Some extensions of the modular method and Fermat equations of signature (13,13,n)

Main Article Content

Nicolas Billerey
Imin Chen
Lassina Dembélé
Luis Dieulefait
Nuno Freitas

We provide several extensions of the modular method which were motivated by the problem of completing previous work to prove that, for any integer n ≥ 2, the equation x13 + y 13 = 3zn has no non-trivial primitive solutions. In particular, we present four elimination techniques which are based on: (1) establishing reducibility of certain residual Galois representations over a totally real field; (2) generalizing image of inertia arguments to the setting of abelian surfaces; (3) establishing congruences of Hilbert modular forms without the use of often impractical Sturm bounds; and (4) a unit sieve argument which combines information from classical descent and the modular method. The extensions are of broader applicability and provide further evidence that it is possible to obtain a complete resolution of a family of generalized Fermat equations
by remaining within the framework of the modular method. As a further illustration of this, we complete a theorem of Anni–Siksek to show that,  for `, m ≥ 5, the only primitive solutions to the equation x 2` + y 2m = z 13 are trivial.

Paraules clau
Fermat equations, abelian surfaces, modularity, Galois representations

Article Details

Com citar
Billerey, Nicolas et al. “Some extensions of the modular method and Fermat equations of signature (13,13,n)”. Publicacions Matemàtiques, vol.VOL 67, no. 2, pp. 715–741, https://raco.cat/index.php/PublicacionsMatematiques/article/view/418428.
Referències
S. Anni and S. Siksek, Modular elliptic curves over real abelian fields and the generalized Fermat equation x2` + y 2m = z p, Algebra Number Theory 10(6) (2016), 1147–1172. DOI: 10.2140/ant.2016.10.1147

M. A. Bennett and C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56(1) (2004), 23–54.
DOI: 10.4153/CJM-2004-002-2

N. Billerey, I. Chen, L. Dembel´ e, L. Dieulefait, and N. Freitas ´ , Supporting Magma program files for this paper, available as ancillary files of the preprint version of this work on arXiv:1802.04330

N. Billerey, I. Chen, L. Dieulefait, and N. Freitas, A multi-Frey approach to Fermat equations of signature (r, r, p), Trans. Amer. Math. Soc. 371(12)
(2019), 8651–8677. DOI: 10.1090/tran/7477

W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, Computational algebra and number theory (London, 1993), J.
Symbolic Comput. 24(3-4) (1997), 235–265. DOI: 10.1006/jsco.1996.0125

C. Breuil and F. Diamond, Formes modulaires de Hilbert modulo p et valeurs d’extensions entre caract`eres galoisiens, Ann. Sci. Ec. Norm. Super. (4) 47(5) (2014), 905–974.

Y. Bugeaud, M. Mignotte, and S. Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations, Canad. J. Math. 60(3)
(2008), 491–519. DOI: 10.4153/CJM-2008-024-9

J. I. Burgos Gil and A. Pacetti, Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields, Math. Comp. 86(306) (2017), 1949–1978.
DOI: 10.1090/mcom/3187

C. J. Bushnell and G. Henniart, “The Local Langlands Conjecture for GL(2)”, Grundlehren der mathematischen Wissenschaften 335, Springer-Verlag,
Berlin, 2006. DOI: 10.1007/3-540-31511-X

E. Cali, Defaut de semi-stabilite des courbes elliptiques dans le cas non ramifie, Canad. J. Math. 56(4) (2004), 673–698. DOI: 10.4153/CJM-2004-031-6

H. Carayol, Sur les repr´esentations l-adiques associ´ees aux formes modulaires de Hilbert, Ann. Sci. Ecole Norm. Sup. (4) ´ 19(3) (1986), 409–468. DOI: 10.24033/asens.1512

I. Chen and A. Koutsianas, A modular approach to Fermat equations of signature (p, p, 5) using Frey hyperelliptic curves, Preprint (2022). arXiv:2210.02316

E. Costa, N. Mascot, J. Sijsling, and J. Voight, Rigorous computation of the endomorphism ring of a Jacobian, Math. Comp. 88(317) (2019), 1303–1339.
DOI: 10.1090/mcom/3373

S. R. Dahmen and S. Siksek, Perfect powers expressible as sums of two fifth or seventh powers, Acta Arith. 164(1) (2014), 65–100.
DOI: 10.4064/aa164-1-5

H. Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem, Duke Math. J. 102(3) (2000), 413–449.
DOI: 10.1215/S0012-7094-00-10233-5

L. Dembele, An intriguing hyperelliptic Shimura curve quotient of genus 16, Algebra Number Theory 14(10) (2020), 2713–2742. DOI: 10.2140/ant.2020.14.2713

L. Dembel´ e and A. Kumar ´ , Examples of abelian surfaces with everywhere good reduction, Math. Ann. 364(3-4) (2016), 1365–1392. DOI: 10.1007/s00208-015-1252-6

L. Dembele and J. Voight , Explicit methods for Hilbert modular forms, in: “Elliptic Curves, Hilbert Modular Forms and Galois Deformations”, Adv.
Courses Math. CRM Barcelona, Birkh¨auser/Springer, Basel, 2013, pp. 135–198. DOI: 10.1007/978-3-0348-0618-3_4

F. Diamond, An extension of Wiles’ results, in: “Modular Forms and Fermat’s Last Theorem” (Boston, MA, 1995), Springer, New York, 1997, pp. 475–489.
DOI: 10.1007/978-1-4612-1974-3_17

T. Dokchitser and C. Doris, 3-torsion and conductor of genus 2 curves, Math. Comp. 88(318) (2019), 1913–1927. DOI: 10.1090/mcom/3387

C. Doris, Package for computing the conductor or genus 2 curves. Available at https://cjdoris.github.io/Genus2Conductor/#installation.

N. Elkies and A. Kumar, K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory 8(10) (2014), 2297–2411.
DOI: 10.2140/ant.2014.8.2297

J. S. Ellenberg, Serre’s conjecture over F9, Ann. of Math. (2) 161(3) (2005), 1111–1142. DOI: 10.4007/annals.2005.161.1111

W. Feit, “The Representation Theory of Finite Groups”, North-Holland Mathematical Library 25, North-Holland Publishing Co., Amsterdam-New York, 1982.

N. Freitas, On the Fermat-type equation x3 + y3 = zp, Comment. Math. Helv. 91(2) (2016), 295–304. DOI: 10.4171/CMH/386

N. Freitas, B. V. Le Hung, and S. Siksek, Elliptic curves over real quadratic fields are modular, Invent. Math. 201(1) (2015), 159–206.
DOI: 10.1007/s00222-014-0550-z

M. Greenberg and J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80(274) (2011), 1071–1092.
DOI: 10.1090/S0025-5718-2010-02423-8

C. Khare and J.-P. Wintenberger, On Serre’s conjecture for 2-dimensional mod p representations of Gal(Q/Q), Ann. of Math. (2) 169(1) (2009), 229–253.
DOI: 10.4007/annals.2009.169.229

M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170(3) (2009), 1085–1180. DOI: 10.4007/annals.2009.170.1085

A. Kraus, Sur le defaut de semi-stabilite des courbes elliptiques a reduction additive, Manuscripta Math. 69(4) (1990), 353–385. DOI: 10.1007/BF02567933

A. Kraus, Sur l’´equation a3 + b3 = cp, Experiment. Math. 7(1) (1998), 1–13. DOI: 10.1080/10586458.1998.10504355

P. Kutzko, The Langlands conjecture for Gl2 of a local field, Ann. of Math. (2) 112(2) (1980), 381–412. DOI: 10.2307/1971151

The LMFDB Collaboration, The L-functions and modular forms database (2013). http://www.lmfdb.org.

Q. Liu, Courbes stables de genre 2 et leur sch´ema de modules, Math. Ann. 295(2) (1993), 201–222. DOI: 10.1007/BF01444884

K. Martin, The Jacquet–Langlands correspondence, Eisenstein congruences, and integral L-values in weight 2, Math. Res. Lett. 24(6) (2017), 1775–1795. DOI: 10.4310/MRL.2017.v24.n6.a11

J.-F. Mestre, Construction de courbes de genre 2 `a partir de leurs modules, in: “Effective Methods in Algebraic Geometry” (Castiglioncello, 1990), Progr. Math. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 313–334. DOI: 10.1007/978-1-4612-0441-1_21

J. Nekova´rˇ, Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two, Canad. J. Math. 64(3) (2012), 588–668. DOI: 10.4153/CJM-2011-077-6

K. A. Ribet, Abelian varieties over Q and modular forms, in: “Modular Curves and Abelian Varieties”, Progr. Math. 224, Birkh¨auser, Basel, 2004, pp. 241–261. DOI: 10.1007/978-3-0348-7919-4_15

K. A. Ribet, Non-optimal levels of mod ` reducible Galois representations or Modularity of residually reducible representations, CRM Lecture notes (2010). Available at http://math.berkeley.edu/∼ribet/crm.pdf.

J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88(3) (1968), 492–517. DOI: 10.2307/1970722

G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45(3) (1978), 637–679.
DOI: 10.1215/S0012-7094-78-04529-5

A. Shnidman, Quadratic twists of abelian varieties with real multiplication, Int. Math. Res. Not. IMRN 2021(5) (2021), 3267–3298. DOI: 10.1093/imrn/rnz185

J. Wilson, Curves of genus 2 with real multiplication by a square root of 5, Thesis (Ph.D.)-University of Oxford (1998).

H. Yoo, Non-optimal levels of a reducible mod ` modular representation, Trans. Amer. Math. Soc. 371(6) (2019), 3805–3830. DOI: 10.1090/tran/7314

S. Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153(1) (2001), 27–147. DOI: 10.2307/2661372