Pub. Mat. UAB
N 25 Juny 1981

Twe Coincidence Theorems

Aibert Compta Creus

Rebut el 16 de Marg del 1981

T, INTRODUCTION

This note deals with the existence and unicity of coincidence points
f{x) = gi{x) for two maps, like “n Cerda [1], related by a contractive type
relation similar to the properties regquired in some generalisations of tne
Banach fixed point theorem,

In a fi}st theorem we consider maps f, g from & topological space

to a complete metric space, following the condition

{i) For each ¢ » 0 there exists & > ¢ such that
e < d{f{x),f{y)} < e+ & =dloglx),aly}) < ¢

like in Meir-Keeler [2}. We shall prove that the coincidence set S is non-
empty and both Functions are constant on S.

We give an example of mappings keeping contractive relation (i)
Lut not the one in [1].

In 2 second theorem based on an article by Chi Song ¥Wongl3 ] mappings
f, g are defined on a uniform space (X,y) and we consider the uniformity

basis Uy defined by

u, - ) x v U A Ve

being o{x)=¢v{x},g{x}) and a the diagonal ot XxX, and we shall prove that the

coincidence set S has a unigque point if f is uniformly continuous from
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{X’Uw) into {X,¥} and keeps some other conditions.

2. THECREM I

THEOREM I. Let X be a non-empty topological space and Y a non- empty metric

space. Let f and g be two mappings of X into Y keeping (i), and

{ii} f be proper and continugus
{11} g(X) € £{X)

{iv}) g{X) complete.

Then S is non-empty and f{S) has a unigue point.
Proof. If f{x) # f(y), (i) implies d(g{x},qly)} < d{f{x},Fl{y}} (1}
and then f(S$) has at great a point.

Now we shall prove that S is non-empty. Let Xo € X, {iii) implies

£l 1{g(x 1}. Repeating the same operation we obtain

{g(xo)} # 9. Pick Xy € f o

a sequence x of X keeping f(xn+1) = g(xn) for each n e H.
Let ¢, = d{f{x },f{x . )); if there exists n_which ¢ = 0, then

o
Vo= fix = g{xn Y; therefore, x, € S and the theorem is proved.

0 0

f(xn

)
0 Aot

On the contrary, we will have S {0 for each n, and, at the first time, we

are going to prove Co™ 0. Since 0« Cpos (i} implies cn-cd(g{xn),g(xn+1}) =

€1’ the sequence is decreasing and positive. Let ¢ = 1im S If ¢c>0,
n
(i) implies that there exists a positive number s such that, taking <, that

keeps cn-cc+6 we have

PN . .
CecCpents=c 4 <c and it contradicts

SN T3 therefore, Ty 0 as we would 1jke to see.
Now, we are going to prove that f(xn) is & Cauchy seguence, The
proof is by contradiction. If f{xn} wasn't a Cauchy seguence there would

exist <> 0 so that Cauchy relation wouldn't keep for 2e. For a such e,
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there exists §>0 keeping (i). For a such & pick s so that

e, < &3, (2}

Pick k,m>s fulfilling d(f(xk), f{xm)) > 2e and k<m, If n € [k,m},
la (), F0x 1)) = alF(x), Flx )] < o/3. (3)

Consider A = {n € [k,m] : d(f{xk}, f(xn)} >e +8}, obviously m € A, and

et i € [k,m} be such that i+l = min A. We have

d{F(x, ) (x5, )) - dFlx ), Flx)) 2 e + 8- dlf(x )y fx;)) (4)
and, (3) and (4) imply d{f(x ), f(x;)) > e + 24/3. (5)
However, d{f(x ), f{x;)) < a(flx }, flx, 1)) + dlflx ), flx;0)) +

+ d{f(x,

op)s FX) < e+ 283

vecause of {2}, i ¢ A, (5) and {i). It contradicts {5). This contradiction
proves that f(xn) must be a Cauchy seguence.

Because of {iv), f(xn) —syeqglh). LetB = (yy U {f(xn)}n é N
which is a compact of ¥. (ii) implies that f'l{B) is compact; therefore,
there exists a partial sequence of x, converging to x € f-l{B). and f(x) =y
by the continuity of f. The continuity of g, given by (i), implies that the
image by g of this partial converges to g(x); moreover, the handling of the
sequence X jmplies g{x) = f(x) and S is non-empty as we would like to prove.

The theorem is proved.

COROLLARY, If we change f proper by g proper between the hypothesis of the

theorem I, this one will remain true.
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EXAMPLE. Let Xx=(0,1] V 3,30+l o ard Y= I, 2otl w.th eiclid=an

distance, and let

f(x) = (x/2, 372 x)
{x/8, \3/1 x) if x €[0,!
g(x) = 4(0,0) if x = 3n

(172 - 1/2n+d, 372 - \f3/2n+4) if x = 3n+l

There isn't any mapping v such that d{g{x),g{y)} < wld(fix),Fy}) kecping
w(e} < £ for each ¢ > 0 because #(1) couldn't be minor than 1 since
d{f{3n),f(3n+1))= 1 and d{g(3n},g{3n*1)} = 1 - 1/n+2, ard ¥ should keep

1 - 1/n+2 < (1) for each n. Conver<ely, we can prove without any difficulty

that these mappings keep the hypothesis of theorem I.

3. THEOREM I1

THEOREM II. Let {X,U) be a non-empty Hausdorff complete uniform space, f

and g be two functions from X into X. If

(i) f is uniformly con*inugus of (X,Uw} into (X,¢)
(iiY YU € ¢ 3I¥ =0 such that {(F{x}.f{y}) €V =(x,y) €U

{iii) w_I(U) is non-empty and closed for each closed symmetric member U of .

Then f and g have a unique coincidence point.
Proof. Pick the filter F = {w_l(U] : U E B}, where B s the set formed by
all the_c]osed symmetric members of ¥,

We will see F igs a Lauchy filter. let UE€ ¥, pick ¥ € I/ such thay
(F{x}.f(y)) € ¥ = (x,y) € U since {ii). By (i) we can find W € B such that

(x,y) € o (W) x v (W) U = (£(x).F(y)) € V. Taking ¢™1(W) we have

p'l(w) € F and @‘l(w) X w'lﬂw) C U; therefore F is a Cauchy filter.
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Since F is a Cauchy filter, X complete ‘Hausdor f <no {iii,, we have

SN IS
Wes

moreaver, taking images by ¢ it results that p = N W 2 {f{x ),g(xo)
HEB
impiie=s f{xo} = g{x }. We shall now provc the unicity. If Yo is & coinciden-
ce paint v(yo} a=“ﬂ{y JE N W=y, € 0 v w) {x }=>y =X, and
Wesd Her
the thegrem is proved.
LOROLLARY. 1f X is a complete metric space, the theorem says:
(i) ¥e=0 36 > G d{f(x),9{x}} + d{fiy).aly)} < 6 = d{f(x}.f{y)} < ¢
(i) ¥e>0  28'> O: d{f{x}.Fly)}<6* > dlx,y) = ¢

(119} ¥e >0 {(x:x€X and d(f{x},a(x}) < ¢} is non-empty and closed.

Then, f and g have 2 unique coincidence point.

Proof. It is epough to observe that a vecinity of qp has the form

I, = Lx,y): x=y or [4{f{x),{x}} < » and d(fly),a{y)}<r])} and if we
consider Br = {{x,y) : x5y or ¢{f{x},g{x)} + d{f(y),gly)y cr} we will

have B cu caz"
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