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I . INTRODUCTION

This note deals with the existente and unicity of coincidente points

f(x) = g(x) for two maps, like '.n Cerdá [11, related by a contractive type

relation similar to the properties required in some generalisations of the

Banach fixed point theorem .

In a first theorem we consider maps f, g from a topological space

to a complete metric space, following the condition

(i) For each e > 0 there exists s > 0 such that

e < d(f(x),f(y)) < £ + 5

	

- d(9(x),g(y)) < e

like in Meir-Keeler [21 . We shall prove that the coincidente set S is non-

em;pty and both functions are constant on S .

We give an example of mappings keeping contractive relation (i)

but not the one in [11 .

In a second theorem based on an article by Chi Song Wong[31, mappings

f, g are defined on a uniform space (X,U) and we consider the uniformity

basis up defined by

U,p = {SP-1 (U) x w-1 (U) V o : U E U)

being w(x)=(T(x),9(x)) and o the diagonal ot XxX, and we shall prove that the

coincidente set S has a unique point if f is uniformly continuous from



92

(X,U~p
)

	

into (X,U) and keeps some other conditions .

THEOREM I . Let X be a non-empty topological space and Y a non- empty metric

space . Let f and g be two mappings of X into .Y keeping (i), and

(ii) f be proper and continuous

(iii) g(X) C f(X)

(iv) g(X) complete .

2 . THEOREM I

Then S is non-empty and f(S) has a unique point .

Proof . If f(x) # f(y), (i) implies d(g(x),g(y)) < d(f(x),f(y))

	

(1)

and then f(S) has at great a point .

Now we shall prove that S is non-empty . Let xo E X, (iii -) implies

f 1
{g(x0)} ¢ 0 . Pick x1 E f-1{g(xo)} . Repeating the same operation we obtain

a sequence xn of X keeping f(x n+1 ) = g(xn ) for each n E dN .

Let c n = d(f(xn),f(xn+1)) ; if there exists no which cn = 0, then
0

f(xn ) = f(xn +1 ) = g(x n ) ; therefore, xn E S and the theorem is proved .
0

	

0

	

0

	

0

On the contrary, we will

	

have cn > 0 for each n, and, at the first time, we

are going

	

to prove cn --~ 0 .

	

Since 0< c n ,

	

(¡Y-implies cn< d(g(xn),g(xn+1))

	

=

cn+1 ;

	

the sequence is decreasing and positive .

	

Let c = lim c n .

	

If c> 0,
n

(i) implies that there exists a positive number 6 such that, taking cn that

keeps cn <c+6 we have

c < cn < c + 6 - cn+1 < c

	

and it contradicts

cn ly c ;

	

therefore,

	

cn --, 0 as we would like to see .

Now, we are going to prove that f(x n ) is a Cauchy sequence . The

proof is by contradiction . If f(x n ) wasn't a Cauchy sequence there would

exist E > 0 so that Cauchy relation wouldn't keep for 2e . For a such e,



there exists

	

d >0 keeping (i) . For a such 6 pick s so that

c
s

< 6/3 .

	

(2)

Pick k,m > s

	

fulfilling d(f(xk ) ' f(xm )) > 2e and k <m . If n E [k,m],

Id(f(xk)' f(xn+l )) - d(f(xk ), f(xn ))1 <6/3 .

	

(3)

Consider A = (n E [k.,m] : d(f(x k ), f(xn)) > e +6}, obviously m E A, and

let i E [k,m] be such that i+l = min A. We have

d(f(xk),f(xi+l))

	

- d(f(xk),f(xi))> E + 6- d(f(xk ), f(x i ))

	

(4)

and, (3) and (4) imply d(f(xk ) ' f(xi )) > s + 26/3 .

	

(5)

However, d(f(xk ), f(xi )) < d(f(x k ) ' f(xk+1 )) + d(f(x k+1 ), f(xi+l)) +

+ d(f(x i+1 ),

	

f(xi ))

	

<

	

E + 26/3

because of (2), i 0 A, (5) and (i) . It contradicts (5) . This contradiction

proves that f(xn ) must be a Cauchy sequence .

Because of (iv), f(xn) -.-> y E g(X) . Let B = {y} u {f(xn)}n
E N

which is a compact of Y . (ii) implies that f-1 (B) is compact ; therefore,

there exists a partial sequence of x n converging to x E f-1 (B), and f(x)=y

by the continuity of f. The continuity of g, given by (i), implies that the

image by g of this partial converges to g(x) ; moreover, the handling of the

sequence x n implies g(x) = f(x) and S is non-empty as we would like to prove .

The theorem is proved .

COROLLARY . If we change f proper by g proper between the hypothesis of the

theorem I, this one will remain true .



EXAMPLE . Let X-[0,11 U f3n,3n+1}nEIIV ard Y= L` , :)ott w;th ejclidean

distante, and let

f(x) = (x/2, f3/2 x)

(x/4, \F3/4 x)

	

if x E[0,11

g(x) = (0,0)

	

if x = 3n

(1/2 - 1/2n+4, 3/2 - V/3/2n+4)

	

if x = 3n+1

There isn't any mapping w such that d(g(x),g(y)) < w[d(f(x),fk'y))1 kecping

w(e) < e for each s > 0 because X0(1) couldn't be minor than 1 since

d(f(3n),f(3n+1))= 1 and d(g(3n),g(3n+1)) - 1 - l/n+2, and ~o should keep

1 - l/n+2 <~0(1) for each'n . Conver~ely, we can prove without any difficulty

that these mappings keep the hypothesis of theorem I .

3 . THEOREM II

THEOREM II . Let (X,U) be a non-empty Hausdorff complete uniform space, f

and g be two functions from X into X . If

(i) f is uniformly continuous of (X,Uw ) into (X,U)

(ii) VU E U

	

3V ~ U such that (f(x),f(y)) E V - (x,y) E U

(iii) ~o -1 (U)

	

is non-empty and closed for each closed symmetric member U of U .
a

Then f and g have a unique coincidente point .

Proof . Pick the filter F = (s0-1
(U .t : U = B}, where B is the set formed by

al] the closed symmetric members of U .

We will see F is a Cauchy filter . Let U E U, pick V E U such tha,.

(f(x),f(y)) E V - (x,y) E U since (ii) . By (i) we can find W E B such that

(x,y) E W-1 (W)

	

x P-1 (W) U o

	

- (f(x),f(y1) E V .

	

Taking tp-1 (W) we have

9-1 (W) E F and -p -1 (W)

	

x -P-1 (W) C U ;

	

therefore F is a Cauchy filter .



Since F is a Cauchy filter, X complete'Hausdor f cind (iii), we have

n sp-1 (W) = {xo } ;
WEB

inoreaver, taking images by sP it results that p = n W 3 (f(x0),g(xo)
WEB

impiies f(x0 ) = g(xo ) . We shall now provc the unicity . If yo is a coinciden-

ce point %P(y ) E o

	

W(y ) E

	

n

	

w => y

	

E

	

n

	

w-1 (W) = {x } => y = x

	

and0

	

0 WEB 0 wC-L

	

0 0 0

the theorem is proved .

COROLLARY . If X is a complete metric space, the theorem says :

(i)

	

VE= 0

	

36 > 0 : d(f(x),g(x)) + d(f(y),g(y)) < d =* d(f(x),f(y)) < e

(ii) Ve> 0

	

3d'> 0 : d(f(x),f(y))<6' , d(x,y) < e

(iii)

	

Ve> 0

	

(x :x E X and d(f(x),g(x))

	

<

	

e} is

	

non-empty and closed .

Then, f and g have a unique coincidente point .

Proof . It is enough to observe that a vecinity of USP has the form

{(x,y)' : x=y

	

or [d(f(x),g(x)) < r

	

and d(f(y),g(y)) < r] } and if we

consider Br~ = {(x,y) : x= y

	

or d(f(x),g(x)) + d(f(y),9(y))< r}

	

we will

ha
V.

Bp c U~ c Bar .
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