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SECONDARY OPERATIONS, K-THEORY AND H-SPACES.

J. R. Hubbuck

Abstract Let X be an H-space with H*(X,Z(p)) a free Z(p)—module
of finite type and whose raticnal Pontrjagin ring is an
associative, graded commutative algebra. Recently it has been
proved that the ring Hﬁ(X,Z(p)) is isomorphic to a tensor
product of quasi-monogenic algebras. The proof uses K-theoretic
techniques. In %his note we relate the proof to results

obtained by the more familiar unstable secondary operations.

1. Let (X,u) be an H-space. The fundamental theorem on

unstable secondary cochomology operations in H¥(X,Z/p2) 1is this.

Theorem 1.1 Let X ¢ QHzn(X,Z/pZ) have representative
X ¢ H?™(X,Z/pZ) with ¥¥(X) ¢ B 8 B where B is a sub-Hopf
algebra of H*(X,Z/p Z) which is stable under the action of O.{p).
Suppose that X = 8(¥) where 8 ¢ Q{p) and that gP"g - Zaibi is
an unstable relation helding in dimension 2n - 18] + 1, Assunme
that bi(§) ¢ B.E. Then there exists a secondary operation X
defined on ¥ such that

E(p'l)(x(§)) X8 XQ ...8 x + ] Image a;

in Q(H*(X,2/p 2)/B) & Q(H"(X,Z/p 2)/B) 8...8 Q(H*(X,Z/pZ)4B).
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There are several variants of this theorem. The prototype
can be found in [9]) and the primary reference is [7].
Successful applications have been made in investigating torsion
in the homology of finite H-spaces, particularly in numerous
papers of Kane and Lin. The theorem has also been used to

investigate the cohomology of H-spaces with little or no torsion

[6,8]. In this note a related result is made explicit which is
proved using complex K-theory under the additional assumptions
that (a} H*(X,Z(p)) is a free Z(p)—module of finite type,

(b} the rational Pontrijagin ring H,{(X,Q) is both associative
and graded commutative. Condition (a) is a major restrictioﬁ.
The result proved is essentially a lemma of K-theory and
condition (a) is needed primarily te give a direct translation
from K-theory to cohemology. Without condition (a) a version
6f the K-theoretic lemma can be proved but the conclusion then
has to be translated back to cohomology through a spectral
sequence. The conditien (b) is not significant. It is
satisfied for some p by all H-spaces which occur naturally and
in any case 'a more elaborate argument will lead to a related

conclusion without it.

Before stating Theorem 1,2, we indicate the way in which
Theerem 1.1 is usually employed and how we wish to strengthen
it. Let p = 2 and X ¢ H*™(X,Z/22) be indecomposable. We wish
to conclude that there exists 2 ¢ H8T(x,7/22) such that in
QUHY(X,2/22)) & Q(H#(X,Z/22)) we have u(Z) = x 8 X. Tirst we
must find an O.(2) sub-Hopf algebra B with u(x} ¢ B 8 B, so
for simplicity we assume that X is primitive so that we may

choose B = 0. Without more information on the action of a2y,
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we must set & = Identity. A suitable Adem relation is then

-y

Sa'sq"™ = sq""(sal) + sq?%(Sq’se?se"™ ™) for S91(X) = © and

SqlquSqqn_q(i) = 0 hold automatically if condition {(a) is

gatisfied. Theorem 1.1 then implies that there exists 2z = X(X)
such that (Z) = X & X + Image 5q° in QH¥(X,2/2Z) ®& QH*(X,Z/2Z),
since Sqlm can give no contribution for dimensional reasons.

The problem we face is to remove the indeterminacy associated

with 5q°.

Similarly if p is odd, n # 1 mod p and X ¢ PH T(X,2/p%)
is indecomposable, one can deduce from Theorem i.l that there
exists z ¢ HQHP(X,Z/pZ) such that
PPNy X8 %e ... 8% ¢+ Image P! in
Q(B*{X,Z/pZ)) 8 Q(H®({X,Z2/pZ)} & ... 8 Q(H*(X,Z2/pZ}). We wish

to remove the indeterminacy pl.

Theorem 1.2 Let X ¢ HQR(X,Z/pZ) be indecomposable and

n #1 mod p. Then there exists z ¢ H2'P(X,2/pZ) such that in

OUH*(X,2/pZ)) @ QUH(X,Z/pZ)) & ... 8 QUHHX,Z/p2)),
ﬂ(pﬁl)(Z) = x8x8& ... & %, (p factors).

If n = 1 mod p, then the conclusion of Theorem 1.2 remains

%1 %2 %s
true unless n = 1 + p + P + ... + D where

0 < @y < &, < ... <@g, see [s].
§2 The proof of Theorem 1.2 is contained in 5] and we will

try and make this more explicit. Throughout this note we will
use the notation that if X € Hzn(X,Z/pZ), then x ¢ Hgn(X,Z(p))
is a class whose reduction mod p is x. If %P in Theorem 1.2

2n

is zero, then xP = 0 mod p in B“"P(x ) and the reduction

’z(p)
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mod p of the class p_ixp is a suitable choice for z, as can be
verified by an elementary Hopf algebraic computation.

Therefore we will assume that XF # 0. We will first dispose of
the case when n = 0 mod p which will complete the proof of

Theorem 1.2 for p = 2.

Let T#:H%(X,A} = H#{X,A) be the homomorphism induced by
a p-th power map with respect to some order of multiplication,
T:X =+ X, where A = Z/pZ, Z(p} or Q. Proposition 2.2 of (5]

implies the following lemma.

Lemma 2.1 Let X e H°T(X,%Z/pZ) where n = O mod p and %P £ 0.
Then there exists w ¢ H?np(X,Z/pZ) such that T#(w) = X + yP

where ¥ is decomposable.

This implies what is required if n = © med p. We choose
X, w and y in_H*(X,Z(p)) representing x,w,¥. Thus
T#(w) = pw + x® + yP? + pz with z decomposable. One now applies
the purely Hopf algebraic techniques of [3]. By Lemma 2.2 of
£3] we can choose a multiplicative basis for H*(X,Z(p)), {xi}
say, such that T#(x;) = px; + zrizg for each i where v, « Z(p}'
It follows that Qe can choose w', differing - from w by a
decomposable element such that T#{w') = pw' + xP + v'!, where
v o€ {ﬁ*(x,z(p))}9+1. Now as in Lemma 2.3 of [3] we deduce that
there exists an element v' ¢ {H*(K,Q)}p+1 such that in H¥(X,Q),
Tr(uwt + {p-pP) kP £ v') = plu' + (p- Py 4 vy, Thus
wto+ (p-—pp)_lxp + v' is primitive in H#{X,Q). Direct

computations then verify that ﬁ(p_i)(w’) = x® X8 ... 8 xmed p

in Q(H*(X,Z(p)) e Q(H*(X,Zcp}) & ... & Q(H*(X,Z(p}))and this

implies Theorem 1.2 in this case.
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It remains to prove Thecrem 1.2 when p is odd and n is
congruent to neither 0 or 1 mod p. Let in € H2n(X,Z/pZ) with n
as degeribed be indecomposable. Then by adding a decompesable
element to ;n’ we may assume that it is primitive and so in
Theorem 1.7 we may assume that x = in is primitive. We have
also seen it is sufficient to consider the case where

1pr=1 _ o0

%P = P™(X) is non zero. The Adem relation P rP

implies that Thecrem 1.2 follows from the next proposition.

Proposition 2.2 (p odd}). Let X ¢ PHQn(X,Z/pZ) withn # 0 or

1 mod p. Suppose that in PH#(X,Z/pZ), P?(5) = XP # 0. Then
there exists z ¢ Han(X,Z/pZ) such that in
QUH*(X,2/pZ)) '8 QUH*(X,Z/p2)) & ... 8 QCH*(X,Z/pZ}),

P13y s xexe ... 8 %

The proof is essentially contained in Proposition 3.3 of
(51 but we shall provide the details. We recall some basic
facts about Z/2Z graded complex K-theory. First we note that
for Hopf algebraic reasons there is nc loss of generality in

assuming for the proof that H (X,Z(p)) =0 for 211 i, sc

2i+1
that Kl(X,Z(p)) = 0. The grade zero term K(X,Z( )} is filtered

as a ring by the CW-filtration with associated graded ring

2i : « y2i
QH (X,Z(p)), where K(X,Z )Qi/K(X’Z(p)} = H 7 {X,%Z )

(p} 2141 (p)’”

Also K(X,Z(p)) is canonically isomorphic to a direct sum

& K*X,2, ), 1 s & s p-1 and KP(X,Z,_,)

{(p) {(p)*°
KY(X’Z(p}) < KL8+Y](X,Z(p)) where [B+y] + si{p-1) = B + ¥. The

filtration induced on KGEX,Z(p)) has as associated graded

2a+2i{p-17

group & H (X,2 Y, 12 O.

(p2
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The following standard properties of the Adams cperators
P, - :
¥ ‘K(X,Z(p}) K{X,Z{p)} will be uged [1,27.
{a} wp is a natural filtration preserving ring homomerphism;

Prygt & .
(b) ¢~ (K (X,Z(p}))c K™ (X,Z )3

{p)
{c} 1If £ ¢ Ka(X,Z(p)) has exact filtration Zn where

¢ = n med(p-1), then there exist £, « K*(x,z )

{p} 2n+2i{p-1)

such that 9P(gy = Epnhlgi, 0 < isn, where £ = £ and we may

choose En = gp. Further if £ has image x ¢ Hzn(X,Z(D)) and Ei

has image x5 e H2“+21(P'1>{x,z

H¥(X,Z/pZ). We will write t:K(X,Z(p)} -+ K(X,Z(p)) for the

(P)) then PX% = Ei in

homemorphism induced by T:X — X.

We turn to the proof of Proposition 2.2. For dimensional
reasons we may choose primitive elements in H*(X,Z(p)}, X, 8
and u to fepresent %X, 5 and U = PX(S) in H%(X,Z2/pZ). We then
choose K-theorv fepresentatives £, ﬁ and n to represent X, 5, u
always lying in the appropriate K® summand of X. Now

P15 = 271%P and so working always modulo K(X’Z(p))znp+2’ we
‘have wP )y = Pnp—(p—l)n + 2~1pnp~p£p + pnp—(p—l)wnp where
wnp € K(X’z(p))an' We will assume that the proposition is

false so there will exist no z ¢ Hznp(X,Z/pZ) with T#(z) = XP.

Let t{n) = pn + wép and consider the equation ¥P(t(n)) = tyP(n).

This gives p"P P 4 p71pnPTPHIP pUPTRTI Pt
+ Pnp_p*it(wnp). Thus

-1 -1 -
tlw_ ) = pw + 270 1-pPT P . (l—pp 1)w$p. OQur assumption

- phPTREZ pnp-p+1w$p + 271pPPeP

ng np
that the proposition is false then implies that wép # 0 mod p

and so for any choice of n, t(n) # 0 mod D.

Now without affecting anything done above, we assume that
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t has been chosen so that t(z} = pg + v where

np
vnp € K(X,Z(p))an. The argument needed to show that this is
possible is very similar to that used above based on Lemma 2.2
of [3]. We work temporarily mod K(X’Z(p))znp—2(p-1)+2' Let
¢P(gy = pNP=2(P-1)p , [ MP-2pHl v Lot din

~ p2np-2{p-1)

K(X’Z(p))2np—2(p—1)/K(X’z(p))znp—Q(p—1}+2 = H (X,Z(p))
the reduction mod p of n' is U. Let wk(c) z knp—?(p—i)c + ",

After simplifying the explicit expression for ¢p¢k(c) = wkwp(c)
we obtain K"PT2(P 1)y gy lp-1dy p(1-pP™n". If we choose
X to be a generator of (Z/pQZ)*, so that p2 does not divide

1 -k(phl), we deduce that n" = an mod p where o is a unit.

Now returning to K(X,Z(P))/K(X,Z(p))2n9+2, it is clear

that by modifying, if necessary, m" in filtrations greater

1

; knp—z(p—l)C P

than 2np - 2({p~1), we may assume that wk(tfﬁ ]
The lést equation we consider is wk(t(c)) = twk(c) mod p.
This gives knpvnp = knp—?(p~1)vnp + t(n") and so t(n") = O med p.
But mod p, n'" is up to units a choice for n and we have proved
that t{n) # 0 mod p. This contradiction establishes the
proposition and completes the proof of Thecrem 1.2.

The elimination of the indeterminacy described in
Theorem 1.2 appears to be the main reason why the proof of
Theorem 1.1 of [5] succeeds where earlier attempts have
failed. It is perhaps worth mentioning that there can be no
direct cohomological analogue of this result. Finally we
remark that [5] leads to significant simplifications in the
proofs of the results of [4), in particular fo the unstable

characterization of the H-space Bug at odd primes.
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