Uniqueness property for 2-dimensional minimal cones in R3

Main Article Content

Xiangyu Liang

In this article we treat two closely related problems: 1) the upper semicontinuity property for Almgren minimal sets in regions with regular boundary; and 2) the uniqueness property for all the 2-dimensional minimal cones in R3 . Given an open set Ω ⊂ Rn, a closed set E ⊂ Ω is said to be Almgren minimal of dimension d in Ω if it minimizes the d-Hausdorff measure among all its Lipschitz deformations in Ω. We say that a d-dimensional minimal set E in an open set Ω admits upper semi-continuity if, whenever {fn(E)}n is a sequence of deformations of E in Ω that converges to a set F, then we have Hd(F) ≥ lim supn Hd(fn(E)). This guarantees in particular that E minimizes the d-Hausdorff measure, not only among all its deformations, but also among limits of its deformations. As proved in [19], when several 2-dimensional minimal cones are all translational and sliding stable, and admit the uniqueness property, then their almost orthogonal union stays minimal. As a consequence, the uniqueness property obtained in the present paper, together with the translational and sliding stability properties proved in [18] and [20] permit us to use all known 2-dimensional minimal cones in Rn to generate new families of minimal cones by taking their almost orthogonal unions. The upper semi-continuity property is also helpful in various circumstances: when we have to carry on arguments using Hausdorff limits and some properties do not pass to the limit, the upper semi-continuity can serve as a link. As an example, it plays a very important role throughout [19].

Keywords
minimal cones, uniqueness, Hausdorff measure, Plateau’s problem

Article Details

How to Cite
Liang, Xiangyu. “Uniqueness property for 2-dimensional minimal cones in R3”. Publicacions Matemàtiques, vol.VOL 65, no. 1, pp. 3-59, https://raco.cat/index.php/PublicacionsMatematiques/article/view/383612.
References

W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95(3) (1972), 417–491. DOI: 10.2307/1970868.

F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4(165) (1976), 199 pp. DOI: 10.1090/memo/0165.

K. A. Brakke, Minimal cones on hypercubes, J. Geom. Anal. 1(4) (1991), 329–338. DOI: 10.1007/BF02921309.

H. Brezis, “Functional Analysis, Sobolev Spaces and Partial Differential Equations”, Universitext, Springer, New York, 2011. DOI: 10.1007/978-0-387-70914-7.

G. David, Limits of Almgren quasiminimal sets, in: “Harmonic Analysis at Mount Holyoke” (South Hadley, MA, 2001), Contemp. Math. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 119–145. DOI: 10.1090/conm/320/05603.

G. David, H¨older regularity of two-dimensional almost-minimal sets in Rn, Ann. Fac. Sci. Toulouse Math. (6) 18(1)(2009), 65–246. DOI: 10.5802/afst.1205.

G. David, C1+α-regularity for two-dimensional almost-minimal sets in Rn, J. Geom. Anal. 20(4) (2010), 837–954. DOI: 10.1007/s12220-010-9138-z.

G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Mem. Amer. Math. Soc. 144(687) (2000), 132 pp. DOI: 10.1090/memo/0687.

H. Federer, “Geometric Measure Theory”, Die Grundlehren der mathematischen Wissenschaften 153, Springer Verlag New York Inc., New York, 1969. DOI: 10.1007/978-3-642-62010-2.

V. Feuvrier, Un r´esultat d’existence pour les ensembles minimaux par optimisation sur des grilles poly´edrales, PhD thesis, Laboratoire de Math´ematiques d’Orsay (September 2008). http://tel.archives-ouvertes.fr/tel 00348735.

A. Heppes, Isogonale sph¨arische Netze, Ann. Univ. Sci. Budapest. E¨otv¨os Sect. Math. 7 (1964), 41–48.

E. Lamarle, Sur la stabilit´e des syst`emes liquides en lames minces, M´emoires de l’Acad´emie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 35 (1865), 1–104.

G. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166(1) (1994), 55–83. DOI: 10.2140/pjm.1994.166.55.

X. Liang, Almgren-minimality of unions of two almost orthogonal planes in R4, Proc. Lond. Math. Soc. (3) 106(5)(2013), 1005–1059. DOI: 10.1112/plms/pds059.

X. Liang, Topological minimal sets and existence results, Calc. Var. Partial Differential Equations 47(3–4) (2013), 523–546. DOI: 10.1007/s00526-012-0526-z.

X. Liang, Almgren and topological minimality for the set Y ×Y , J. Funct. Anal. 266(10) (2014), 6007–6054. DOI: 10.1016/j.jfa.2014.02.033.

X. Liang, On the topological minimality of unions of planes of arbitrary dimension, Int. Math. Res. Not. IMRN 2015(23) (2015), 12490–12539. DOI: 10.1093/imrn/rnv059.

X. Liang, Measure and sliding stability for 2-dimensional minimal cones in Euclidean spaces, Preprint (2018). arXiv:1808.09691.

X. Liang, Minimality for unions of 2-dimensional minimal cones with nonisolated singularities, Preprint (2018). arXiv:1808.09687.

X. Liang, Sliding stability and uniqueness for the set Y × Y , In preparation.

P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Fractals and rectifiability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CBO9780511623813.

F. Morgan, Examples of unoriented area-minimizing surfaces, Trans. Amer. Math. Soc. 283(1) (1984), 225–237. DOI: 10.2307/1999999.

F. Morgan, Soap films and mathematics, in: “Differential Geometry: Partial Differential Equations on Manifolds” (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, Part 1, Amer. Math. Soc., Providence, RI, 1993, pp. 375–380. DOI: 10.1090/pspum/054.1.

J. R. Munkres, “Topology”, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.

E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104(1–2) (1960), 1–92. DOI: 10.1007/BF02547186.

J. E. Taylor, The structure of singularities in soap-bubble-like and soap-filmlike minimal surfaces, Ann. of Math. (2) 103(3) (1976), 489–539. DOI: 10.2307/1970949.

H. Whitney, “Geometric Integration Theory”, Princeton University Press, Princeton, N. J., 1957.