylinder
Rl = -20,h and to the simpler surface (2:&)_l +a¥(2y) = -h -
{two components)., The latter is in turn asymptotic to both -

half-planes x = --'(Zh)_l and y = -a?/(2n).

For |h| big encugh, we can change the notion of rays
by using the c smoothing out at corners of the new sphere -
shown in Fig. 5, instead of the unit "sphere" & in {5). -
Iintersection with the Hill region are the 2 shaded pieces, -

giving the components of the infinity manifeld.

Z
(Z:fA@'
yH2i=t
x24 7%= { y
X
xX+y=v2
(z=—1/03
Fig. 5

This unit sphere defines a new norm or radial -

coordinate in configuration space, which amounts in each patch

-1 =1
to a blow up of a portion of the xy plane through + 2 /s z 3

1
of a portion of the x-axis through (y®+ 2z%) /| etc. Computing
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the flow in each of these 2 cases |5|, we get an unmatching -
into 2 Repler (regularized) collineér problems in the first -
case. In the second case particles of mass o escape each one
on its side like 2 individual clusters whose center of mass

moves with uniform velocity away from the negative energy -

binary cluster of unit mass particles.

The 2 components of infinity manifeold are topologically
Nh = s'x s'x b’ - p?x 8° and N; = g'~ 2 peints, where p’is the
open 2-ball.

3. Extension to other force laws.- The above bhlow up

procedures can be extended to mechanical systems (1) where U

is a homogeneous function of any degree k € R {sse |6]).

The simplest examples keeping k = -1 as in celestial
mechanics are repulsive n-hody problems (with positive charged
particles), or with a combination of attractive and repulsive
coulomblan forces {different sign charged particles). We get
the following variations of the isosceles plane (gravitational)

3 body problem of Example 1.

Example 4.- The iscosceles plane repulsive 3=-body -
problem, where we just replace the function U in (10) by -U,

getting the energy relation

1

1
(14) 1/72p87p% = - (20) le2a(x My 2T .
P
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with A as before. This corresponds to a charged particle of
charge a>0 moving along an axis and twe particles of unit -
charge symmetrically situated about the axis. 1In this case
we always have h > 0 with no collisions, and typical Hill -
regicns in configuration space are shown in Fig. 6. Case a)
corresponds to the limiting case o = 0 (restricted problem),

which has been studied by Peredo [10].

\\\\\\ |

x

_,

A\

-

b) a » 0

o

e
"

o

Fig. 6

Example 5.- The plane isosceles Helium atom problem
|6| , where symmetrical particles in example 4 have now charge

-1. The energy relation bhecomes

- -t
(15) 172 pa % = —(20)71 + 20txt4yH) T P4

There are 3 different cases as shown in Fig. 7, where

some typical Hill regions are shaded.Collisions do occur only
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in case a) for h < 0, as in the case of the shaded shown sector.
The reason is that the positive charge is big enocugh to overcome

the repulsion of the others

y %5

U< -_-/

ala > 1/4,any h ble = 1/4,h > O cla < L/4,h > 0O
Fig. 7
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