Pointwise localization and sharp weighted bounds for Rubio de Francia square functions
Article Sidebar
Main Article Content
Let Hωf be the Fourier restriction of f ∈ L2 (R) to an interval ω ⊂ R. If Ω is an arbitrary collection of pairwise disjoint intervals, the square function of {Hωf : ω ∈ Ω} is termed the Rubio de Francia square function T Ω RF. This article proves a pointwise bound for T
Ω RF by a sparse operator involving local L2 -averages. A pointwise bound for the smooth version of T Ω RF by a sparse square function is also proved. These pointwise localization principles lead to quantified Lp(w), p > 2, and weak Lp(w), p ≥ 2, norm inequalities for T Ω RF. In particular, the obtained weak Lp(w)-norm bounds are new for p ≥ 2 and sharp for p > 2. The proofs rely on sparse bounds for abstract balayages of Carleson sequences, local orthogonality, and very elementary time-frequency analysis techniques. The paper also contains two results related to the outstanding conjecture that T Ω RF is bounded on L2 (w) if and only if w ∈ A1. The conjecture is verified for radially decreasing even A1-weights, and in full generality for the Walsh group analogue of T Ω RF.
Article Details
(c) 2025
N. Accomazzo, F. Di Plinio, P. Hagelstein, I. Parissis, and. L. Roncal, Directional square functions, Anal. PDE 16(7) (2023), 1651–1699. DOI: 10.2140/apde.2023.16.1651
C. Benea, Vector-valued extensions for singular bilinear operators and applications, Thesis (Ph.D.)-Cornell University (2015). Available on https://ecommons.cornell.edu.
F. Bernicot, D. Frey, and S. Petermichl, Sharp weighted norm estimates beyond Calder´on–Zygmund theory, Anal. PDE 9(5) (2016), 1079–1113. DOI: 10.2140/apde.2016.9.1079
G. Brocchi, A sparse quadratic T(1) theorem, New York J. Math. 26 (2020), 1232–1272.
S. Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schr¨odinger operators, Comment. Math. Helv. 60(2) (1985), 217–246. DOI: 10.1007/BF02567411
M. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou, A sparse domination principle for rough singular integrals, Anal. PDE 10(5) (2017), 1255–1284. DOI: 10.2140/apde.2017.10.1255
J. M. Conde-Alonso, F. Di Plinio, I. Parissis, and M. N. Vempati, A metric approach to sparse domination, Ann. Mat. Pura Appl. (4) 201(4) (2022), 1639–1675. DOI: 10.1007/s10231-021-01174-7
J. M. Conde-Alonso and G. Rey, A pointwise estimate for positive dyadic shifts and some applications, Math. Ann. 365(3-4) (2016), 1111–1135. DOI: 10.1007/s00208-015-1320-y
D. Cruz-Uribe, J. M. Martell, and C. Perez ´ , Sharp weighted estimates for classical operators, Adv. Math. 229(1) (2012), 408–441. DOI: 10.1016/j.aim.2011.08.013.
A. Culiuc, F. Di Plinio, and Y. Ou, Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc. (2) 98(2) (2018), 369–392. DOI: 10.1112/jlms.12139
C. Demeter, A guide to Carleson’s theorem, Rocky Mountain J. Math. 45(1) (2015), 169–212. DOI: 10.1216/RMJ-2015-45-1-169
F. Di Plinio and A. Fragkos, The weak-type Carleson theorem via wave packet estimates, Trans. Amer. Math. Soc. 378(3) (2025), 1551–1592. DOI: 10.1090/tran/9303
F. Di Plinio and A. K. Lerner, On weighted norm inequalities for the Carleson and Walsh–Carleson operator, J. Lond. Math. Soc. (2) 90(3) (2014), 654–674. DOI: 10.1112/jlms/jdu049
C. Domingo-Salazar, M. Lacey, and G. Rey, Borderline weak-type estimates for singular integrals and square functions, Bull. Lond. Math. Soc. 48(1) (2016), 63–73. DOI: 10.1112/blms/bdv090
J. Duoandikoetxea, Fourier Analysis, Translated and revised from the 1995 Spanish original by David Cruz-Uribe, Grad. Stud. Math. 29, American Mathematical Society, Providence, RI, 2001. DOI: 10.1090/gsm/029
J. Duoandikoetxea, Extrapolation of weights revisited: New proofs and sharp bounds, J. Funct. Anal. 260(6) (2011), 1886–1901. DOI: 10.1016/j.jfa.2010.12.015
D. Frey and Z. Nieraeth, Weak and strong type A1-A∞ estimates for sparsely dominated operators, J. Geom. Anal. 29(1) (2019), 247–282. DOI:
1007/s12220-018-9989-2
R. Garg, L. Roncal, and S. Shrivastava, Quantitative weighted estimates for Rubio de Francia’s Littlewood–Paley square function, J. Geom. Anal. 31(1) (2021), 748–771. DOI: 10.1007/s12220-019-00297-x
T. P. Hytonen, The sharp weighted bound for general Calder´on–Zygmund operators, Ann. of Math. (2) 175(3) (2012), 1473–1506. DOI: 10.4007/annals.2012.175.3.9
T. P. Hytonen and M. T. Lacey, Pointwise convergence of Walsh–Fourier series of vectorvalued functions, Math. Res. Lett. 25(2) (2018), 561–580. DOI: 10.4310/MRL.2018.v25.n2.a11
T. P. Hytonen, M. T. Lacey, and I. Parissis ¨ , A variation norm Carleson theorem for vectorvalued Walsh–Fourier series, Rev. Mat. Iberoam. 30(3) (2014), 979–1014. DOI: 10.4171/RMI/804
T. P. Hytonen and K. Li,Weak and strong Ap-A∞ estimates for square functions and related operators, Proc. Amer. Math. Soc. 146(6) (2018), 2497–2507. DOI: 10.1090/proc/13908
T. Hytonen and C. Pérez, Sharp weighted bounds involving A∞, Anal. PDE 6(4) (2013), 777–818. DOI: 10.2140/apde.2013.6.777
J.-L. Journe´, Calder´on–Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1(3) (1985), 55–91. DOI: 10.4171/RMI/15
S. Krol, Fourier multipliers on weighted Lp spaces, Math. Res. Lett. 21(4) (2014), 807–830. DOI: 10.4310/MRL.2014.v21.n4.a11
M. T. Lacey, Issues related to Rubio de Francia’s Littlewood–Paley Inequality, NYJM Monogr. 2, State University of New York, University at Albany, Albany, NY, 2007.
M. Lacey and C. Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7(4) (2000), 361–370. DOI: 10.4310/MRL.2000.v7.n4.a1
A. K. Lerner, A simple proof of the A2 conjecture, Int. Math. Res. Not. IMRN 2013(14) (2013), 3159–3170. DOI: 10.1093/imrn/rns145
A. K. Lerner, Quantitative weighted estimates for the Littlewood–Paley square function and Marcinkiewicz multipliers, Math. Res. Lett. 26(2) (2019), 537–556. DOI: 10.4310/MRL.2019.v26.n2.a7
A. K. Lerner and F. Nazarov, Intuitive dyadic calculus: The basics, Expo. Math. 37(3) (2019), 225–265. DOI: 10.1016/j.exmath.2018.01.001
A. K. Lerner, S. Ombrosi, and C. Perez ´ , A1 bounds for Calder´on–Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16(1) (2009), 149–156. DOI: 10.4310/MRL.2009.v16.n1.a14
K. Li and W. Sun, Weak and strong type weighted estimates for multilinear Calder´on–Zygmund operators, Adv. Math. 254 (2014), 736–771. DOI: 10.1016/j.aim.2013.12.027
T. Luque, C. Perez, and E. Rela ´ , Optimal exponents in weighted estimates without examples, Math. Res. Lett. 22(1) (2015), 183–201. DOI: 10.4310/MRL.2015.v22.n1.a10
K. Moen, Sharp weighted bounds without testing or extrapolation, Arch. Math. (Basel) 99(5) (2012), 457–466. DOI: 10.1007/s00013-012-0453-4
J. L. Rubio de Francia, Estimates for some square functions of Littlewood–Paley type, Publ. Sec. Mat. Univ. Aut`onoma Barcelona 27(2) (1983), 81–108. DOI: 10.5565/PUBLMAT_27283_08
J. L. Rubio de Francia, A Littlewood–Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1(2) (1985), 1–14. DOI: 10.4171/RMI/7
J. L. Rubio de Francia, Transference principles for radial multipliers, Duke Math. J. 58(1) (1989), 1–19. DOI: 10.1215/S0012-7094-89-05801-8
C. Thiele, Wave Packet Analysis, CBMS Reg. Conf. Ser. Math. 105, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. DOI: 10.1090/cbms/105
J. L. Torrea, J. Garc´ıa-Cuerva, J. Duoandikoetxea, and A. Carbery, The work of Jos´e Luis Rubio de Francia. I, II, III, IV, Special Conference in Honor of the Memory of Jos´e Luis Rubio de Francia (El Escorial, 1989), Publ. Mat. 35(1) (1991), 9–25, 27–63, 65–80, 81–93. DOI: 10.5565/PUBLMAT_35191_01
M. Wilson, Weighted Littlewood–Paley Theory and Exponential-Square Integrability, Lecture Notes in Math. 1924, Springer, Berlin, 2008. DOI:
1007/978-3-540-74587-7
Articles més llegits del mateix autor/a
- Paul Hagelstein, Ioannis Parissis, Weighted Solyanik estimates for the strong maximal function , Publicacions Matemàtiques: Vol. 62 Núm. 1 (2018)