A combinatorial approach to noninvolutive set-theoretic solutions of the Yang-Baxter equation

Main Article Content

Tatiana Gateva-Ivanova

We study noninvolutive set-theoretic solutions (X, r) of the Yang– Baxter equations in terms of the properties of the canonically associated braided monoid S(X, r), the quadratic Yang–Baxter algebra A = A(k, X, r) over a field k, and its Koszul dual A!. More generally, we continue our systematic study of nondegenerate quadratic sets (X, r) and their associated algebraic objects. Next we investigate the class of (noninvolutive) square-free solutions (X, r). This contains the self distributive solutions (quandles). We make a detailed characterization in terms of various algebraic and combinatorial properties each of which shows the contrast between involutive and noninvolutive square-free solutions. We introduce and study a class of finite square-free braided sets (X, r) of order n ≥ 3 which satisfy the minimality condition, that is, dimk A2 = 2n − 1. Examples are some simple racks of prime order p. Finally, we discuss general extensions of solutions and introduce the notion of a generalized strong twisted union of braided sets. We prove that if (Z, r) is a nondegenerate 2-cancellative braided set splitting as a generalized strong twisted union of r-invariant subsets Z = X \∗ Y , then its braided monoid SZ is a generalized strong twisted union SZ = SX \ SY of the braided monoids SX and SY . We propose a construction of a generalized strong twisted union Z = X \ Y of braided sets (X, rX) and (Y, rY ), where the map r has a high, explicitly prescribed order.

Keywords
Yang–Baxte, braided sets, quadratic sets, quadratic algebras

Article Details

How to Cite
Gateva-Ivanova, Tatiana. “A combinatorial approach to noninvolutive set-theoretic solutions of the Yang-Baxter equation”. Publicacions Matemàtiques, vol.VOL 65, no. 2, pp. 747-08, https://raco.cat/index.php/PublicacionsMatematiques/article/view/390250.
References
N. Andruskiewitsch and M. Grana˜ , From racks to pointed Hopf algebras, Adv. Math. 178(2) (2003), 177–243. DOI: 10.1016/S0001-8708(02)00071-3.
M. Artin and W. F. Schelter, Graded algebras of global dimension 3, Adv. in Math. 66(2) (1987), 171–216. DOI: 10.1016/0001-8708(87)90034-X.
D. Bachiller, F. Cedo, and L. Vendramin , A characterization of finite multipermutation solutions of the Yang–Baxter equation, Publ. Mat. 62(2) (2018), 641–649. DOI: 10.5565/PUBLMAT6221809.
A. Berenstein and D. Kazhdan, Hecke–Hopf algebras, Adv. Math. 353 (2019), 312–395. DOI: 10.1016/j.aim.2019.06.018.
J. S. Carter, M. Elhamdadi, and M. Saito, Homology theory for the settheoretic Yang–Baxter equation and knot invariants from generalizations of quandles, Fund. Math. 184 (2004), 31–54. DOI: 10.4064/fm184-0-3.
M. Castelli, F. Catino, and G. Pinto, A new family of set-theoretic solutions of the Yang–Baxter equation, Comm. Algebra 46(4) (2018), 1622–1629. DOI: 10. 1080/00927872.2017.1350700.
F. Cedo, T. Gateva-Ivanova, and A. Smoktunowicz , Braces and symmetric groups with special conditions, J. Pure Appl. Algebra 222(12) (2018), 3877–3890. DOI: 10.1016/j.jpaa.2018.02.012.
F. Cedo, E. Jespers, and J. Okninski , Retractability of set theoretic solutions of the Yang–Baxter equation, Adv. Math. 224(6) (2010), 2472–2484. DOI: 10. 1016/j.aim.2010.02.001.
F. Cedo, E. Jespers, and J. Okninski , Set-theoretic solutions of the Yang– Baxter equation, associated quadratic algebras and the minimality condition, Rev. Mat. Complut. 34(1) (2021), 99–129. DOI: 10.1007/s13163-019-00347-6.
F. Chouraqui, An algorithmic construction of group automorphisms and the quantum Yang–Baxter equation, Comm. Algebra 46(11) (2018), 4710–4723. DOI: 10.1080/00927872.2018.1455098.
V. G. Drinfeld, On some unsolved problems in quantum group theory, in: “Quantum Groups” (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 1–8. DOI: 10.1007/BFb0101175.
P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang–Baxter equation, Duke Math. J. 100(2) (1999), 169–209. DOI: 10.1215/S0012-7094-99-10007-X.
T. Gateva-Ivanova, Noetherian properties of skew polynomial rings with binomial relations, Trans. Amer. Math. Soc. 343(1) (1994), 203–219. DOI: 10.2307/ 2154529.
T. Gateva-Ivanova, Skew polynomial rings with binomial relations, J. Algebra 185(3) (1996), 710–753. DOI: 10.1006/jabr.1996.0348
T. Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation, J. Math. Phys. 45(10) (2004), 3828–3858. DOI: 10. 1063/1.1788848.
T. Gateva-Ivanova, Binomial skew polynomial rings, Artin–Schelter regularity, and binomial solutions of the Yang–Baxter equation, Serdica Math. J. 30(2–3) (2004), 431–470.
T. Gateva-Ivanova, Garside structures on monoids with quadratic squarefree relations, Algebr. Represent. Theory 14(4) (2011), 779–802. DOI: 10.1007/ s10468-010-9220-z.
T. Gateva-Ivanova, Quadratic algebras, Yang–Baxter equation, and Artin– Schelter regularity, Adv. Math. 230(4–6) (2012), 2152–2175. DOI: 10.1016/j. aim.2012.04.016.
T. Gateva-Ivanova, Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups, Adv. Math. 338 (2018), 649–701. DOI: 10.1016/j.aim. 2018.09.005.
T. Gateva-Ivanova, A combinatorial approach to noninvolutive set-theoretic solutions of the Yang–Baxter equation, Preprint (2018). arXiv:1808.03938v3.
T. Gateva-Ivanova and P. Cameron, Multipermutation solutions of the Yang– Baxter equation, Comm. Math. Phys. 309(3) (2012), 583–621. DOI: 10.1007/ s00220-011-1394-7.
T. Gateva-Ivanova and S. Majid, Matched pairs approach to set theoretic solutions of the Yang–Baxter equation, J. Algebra 319(4) (2008), 1462–1529. DOI: 10.1016/j.jalgebra.2007.10.035.
T. Gateva-Ivanova and S. Majid, Quantum spaces associated to multipermutation solutions of level two, Algebr. Represent. Theory 14(2) (2011), 341–376. DOI: 10.1007/s10468-009-9192-z.
T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra 206(1) (1998), 97–112. DOI: 10.1006/jabr.1997.7399.
M. Grana, I. Heckenberger, and L. Vendramin ˜ , Nichols algebras of group type with many quadratic relations, Adv. Math. 227(5) (2011), 1956–1989. DOI: 10.1016/j.aim.2011.04.006.
L. Guarnieri and L. Vendramin, Skew braces and the Yang–Baxter equation, Math. Comp. 86(307) (2017), 2519–2534. DOI: 10.1090/mcom/3161.
E. Jespers, L. Kubat, and A. Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation, Trans. Amer. Math. Soc. 372(10) (2019), 7191–7223. DOI: 10.1090/tran/7837.
V. Lebed and L. Vendramin, On structure groups of set-theoretic solutions to the Yang–Baxter equation, Proc. Edinb. Math. Soc. (2) 62(3) (2019), 683–717. DOI: 10.1017/s0013091518000548.
J.-H. Lu, M. Yan, and Y.-C. Zhu, On the set-theoretical Yang–Baxter equation, Duke Math. J. 104(1) (2000), 1–18. DOI: 10.1215/S0012-7094-00-10411-5.
S. Majid, “Foundations of Quantum Group Theory”, Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CBO9780511613104.
Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37(4) (1987), 191–205.
Yu. I. Manin, “Quantum Groups and Noncommutative Geometry”, Universit´e de Montr´eal, Centre de Recherches Math´ematiques, Montreal, QC, 1988.
S. Nelson, Classification of finite Alexander quandles, Topology Proc. 27(1) (2003), 245–258
M. Grana, I. Heckenberger, and L. Vendramin ˜ , Nichols algebras of group type with many quadratic relations, Adv. Math. 227(5) (2011), 1956–1989. DOI: 10.1016/j.aim.2011.04.006.
L. Guarnieri and L. Vendramin, Skew braces and the Yang–Baxter equation, Math. Comp. 86(307) (2017), 2519–2534. DOI: 10.1090/mcom/3161.
E. Jespers, L. Kubat, and A. Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation, Trans. Amer. Math. Soc. 372(10) (2019), 7191–7223. DOI: 10.1090/tran/7837.
V. Lebed and L. Vendramin, On structure groups of set-theoretic solutions to the Yang–Baxter equation, Proc. Edinb. Math. Soc. (2) 62(3) (2019), 683–717. DOI: 10.1017/s0013091518000548.
J.-H. Lu, M. Yan, and Y.-C. Zhu, On the set-theoretical Yang–Baxter equation, Duke Math. J. 104(1) (2000), 1–18. DOI: 10.1215/S0012-7094-00-10411-5.
S. Majid, “Foundations of Quantum Group Theory”, Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CBO9780511613104.
Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37(4) (1987), 191–205.
Yu. I. Manin, “Quantum Groups and Noncommutative Geometry”, Universit´e de Montr´eal, Centre de Recherches Math´ematiques, Montreal, QC, 1988.
S. Nelson, Classification of finite Alexander quandles, Topology Proc. 27(1) (2003), 245–258
A. Polishchuk and L. Positselski, “Quadratic Algebras”, University Lecture Series 37, American Mathematical Society, Providence, RI, 2005. DOI: 10.1090/ ulect/037.
S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. DOI: 10.2307/1995637.
N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras (Russian), Algebra i Analiz 1(1) (1989), 178–206; translation in Leningrad Math. J. 1(1) (1990), 193–225.
W. Rump, Classification of cyclic braces, II, Trans. Amer. Math. Soc. 372(1) (2019), 305–328. DOI: 10.1090/tran/7569.
A. Smoktunowicz and L. Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2(1) (2018), 47–86. DOI: 10. 4171/JCA/2-1-3.
A. Soloviev, Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation, Math. Res. Lett. 7(5) (2000), 577–596. DOI: 10.4310/MRL.2000.v7.n5. a4.
M. Takeuchi, Survey on matched pairs of groups—an elementary approach to the ESS-LYZ theory, in: “Noncommutative Geometry and Quantum Groups” (Warsaw, 2001), Banach Center Publ. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, pp. 305–331. DOI: 10.4064/bc61-0-19.
L. Vendramin, Extensions of set-theoretic solutions of the Yang–Baxter equa tion and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220(5) (2016), 2064–2076. DOI: 10.1016/j.jpaa.2015.10.018.