Pub. Mat. UAB
Vol. $26 \mathrm{~N}^{9} 2$ Juny 1982
THE ALGEBRA OF THIN OPERATORS IS DIRECTLY FINITE

S.K. BERBERIAN
Department of Mathematics, the University of Texas, Austin, Texas 78712

Rebut el 15 de Juliol del 1981

Let H be an infinite-dimensional Hilbert space, K the algebra of compact operators on $K, T=K+C 1$ the algebra of all operators $x=a+\lambda 1$ with $a \in K$ and λ complex. (Such operators x are said to be thin [4] (because their essential spectrum reduces to a single point).) The aim of this note is to prove that every element of T that is left-invertible in T is in fact invertible in T.

We begin with the observation that T is a C^{\star}-algebra with unity; thus for every $x \in T$ one has $\left(x^{*} x\right)^{1 / 2} \in T$, so that T satisfies the "square root" axiom (SR) of [6, p.90].

LEMMA 1. If $x \in T$ and $x x^{\star} \leq x^{\star} x$, then $x x^{*}=x^{*} x$.

Proof [1, p.1175, Corollary 71. The essential point is that a compact operator satisfying the inequality is normal, a result due originally to C.R. Putnam [7, p.1029, Corollary 3].

LEMMA 2. The idempotens of Tare the operators e, 1-e, where e mas over the idempotent operators of finite rank.

Proof. By "operator" we mean bounded linear operator. The essential point of the proof is that an idempotent compact operator has finite rank.

Idempotents e, f of a ring R are said to be equivalent (in R), written $e \sim f$, if there exist elements x, y in R such that $x y=e$ and $y x=f$ (replacing x, y by exf, fye, one can suppose $x \in e^{R f}, y \in f R e$) [6, p.22]. Projections (= self-adjoint idempotents) e, fof a ring with involution are said to be *-equivalent if there exists an element x such that $x x^{*}=e$ and $x^{*} x=f$.

PROPOSITION. If x, y are thin operators such that $x y=1$, then $y x=1$.

Proof. In the language of ring theory, we are asserting that the ring T is "directly finite" $[5, p .49]$. Let F be the algebra of operators on H of finite rank, $A=F+C 1$; thus A is a^{*}-subalgebra of T and, by Lemma 2, A contains every idemptent of T. Since F and $A / F \cong C$ are both regular rings, A is a regular ring [5, p.2, Lemma 1.3]; since, moreover, the involution of A is proper ($a a^{\star}=0$ implies $a=0$), A is *-regular in the sense of von Nemmann [2, p.229].

If x, y are elements of T such that $x y=1$, then $e=y x$ is an idempotent of T such that $e \sim 1$ in T. As noted above, $e \in A$; since A is $*$-regular, there exists a projection $f \in A$ such that $f A=e A[2, p .229$, Proposition 3]. Then $f \sim e$ in $A[6, p .21$, Theorem 14], a fortiori $f \sim e$ in T; already $e \sim 1$ in T, so $f \sim i$ in T by transitivity. Since T contains square roots of its positive elements, it follows that the projections f, 1 are *-equivalent in T [6, p. 35, Theorem 27], say $x \in T$ with $x x^{\star}=f, x^{\star} x=1$. By Lemma $1, f=1$; then $e A=f A=A$ shows that $e=1$, that is, $y x=1$. We remark that the ring A is studied in detail in [3].

The proposition can obviously be refomulated as follows: if a and b are compact operators such that $a+b+a b=0$, then $a b=b a$.

Addendur. 1. Israel Halperin has generalized the Proposition to operators in Banach space IC.R. Math. Rep. Acad. Sci. Canada 3 (1981), 33-35] .
2. A referee has pointed out that a brief alternate proof can be based on the index theory of Fredholm operators.
3. G.A. Elliott observes (in a letter) that the proposition extends to any $A F-a l g e b r a$ with unity (indeed, that every matrix algebra over such an algebra is directly finite).

REFERENCES

1. S.K. Berberian, A note on hyponormal operators, Pacific J.

Math. 12 (1962), 1171-1175.
2. \qquad , Baer *-rings, Springer-Yerlag, Berlin/Heidelberg/ New York, 1972.
3. \qquad , The center of a comer of a ring, J. Algebra, to appear.
4. R.G. Douglas and Carl Pearcy, A characterization of thin operators, Acta Sci. Math. (Szeged) 29 (1968), 295-297.
5. K.R. Goodearl, Von Newmom regular rings, Pitman, London, 1979.
6. I. Laplansky, Rings of operators, Benjamin, New York, 1968.
7. C.R. Putnam, on commutators and Jacobi matrices, Proc. Aner.

Math. Soc. 7 (1956), 1026-1030.

