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UNIFORMIZATION OF TRIANGLE MODULAR
CURVES

P. BAYER AND A. TRAVESA

Abstract

In the present article, we determine explicit uniformizations of
modular curves attached to triangle Fuchsian groups with cusps.
Their Hauptmoduln are obtained by integration of non-linear dif-
ferential equations of the third order. Series expansions involving
integral coefficients are calculated around the cusps as well as
around the elliptic points. The method is an updated form of a
differential construction of the elliptic modular function j, first
performed by Dedekind in 1877. Subtle differences between au-
tomorphic functions with respect to conjugate Fuchsian groups
become apparent.

Introduction

The number of PSL(2, R)-conjugacy classes of arithmetic triangle
Fuchsian groups is finite and their arithmetic types are available in [26].
Nine of these types have cusps, and all of them can be realized by groups
commensurable with the modular group PSL(2,Z). Six of the arithmetic
types with cusps correspond to seven genus zero modular curves of ha-
bitual use in the current literature: the curves Xo(N), for N =1,2,3,4,
and the curves X (N), for N = 2,3,4. The uniformizing functions in-
volved (Hauptmoduln) are well known and can be expressed as quotients
of Dedekind’s eta functions (cf. [12], [7], [4]).

In [15], Klein traces the origins of the elliptic modular function j to
Gauss but, in a footnote on page 116 of [14], he also mentions that the
function j coincides with a function called Valenz by Dedekind: “Was
Herr Dedekind in seinem Aufsatze Valenz nennt, ist also nichts anderes
als die absolute Invariante des Integrals” (“What Dedekind means in his
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concept of Valenz is therefore none other than the absolute invariant of
the integral”).

Our aim is to present a new and unified computation for the uni-
formizing functions for any modular triangle group not using the classi-
cal representations via Dedekind’s eta function, but following the main
ideas contained in Dedekind’s article [8]. For this purpose we need to
explicitly describe various data including

(1) fundamental domains and presentations of the modular triangle
groups;

(2) differential equations satisfied by the uniformizing functions;

(3) local uniformizing parameters.

An advantage of our presentation is that the uniformizing functions
are obtained without any previous knowledge of other special functions.
They can be developed as easily around the cusps as around the ellip-
tic points and, by performing suitable choices of the local uniformizing
parameters, we obtain series expansions with integral coefficients. The
method has also been applied to Fermat curves and Shimura curves
(cf. [1], [2], [3], [B]). Other examples and presentations can be found
in [12] and [18].

1. Triangle Fuchsian groups of non-compact type

Let H be the upper half complex plane. We define H = HUP!(R) and
H* = HUPLY(Q). Let [A1, A] be the oriented closed geodesic segment
determined by a pair of points (A1, A2) € H x H. More generally, let
[A1, As, ..., Ay] be the closed hyperbolic polygon with vertices A; € H
for 1 <i<n.

The group GL(2, R) acts, conformally or anticonformally, on H, P{R)
and H by linear fractional transformations:

a b
R L i det M > 0,
cz+d
c d
=4+ b a b
M-z:a_z+ , for M = , if det M < 0.
cz+d ¢ d

The actions factorize through PGL(2, R)=GL(2,R)/R*15 and GL"(2,R)/
R*1y ~ PSL(2,R) = SL(2,R)/{£12}, where 15 denotes the identity
matrix of degree 2.
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Let I' C PSL(2,R) be a Fuchsian group acting on H. The order e,
of a point z € H is defined as the order of its isotropy group I', = {v €
[:~v(2) =2} Ife, =00, zis said to be a cusp; if 1 < e, < o0, 2
is said to be an elliptic point. The group I' acts on the set Pr of its
cusps and the quotient I'\(H U Pr) is a compact Riemann surface. We
shall denote by (g;e1,...,ey) the signature of I', which tells us that the
Riemann surface is of genus ¢ and that any fundamental region of T"
contains exactly n inequivalent points of orders e; > 1 for 1 < i < n
(cf. [16]).

Henceforth, for any group I' C PSL(2,R), [ will mean its pre-
image in SL(2,R) under the natural projection; and, for any group rc

SL(2,R), —15 € ', T will mean its image in PSL(2,R).

Definition 1.1. Let ey, es, e3 be positive integers, or infinity, satisfying

1 1 1
—+— 4+ — <1, e; >es>es.
€1 €2 €3

A Fuchsian group T' of signature (0;e1,eq,e3) is said to be a triangle
Fuchsian group of type (e, €2, €3).

Theorem 1.2 (cf. [20], [16]). For any triangle Fuchsian group T' C
PSL(2,R) of type (e1,e2,e3), the group T can be presented by matri-
ces My, My, M5 € SL(2,R) which satisfy the following conditions:
(1) MlMgMg = —12,’ Mzel = —12 Zf €; 7§ Q0.
(ii) tr(M;) = +2cos(m/e;) for 1 <i < 3.
(iii) The fixed points A; of the transformations defined by M; are the
vertices of a hyperbolic triangle [A1, A, As] of angles 7/e;.

(iv) The images of [A1, Aa, A3] under successive reflections with respect
to the sides of the triangle fill the hyperbolic plane without gaps or
overlappings.

(v) Let TV be the subgroup of PGL(2,R) generated by T' and the re-
flection with respect to the side [A1, As]. Then [A1, A2, As] is a
fundamental domain for TV.

(vi) Let [A1, AL, As] be the hyperbolic triangle obtained from [A1, Aa, As]
under the reflection with respect to the side [A1, As]. Then the
quadrilateral [A1, A2, As, Ab), under the identifications

[A17 AQ] ~ [Ala Al?]? [A:)’a AQ] ~ [A3a A/Q]a

is a fundamental domain for T'.
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Definition 1.3. The hyperbolic triangle [A1, As, A3] constructed in
Theorem 1.2 is said to define the triangle group I'. For the sake of
brevity, we shall say that the matrices M;, 1 < ¢ < 3, define a triangle
presentation for the group I' (instead of f)

If two triangle Fuchsian groups are conjugate in PSL(2,R), then they
are of the same type. Conversely, it was proved by Petersson [20] that
triangle Fuchsian groups of the same type are conjugate in PSL(2, R).

Let H be a quaternion algebra defined over a real number field K.
Let n be the reduced norm from H to K. Suppose that at least one real
place of K is split in H and fix an embedding

O: H— M(2,R).
Consider an order O of H and let
O] ={z€0:n(x)=1}.

Then ®(07) C SL(2,R), and we denote by I'(H, O) the projection in
PSL(2,R) of the group ®(O7).

Definition 1.4. A Fuchsian group I' C PSL(2,R) of the first kind is
said to be arithmetic if it is commensurable with a group T'(H, 0). A
type (e1,e2,e3) is said to be arithmetic if it belongs to an arithmetic
triangle Fuchsian group.

The next theorem is due to Takeuchi [26].

Theorem 1.5. There are exactly nine arithmetic types defined by tri-
angle Fuchsian groups with cusps, namely:

(00, 00, 00), (00, 00, 3), (00, 00, 2),
(00,6,6), (00,6,2), (c0,4,4),
(00,4,2),(0,3,3), (0,3, 2).

In Table 1 we give the notation of several points in ‘H* to be used
throughout the article.
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v point v point v point
0 3413 -1
U U v —_—
0 8 6 16 2
. —241 1
v 100 v v -
1 9 5 17 2
-1+iV3 —5+iV/3 )
V2 D) V10 14 V18
. -3+ 34+iV3
U 1 v v
3 11 10 19 2
1+iv3 ~7T+iV3 3+
v v e e— v
4 2 12 26 20 2
—1+i i 9+iv3
v v — v
5 2 13 \/5 21 6
—3+iV3 i 3
Vg | ——— || v — v =
6 6 14 \/g 22 2
1+i i 3+
(%4 2 V15 2 V23 5

TABLE 1. Notation for some points in H*

Our first example of a triangle Fuchsian group will be the modular
group I'g(1) = PSL(2,Z). Recall that the full modular group I'y(1) =
SL(2,Z) is generated by the matrices

T :=
0 1 1 0
Proposition 1.6. The following holds:
(i) The group T'o(1) is the triangle group defined by [v1,va, v3].
(ii) Its arithmetic type is (00, 3,2).

(iii) The point vy is fized by T, the point vo is fized by —T 1S and the
point v3 is fized by —S.
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(iv) The polygon [v1,vs2,vs,v4], under the identifications
a:lvs,va] ~ [vg,04], 2 8-z,
b:[vg,v1] ~ [vg,v1], z+—T-z,

is a fundamental domain for To(1) acting on H*. This fundamental
domain is illustrated in Figure 1.

Proof: The general statement is well known. We only mention that by
setting My =T, My = —T~1S, M3 = —S, we have

M MyMsz = M3 = Mj = —1,
and the matrices M; generate [o(1) (cf. Table 4). O

Remark 1.7. Not all presentations of a Fuchsian group obtained through
matrices fulfilling conditions (i), (ii) and (iii) in Theorem 1.2 can be used
to infer a structure of triangle group. In this way, if we define

Ny =T, No=-U"' N3=UT !,
where U := [1 ﬂ, then these matrices satisfy
N1N2N3=N33:—12, tl“le—tI'N2=2, tI’Ngzl,

and generate I'o(1), but the triple (co, 00, 3) does not correspond to the
type of Ty(1) as a triangle group.

Lemma 1.8. Let F' = {(m,ma,m3) be the free group on three genera-
tors. Take x: F — {£1} to be the character defined by

x(m2) =1, x(m1)=x(ms) = —1.
Then ker x is the normal subgroup of F generated by {m?, mg,mgmfl}.
Proof: Consider the following subgroups of F":
Fy = (m1,m3) = (my,mazm; ), Fy=(mi),

and denote by x; the restriction of the character x to F;. For i = 1,2,
let p1: F — F1, pa: F1 — F5 be the projections defined by

p1(me) =1, p1(ms3) =ms, pi(mi) =my,

p2(mamy') =1, pa(mi) =my.
Then x = x1 op1 and x1 = x2 op2. The claim follows from the fact that
ker y is the normal subgroup of F' generated by ker x1 and mo; ker x1 is

the normal subgroup of F; generated by ker y2 and mgml_l; and ker 2 is
the normal subgroup of F» generated by m3. O
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Remark 1.9. Let I be any group on three generators written as a quotient
of F' by means of an epimorphism p: F' — I'. Suppose that ker p C ker y,
X being the quadratic character in Lemma 1.8. Let x*: I' — {£1} be
the quadratic character such that y* o p = x and define I'* = ker x*.
The subgroup I'* is an index two subgroup of I'. A set of representatives
for T" modulo T'* is given by {1,7}, where here T is any element in T’
such that x*(T) = —1.

The following result is due to Petersson [20].

Theorem 1.10. Let I' be a triangle Fuchsian group of type (oo,e,2).
Then T* := ker x* is a triangle Fuchsian group of type (0o, e, €).

To illustrate Theorem 1.10, consider the group epimorphism p: F —
To(1) defined by p(m1) = T, p(ma) = —T~1S, p(m3) = —S (cf. Proposi-
tion 1.6). Since kerp C ker x, we obtain an index two subgroup I'g(1)* =
ker x* of T'g(1). Proposition 1.11 gives a presentation of this group as a
triangle group.

Proposition 1.11. The following holds:
(i) The group T'o(1)* is the triangle group defined by [v1, va, v4].
(i) Its arithmetic type is (00,3, 3).
(iii) The point vy is fived by T?, the point ve is fized by —T 1S and the
point vy is fized by —ST ' (cf. Table 4).

(iv) The polygon [v1,va,v4, v19], under the identifications
a: [vg,va] ~ [vg,v19], 2~TS-z,
b [vg,v1] ~ [v19, 1], z2~T2- 2z,

is a fundamental domain for To(1)* acting on H*. This fundamen-
tal domain is illustrated in Figure 14.

2. Modular triangle groups

In this section we identify the arithmetic types with cusps by means
of triangle groups commensurable with T'g(1).
Let N be a positive integer and let T'o(N) be the congruence sub-

group of level N whose elements are the matrices ['z Z} € fo(l) with N

dividing ¢. Let To(NN) be its image in PSL(2,Z). As usual, we denote
by Xo(N) the modular curve defined by T'g(V).
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N | v | v | Voo | To(IV)-type

TABLE 2. Constants for Xo(V)

Proposition 2.1. The groups T'o(N) are triangle Fuchsian groups if and
only if N < 4. Table 2 lists the arithmetic type of each of these groups.

Proof: The Riemann-Hurwitz formula for the genus tells us that
(21) GX(N) =1+ -2 o

where p = [I'(1) : To(N)], ve is the number of inequivalent elliptic
points of order e, and v, is the number of inequivalent cusps, un-
der the action of I'g(N). From formula (2.1), one can show that the
genus zero curves Xo(N) are exactly those with 1 < N < 10 or N =
12,13,16,18,25. From well known formulas for the constants p(N)
and v;(N) (cf. [25]), it follows that only for N < 4 holds that

va(N) + v3(N) 4+ veo (N) = 3.

The values of the constants are specified in Table 2. O
The matrix Wy = —— | % ] defi transformation which b
e matrix Wy = \/—N _no| defines a transformation which be-

longs to the normalizer of Iy(N) in SL(2,R). It gives rise to what is
known as Fricke involution wy of Xo(N). We let I'f (N) be the subgroup
of SL(2,R) generated by T'o(V) and Wy. We also consider the quotient
curve X (N) := Xo(N)/(wn).

Remark 2.2. Since W;

= —5 € Ty(1), we have I'f (1) = I'o(1) and,
therefore, X (1) = Xo(1).
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N\vy (vi |vf lvd vk | Td (N)-type |v3|vi|vg [vi| T (N)*-type

oo o0

1{1]1]0|0]1] (03,2 200]0]1|(x,3,3)
2l1|0|1]0|1] (04,2 0]2/0] 1] (c0,4,4)
3l1]o0]o]1]1](e62 |o]o|2]1] (6,6
41110(0]0] 2] (c0,00,2) 0/0]0] 3| (00,00,00)

TABLE 3. Constants for X" (V) and for X (N)*

Proposition 2.3. The groups T'g (N) are triangle Fuchsian groups if
and only if N < 4. Table 3 lists the arithmetic type of each of these
groups.

Proof: The Riemann-Hurwitz formula for the genus tells us that
1 1
(22) 9T (V) = 31+ 9(Xo(N))) ~ 7v*(N),

where v (N) is the number of fixed points of wy. From formula (2.2),
one can show that the genus zero curves X (N) are exactly those
with N <21 or

N = 23,24, 25,27, 29,31, 32,35, 36, 41, 47, 49, 50, 59, 71.

If we denote by v, (N) the number of non-equivalent points of order e
under the action of T'g(N)™T, then only for N < 4 we shall have

> vEN) =3
e>1
The values of the constants are specified in Table 3. O

Now, by the procedure explained in Theorem 1.10, we obtain further
triangle groups I'f (N)* for N < 4. Note that I'g (1)* = I'g(1)*. The
arithmetic type of the triangle groups Far (N)*, for N < 4, is also speci-
fied in Table 3. We shall denote by Xar (N)* the corresponding modular
curves.

Corollary 2.4. Any arithmetic type with cusps (oo, ez, e3) admits a
modular realization. That is, it can be obtained from a triangle group
commensurable with To(1).
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3. Fundamental domains

In Section 2, we have identified all the arithmetic types with cusps by
means of modular triangle groups. We are now interested in obtaining
fundamental domains for each of these groups. All the fundamental
domains computed in this section will be adapted to Theorem 1.2. Note
that this was already the case of the fundamental domains obtained in
Propositions 1.6 and 1.11.

Lemma 3.1. For 2 < N <4, we have

(i) To(N) = (T, U~N, ~UNT1, where T = [; ﬂ, U= “ ﬂ.

.. = — 1 O 1
(11) F(—Ji_(N) = <T7T 1WN7WN>7 where Wy = \/—N |:*N 0:|'

Proof: Let T" := (T,U~N, —UNT~1). Clearly, I' is a subgroup of I'g(NN).
To obtain the equality asserted, we shall apply a reduction process. Let

M= |:C(JZV Z] be an arbitrary element in To(N). If ¢ = 0, thena = d = +1

and, therefore, M = £T*? lies in I'. If ¢ # 0, then the division of a
by ¢N yields an integer k such that |a + keN| < |¢|N/2. Therefore, re-
placing M by T* M we can assume that |a| < |¢|N/2. Since N > 1, a # 0.
The division of ¢ by a yields an integer k' such that |¢c — k'a| < |al/2.
Thus,

|al

N
—Ka|l <= <|c|—.
le—Kal < =5 < el

If N=2or N =3, then |c — ¥a| < |¢|]. If N =4, taking into account
that ged(a,eN) = 1, we have 2|c — k’a| < |a| and, also, |¢ — k'a| < |c|.
Therefore, replacing M by U~*N M we can assume that |¢/| < |¢|. After
a finite number of steps, we shall obtain a matrix with the entry ¢ = 0,
hence M € I .

To prove the second assertion let I := (T,T~'Wy,Wy). Since
W]%, = —15 and VVNTVV]§1 = UV it is clear that

fll = <T7 WN> = <T7 Wh, _12> = <T7 U_Nu _127WN> = fg_(N) [

The general principles recalled in the following lemmas will be used
in our construction of fundamental domains.
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Lemma 3.2. Let D be a fundamental domain for a group T C PSL(2,R)
acting on H*. Given a subgroup I" C T' of finite index, let {v;}; be a
set of Tight coset representatives for T' modulo TV, i.e. T = Uj I'v;), as
a disjoint union. Then Uj v; D is a fundamental region for the group I".

Lemma 3.3. Let Dy be a fundamental domain for a discrete group I.
Suppose that Dy = D'UD”, where D' and D" are regions whose interiors
are disjoint. Let v € T be such that the interiors of D' and v - D" are
also disjoint. Then D := D' U~ -D" is a fundamental region for T. The
fundamental Tegion D is said to be obtained from Dy by cutting D" and
pasting it throughout .

Proposition 3.4. Figures 1, 2, 8 and 4 illustrate fundamental domains
for the groups To(N), for 1 < N < 4.

Proof: Let D be the quadrilateral [v1, ve, v3,v4]. By Proposition 1.6, we
know that D is a fundamental domain for I'g(1). The sets

{1,8,8T}, {I,S,ST,ST?}, {I,S,ST,ST? ST3 ST*S}

provide right coset representatives for the groups fo(l) modulo f0(2),
T'o(3), To(4), respectively. The assertions of the proposition follow from
Lemma 3.2 applied to D. O

Proposition 3.5. Figures 1, 5, 6 and 7 illustrate fundamental domains
for the groups To(N), for 1 < N < 4, which are symmetrical with respect
to the imaginary axis.

Proof: We now use Lemma 3.3. To obtain the fundamental domain
for Tg(2), we cut the hyperbolic triangle [vg, vs, vg] and paste it through-
out the transformation U? € T'g(2). To obtain the fundamental do-
main for I'y(3), we cut the hyperbolic triangle [vg, vs,v19] and paste it
throughout the transformation U3 € T'g(3). To obtain the fundamental
domain for I'y(4), we cut the hyperbolic triangle [vg,v16,v12] and paste
it throughout the transformation U* € T'o(4). O

The fundamental domains obtained in Proposition 3.5 will be used
with a twofold purpose in Theorem 3.6. On the one hand, they will
provide the domains for the groups F{f (N) and, on the other, for the
groups I'g (N)*.
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Theorem 3.6. For the groups I'o(N), T§(N), T§(N)*, 1 < N < 4,

consider the entries M;, A;, e;, defined in accordance with Table /.

(i) Each group To(N), I (N), T (N)* is generated by the correspond-
ing matrices My, M, Ms.

(ii) Each point A; is fized under the action of M; on H*. Each hyper-
bolic triangle [A1, A, A3] has interior angles 7/e; at A;.

(iii) Let AL be the point obtained from Aa under the reflection in the
side [A1,As]. Then each quadrilateral [Ay, Aa, As, A}), with the
identifications [Ag, A1] ~ [A), A1] and [Ag, A3] ~ [A), As], is a
fundamental domain for the corresponding triangle group acting
on H*.

(iv) For each group To(N), T (N), T'g (N)*, a fundamental domain is
illustrated in Figures 1, 8, 9 and 10; 1, 11, 12 and 13; 14, 15, 16

and 17.

r M, M, Mj3 Ay | As | As | (e1,e2,¢€3)
To(1) | T | T7'W, Wi vy | v2 | v3 | (00,3,2)
Io(2) | T U2 | =U*T7' | v | v | vr | (c0,00,2)
To(3) | T U3 | =UT" | v | v | vg | (00,00,3)
To(d) | T | U™ | -U*T | v | v | vi7 | (00,00,00)
Ly@2) | T | T Wy Wy vy | vs | v13 | (00,4,2)
Ly3) | T | T W W5 vy | vg | v1a | (00,6,2)
I‘ar 4) | T |T7'w, Wy vy | vie | v15 | (00, 00,2)
Ly | 12 | T7'Wy | WiT7t | oy | w2 | va | (00,3,3)
Ty | T2 | T7Wy | WoT™t | vy | vs | vr | (00,4,4)
TS | T2 | T-'Ws | WsT—t | vy | vg | vs | (00,6,6)
Dy@) | T? | T7'Wy | WuT™1 | w1 | v16 | va7 | (00,00, 00)

TABLE 4. Triangle presentations
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group | identifications mappings
Lo(2) | [vo,v1] ~ [v1g,v1] z—T-z
[v7,v0] ~ [v7, V18] 2= U?T™ 1. 2
To(3) | [vo,v1] ~ [v1s,v1] z2—T-z
[vs, vo] ~ [vs, v1s] 2= UST™ L. 2
Lo(4) | [vo,v1] ~ [v1s,v1] 2T 2
[vi7,v0] ~ [vi7,v18] | 2= UAT ™1 2
Fg(l) [va, v1] ~ [v4, v1] z—T-z
[v3, V2] ~ [v3, V4] z— Wiz
F(JJF(2) [vs, v1] ~ [v7,v1] z—T-z
[v13, V5] ~ [v13, V7] z+—= Wy -z
F(JJF(?’) [ve, v1] ~ [vs, v1] z—T-z
[01471)6] ~ [014, US] z— W3-z
F(J)r(‘l) [v16,v1] ~ [v17,v1] z—T-z
[v15,v16] ~ [V15,v17] | 2= Wy - 2
Fg(l)* [v2,v1] ~ [v19, V1] 2 T2 2
[U47 UQ] ~ [U47 Ulg] Z = TWl -z
Ig(2)* | [vs,v1] ~ [v20, 1] 2—=T?. 2

TABLE 5. Side identifications

55
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[v7, V5] ~ [v7, v20] 2= TWs -2
Td(3)* | [vs,v1] ~ [v21,v1] 2= T2 2

[vs, v6] ~ [vs, v21] 2 TW;5 -2
L3 (4)* | [vie, v1] ~ [va2,v1] | 2> T? 2

[vi7,v16] ~ [v17,v22] | 2= TWy - 2

TABLE 5. Side identifications (continued)

Proof: If in Figures 5, 6 and 7 we cut the hyperbolic triangles [vg, v1, vs],
[vo,v1,v6], [vo,v1,v16], respectively, and paste them with transforma-
tion T', we obtain the fundamental domains for the groups I'y(2), T'o(3),
I'o(4) illustrated in Figures 8, 9 and 10. The identifications are described
in Table 5.

Observe that each transformation Wy acts as an involution on the
fundamental domains in Figures 5, 6 and 7. The action on their vertices
is listed in Table 6. Moreover, the fixed point of Wy is z/\/N, for 2 <
N < 4. Tt is now easy to conclude that Figures 11, 12 and 13 illustrate
fundamental domains for Ty (2), T'§(3), and I'j (4), respectively. The
identifications are described in Table 5.

I |wvo|v1|vs|vr|ve|vs|vie | V17

W2U1U0U7’U5*>k>k>k
Wi v |vg| * | * [vg|ve| * | *

Wyalwvr {vg | * | % | % | % | v17 | vig

TABLE 6. Action of the involutions Wy

Our next task is to construct fundamental domains for the Fuchsian
groups defining the curves X (N)*, for 1 < N < 4. For this purpose,
we need to make explicit the epimorphism p: F' — far (N) appearing in
Remark 1.9. By Lemma 3.1, each group fa'(N), for 1 < N < 4, admits
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the following presentation:
T§(N) = (My, My, My; MyMpMs = 13, M3 = —13, Mg* = —15).

The last relation has only to be considered whenever it makes sense,
namely for N = 1,2, 3, because in these cases the condition ey # oo is
satisfied. Now it is meaningful to consider the epimorphism

p: F = Tg(N) = T (N),
which sends m; to M; (mod £15). Clearly, kerp C ker x since
x(mimamg) = x(m3) = x(m5?*) =1,

and we may consider the group ker x*, as was prescribed in Remark 1.9.
Lemma 3.7. For 1 < N <4, we have

() T3 (N)" = (M, Mz, MsM; ') ST (N).

(ii) A set of coset representatives of far (N) modulo far (N)* is given

by {1, My = T7.

Proof of Lemma 3.7: We only need to observe that ker x is the normal
subgroup of F generated by {m?,ma, mam;'}. Then their images un-
der p in I'{ (N) will generate the group T'g (V)*. O

Returning to the proof of Theorem 3.6, we present the groups I'g (N)*
as triangle groups. The results are specified in Table 4. The second
statement in Lemma 3.7 is all what we need to construct a fundamen-
tal domain for these groups. In fact, given a fundamental domain D
for T{(N), D UTD will be a fundamental domain for I'§ (N)*. The
required identifications are described in Table 5. o

4. Equations for the coverings

The inclusions
To(N) CTJ(N), T§(N)"CI{(N), To(N)CSTo(l), To(4) S To(2)
give rise to coverings

Xo(N) — X (N)  of degree 2, for 2 < N < 4;
XS (N)* — X (N) of degree 2, for 1 < N < 4;
Xo(N) — Xo(1) of degrees 3,4,6, for N = 2,3, 4;
Xo(4) — Xo(2) of degree 2.

The purpose of this section is to provide equations for all them. We shall
begin by making explicit their ramification.
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r P P, P3 P P5| Qo Q1 Q2 Q3 Q1 Q5 Qs Q7 Qs

U1 U3 U4

(1)

To(2) V1 U7 Uy V3 V4 | Vg V1 Vi3 U7 U3 V4
(3)
(4)

I'o(3 Vg V1 V4 Vg V3 Uy U4

To(4 Vo V1 V15 V17 V3 VU7 V4 Ug Va3
Fa_(l) V1 Vs V4

FEJ’_(2) V1 Vi3 U7y

Far(?)) V1 V14 78

F(J)r(4) V1 VUi Uiy

F(—)’_(l)* V19 V1 U3 V4

F(JJF(2)* V20 V1 V13 U7

F(JJF(?))* V21 V1 V14 U8

If(4)* Vo2 U1 V15 Uit

TABLE 7. Ramification points

Proposition 4.1. Consider the points P; and Q; defined in accordance
with Table 7.
(i) The covering Xo(N) — XS (N), N = 2,3,4, ramifies as P, =
2,1 = 2,3, with Py, Py € X (N) and Q2,Q3 € Xo(N). The
point Py € X7 (N) splits as Py = QoQ1, with Qo, Q1 € Xo(N).
(ii) The covering X (N)* — X (N), 1 < N < 4, ramifies as P, =
2 i = 1,2, with P;, P, € XJ(N) and Q1,Q2 € Xo(N)*. The
point Py € X7 (N) splits as Py = QoQ3, with Qo, Qs € X (N)*.
(iii) The covering Xo(2) — Xo(1) ramifies as Py = Q2Q1, P> = Q31Q3,
P = Qg, with P; € Xo(l), Qi € X0(2)

(iv) The covering Xo(3) — Xo(1) ramifies as P = Q3Q1, P> = Q3Q3,
P = QgQg, with P; € Xo(l) and Qi S Xo(?))
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(v) The covering Xo(4) — Xo(2) ramifies as Po = Q2, Ps = Q3, with

P, Ps € X0(2) and Qo, Qs € X0(4) The points P; € X0(2), 1=

15 47 57 Spllt as Pl :Q1Q37 P4:Q4Q87 P5:Q6Q77 with Q’L €X0(4)

(vi) The covering Xo(4) — Xo(1) ramifies as Pi = Q3Q1Q3, P =

Definition 4.2. Let ty, t?\}, ty be the uniformizing functions for the

triangle groups To(N), T'd(N), I'§(N)* uniquely determined by their

values at the three points chosen in accordance with Table 8. We shall
call them triangle functions.

Theorem 4.3. Each triangle function t defined in Definition 4.2 is a
Hauptmodul: C(X(T")) ~ C(t). They fulfill the following algebraic rela-
tions:

(i) (t2 —4)3 +27t1t3 = 0.
(i) (t3 —9)3(ts — 1) + 64t1t3 = 0.
(iii) 2 — 4dta(ty — 1) = 0.
(iv) (t4 — 16t4 + 16)3 + 108t1t5(ty — 1) = 0.
(V) =1- tl
(vi) t2 +2(1 -2} )ty +1=0, for2< N < 4.

(vii) t5 = (2t —1)%, for 1 < N < 4.

Proof: We keep the notations given in Proposition 4.1.

(i) Let Q4,Qs € X0(2), and set a := t2(Q5), b :=t2(Q4). Then
div <<1 -2 - a>> ~3(Q5) ~2(Qo) — (@1)
= (Bs) — (P1) = div(t1),

2
div ((1 - %) (ta — 1)) = 2(Q4) + (@3) — 2(Qo) — (Q1)
Therefore, there exist constants A, B such that

tle(l—t3>2(t2—a)

2
b 2

t1—1=B(1——> (ts — 1).
to

It follows that a = 4, b = —8, A = B = —1/27, and we obtain relation (i).
In the remaining cases the computations are very similar. O
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t r Ay | Ay | As | t(Ay) | t(A2) | t(A3)
t1 | To(l) | v1 | v | vs 00 0 1
ta | To(2) | v1 | vo | vr 00 0 1
ts | To(3) | v1 | vo | vs 0 0 1
ty | To(4) | v1 | vo |v17 | o0 0 1
tF | Td(1) | v | vs | v 00 0 1
t;‘ 1"3‘ (2) | v1 | vi3 | vr s 0 1
t;r I‘ar (3) | v1 | via | ws 00 0 1
tj{ I‘(J{ (4) | v1 |vi5 |17 | o0 0 1
t5 | To(1)* | v1 | va |vig | o0 0 1
t5 | To(2)* | v1 | vr | v2o 00 0 1
t5 | To(3)* | v1 | vs | va1 00 0 1
th | To(4)* | v1 | vi7 | va2 00 0 1

TABLE 8. Triangle functions

5. Uniformizing differential equations

The main tool in our approach to the differential treatment of the
triangle automorphic functions will be Fuchs’ theory on ordinary differ-
ential equations, together with a rational ordinary differential operator
of order three, obtained via a suitable modification of an operator intro-

duced by Schwarz [24] in 1873.

Definition 5.1. Let f(z) be a non-constant smooth function and let
D(f,z) stand for the usual derivative.

(1) The Schwarzian derivative of f is defined as

Ds(f,z) =

_ 2D(f,Z)D3(f,Z) —3D2(f,2)2

D(f,z2)?
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(2) The automorphic derivative of f is defined as

Ds(f,z
Dal(f,z) = L
D(f,z)?
Although neither the Schwarzian derivative nor the automorphic de-
rivative are derivations in the usual sense, they have some properties

similar to those of the standard derivation.

Proposition 5.2. Let f(z), g(z) be non-constant smooth functions
whose composition g o f is defined. Then the automorphic derivative
satisfies the following chain rule:

Da(f, z)

Da(g o f,z) = Da(g, f(2)) + Dl f2))°

A multivalued function defined on P1(C) is said to be PGL(2, C)-mul-
tivalued if any pair of its branches are always projectively related. Ex-
amples of PGL(2, C)-multivalued functions occur by inversion of auto-
morphic functions.

Proposition 5.3. Suppose that f(z) = w is a smooth function whose
inverse function is PGL(2, C)-multivalued. Then the Schwarzian deriv-
ative Ds(f~1,w) is univalued and

Ds(f_l,w):—Da(f,z), f_l(w):Z'

As a first application of these properties, consider a homographic
transformation

az+b a b
= — GL(2,C).
W(Z) CZ-'—d, . d e (7 )

Then we have Da(y,z) = 0 so that, for any function f(z), we shall have

Da(f o7, 2) = Da(f,7(2)).
In particular, for a group I' C PSL(2,R) and for a I'-automorphic func-
tion f, we obtain the I-invariance of Da(f, z).

Proposition 5.4. The automorphic derivative Da(f,z) of a T-auto-
morphic function, f(z), is again a T-automorphic function. That is to
say, the following equality holds:

Da(f,v(2)) = Da(f,z), forany~€T.

We see that automorphic derivatives fit automorphic functions just
as Schwarzian derivatives fit their inverses. The following theorem goes
back to Poincaré (cf. [21], [16]).
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Theorem 5.5. Let T be a Fuchsian group of the first kind. Let f(z) = w
be a non-constant I'-automorphic function and let z = g(w) be a branch
of its inverse. Then the functions

w 1
)= g )= B

satisfy a linear differential equation
D?(n,w) + A(w)y =0,
where A(w) is an algebraic function of w.

We see from Theorem 5.5 that the branches of the multivalued func-
tion f~! can be obtained as quotients of two solutions of a specific linear
second order differential equation. In its turn, the automorphic func-
tion f can be obtained as a solution of the non-linear third order differ-
ential equation

Da(w, z) + A(w) = 0.

Therefore, in order to calculate an automorphic function f it suffices to
know its automorphic derivative —A(w), although this may be a rather
complicated task.

Let us restrict ourselves to the case of genus g = 0. Then the field of
I'-automorphic functions is generated over C by an automorphic func-
tion t. Since Da(t, z) is also automorphic, there exists a rational func-
tion R(t) such that

Dal(t, z) + R(t) = 0.

Now, suppose that we are aware of a fundamental domain for the I'-ac-
tion on H given by a polygon whose sides are identified by pairs. We
require the existence of a symmetry that cuts a half domain given by
a polygon P containing exactly one representative of each vertex of the
fundamental domain, and whose internal angles at its vertices are ;.
Suppose that the function ¢ applies the boundary of P in P*(R). Then

1—042 Bl
R(t)zz(t—aiz)2+zt—ai7

where B; are constants and the summation extends over all the vertices
of P where t takes finite values a;.
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At this point, two cases have to be considered. First, assume that
the vertices of P have their images at finite distances from the z-origin.
Then

(i) > B; =0,
(i) Y aiBi+Y(1—a?) =0,
(111) Z Q?Bi + Eal(l - 0412) =0.

Secondly, assume that one vertex of P with internal angle am has its
image at infinity. Then

(i) ZBZ' =0,
(i) Y aiBi+Y,(1—a?)—(1—-a?)=0.

Remark. By Schwarz’s symmetry principle (cf. [9]), we only need to
define the function ¢ in P so the angles have to be taken with respect to
this half domain.

In general, the above relations between the constants B; and the val-
ues a; do not suffice to determine all the constants. But, in case of
triangle groups, we can prescribe the values a; of the function ¢ at the
vertices of a hyperbolic triangle and then the constants B; will be fully
determined. The differential equations involved in our problem are spec-
ified in the following theorem.

Theorem 5.6. The triangle functions defined in Definition 4.2 satisfy
the differential equations

Da(t,z) + R(t) = 0,
where the rational functions R(t) are listed in Table 9.

Proof: All the necessary data to compute the functions R(t) are pro-
vided in the first columns of Table 9. We observe that the angles in the
third column of Table 9 correspond to the triangles [A;, As, As] for the
groups I'o(N), and to the triangles [A;, Az, A5] for the groups I'd (NV)
and T'd (N)* (see also Table 4). O
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r t | (a1,00,a3) | (a1,a2,a3) —Dal(t, z)
To(1) |t | (0,4,3) | (00,0,1) %
Lo(2) | t2](0,0,3) (00,0,1) %
To(3) | t3|(0,0,3) (00,0,1) %
To(4) | ts |(0,0,0) (0,0,1) %
T || (0,44 (50,0,1) %
TE@) [t ]0,5Y) | (s0,0,1) %
TE(3) |t ]0.5.8) | (c0,0.1) W
T || (0,10 (00,0, 1) %
re)7 | 6] 0.5 | (.01 %
TE@)* |t | (0,11 (0,0,1) %
TE@) | 5| (0,4, 1 (0,0,1) %
TH@)* | 6] (00,00 | (00,0,1) %

TABLE 9. Automorphic derivatives of the triangle functions
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6. Local charts at the elliptic points

Our goal is to obtain explicit expansions of the modular uniformizing
functions around the elliptic points and around the cusps. The purpose
of this section is a first choice of local uniformizing parameters adapted
to our functions at the elliptic points of the fundamental domains con-
sidered in Section 3.

Suppose that v is an elliptic point in H of order e for the I'-action. Let
T, = (g) be the isotropy group at v, generated by a transformation g €
PSL(2,R). Let G € SL(2,R) be a matrix defining g. Since in all our
cases —1y € f, we may take the matrix G of order 2e. Since g is an elliptic
transformation, the matrix G can be diagonalized. Let H € GL(2,C)

be such that D := HGH ™! = [g C(’)l }, where ( is a 2e-th primitive root

of unity. We denote by h and d the homographies defined by H and D,
respectively. Then

(%) h(g(2)) = d(h(z)) = ¢*h(2).
By evaluating (*) at the point z = v, we obtain h(v) = (?h(v). Since

e > 1, we have (% # 1 and deduce that h(v) = 0. Thus h(z) = i ji—il
cz

We extend g to a transformation of P1(C). The equality (x) evaluated
at v and at its conjugate v yields

h(v) = h(g(v)) = Ch(v),  h(T) = h(g(@)) = (*h(D).

Since h(v) = 0 and h is a bijective mapping of P1(C), we must have
h(v) = co. Hence,

zZ—U

h(z) =k

z—7’
for some constant £ € C to be determined.

Now we can expand any I';,-automorphic function ¢ around the point v
as a power series T in the variable h(z):

Thus a, = 0 unless n =0 (mod e).
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Definition 6.1. A local parameter at an elliptic point v € H for the
I',-action is any function

()= (K22)

where e is the order of the group I', and k € C is any constant. The

local parameter is said to be adapted to a function ¢t = > 7 aneq™

when, moreover, a, = 1 if m > 0; and a_. = 1 otherwise.

In order to obtain local parameters adapted to our functions, in The-
orem 6.2 we review some relevant facts on the Schwarzian functions.
For that purpose, let us consider the classical hypergeometric function
defined by the series

F(a,b,c;w)zzwﬁ, (@)p:=ala+1)...(a+n—1),

n=0
which converges for |w| < 1 (cf. [19]).
Theorem 6.2. Assume that ¢ # 1. The functions F(a,b,c;w) and
wr °F(a—c+1,b—c+1,2—c;w) are two linearly independent solutions
of the hypergeometric differential equation

w(l = w)D*(f,w) + (¢ = (1 +a+bjw)D(f,w) —ab f = 0.
The function
wFla—c+1,b—c+1,2 —cw)
F(a,b,c;w)

maps the upper half w-plane H onto a triangle in the z-plane. The ver-
tices of this triangle can be expressed in terms of Euler’s gamma function:

s(0) =0,

z=s(a,b,cw) =

L'®)T(c—a)l(2—¢)
F(rb—c+ 1)1 —a)
(1) = I'(2—-c)'(c—a)l(c—b)

T T (O — o)1 —b)
The internal angles at these vertices are aw, B, yw, where

a=1—c#0, B=b—a, y=c—a-—b.

s(00) = exp (wi(1 —¢))

In the next theorem we compare the triangle [s(0), s(c0), s(1)] with
those defining the triangle functions ¢. In this way, we shall obtain in
a closed form the constants k defining local parameters adapted to our
functions.
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t v ey | t(v) | a,ec | vy ky
1 P(E)PEET(E)
tolve | 3] 0 | 5,2]28  |exp(Z)ioBi2Tal s
EE EaTEENYE
riv1 L) (%)
thlvs | 2 0 %,% 2.32 eXp(7)%F(ﬁ)F(E)
12/t (12
v PEIE)
t;r V13 2 0 %,% 23 eXp(;)%F(i)F(g)
g/t \3
1 PEIGE)
t;r vig | 2 0 %,% 32 eXp(7)%F(g)I‘(g)
6/t \3
rin1 L(7)?
thlvs| 2] 0 |4,5 |2 e>(p(7)%r(3)2
1
I'(5)(3)
* 1 2 i) 1 6 3
tl V4 3 0 '3 2 eXp(g)gr(%)F(%)
* i F(l)Q
t5 |vr | 4] 0 %,i 1 eXp(T)%F(é)z
1
1 TET(E)
t 6 0 |12 |1 Tyl 36
| il PTG

TABLE 10. Local constants at the elliptic points v such
that t(v) =0

Theorem 6.3. Let t be one of the triangle functions defined in Defini-
tion 4.2. Suppose that it is obtained from a hyperbolic triangle [A, B, C]
of internal angles am, Br, ymw, and that it takes the values

t(A) =0, t(B)=00, t(C)=1.

Suppose that o # 0. Then the constant ka, at an elliptic point A of
order e s, defining a local parameter adapted to t is listed in Table 10.
In the case that the function t takes the values

tA) =1, t(B)=o00, tC)=0,

the corresponding constants k4 are listed in Table 11.
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t | ey | (W), | a,c |y k.,
LHI)
t1 vz | 2 1 L 1llg.g2|1_ 12/ \i2
e T(HT(L)
Ly
to fvr |2 1 |11 ]2 121
v T(3)?
INEI%
t3 |vs | 3 1 12 19 12\3
373 3F(%)3
o [3] 1 |4.2]2 %P(ﬁ)r(%)r(é)
D()T()I(5)
1y 5y L
t;‘ vy | 4 1 %7% 1 ir(g)r(g)r(g)
INEIINEIING,
tylvs | 6] 1 [£2 11 %F(E)QF%)
I'(3)?I(3)
I'(H0(3)
t* |vig | 3 1 172 2 1 g 3
1 " TR
I'(;)?
5 4 1 |L3 11 1-\4
2 V20 47 4 4F(%)2
I'(3)0(5)
t3 | v21 | 6 1 Lo 11 12\3)"\%
’ e VeIV

TABLE 11. Local constants at the elliptic points v such
that t(v) =1

Proof: In all the cases to be considered, we have B = v; and 8 = 0.
First we explain the results in Table 10. By formal integration of the
differential equation of the third order in Theorem 5.6, and taking into
account that t(A) = 0, it follows that there exists a normalized power
series in two variables

r(X,Y) =Y an XY, a =1,

n=1
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and a constant k € C, such that

t(z) =r(k;hi(2)) = Z anckhi"(2),

z— A
A

Consider the Schwarzian function s(a, b, c;w) determined by the an-
gles am, Bm, yw. Since r satisfies the conditions

r(k;h1(A)) =0, r(k;hi(B)) =00, r(k;hi(C)) =1,

for any z in a neighbourhood of A. Here we take hi(z) :=

we can relate the inverse of the series defining s(a, b, ¢; w) to the series
defining ¢(z). A direct computation of the first terms in both series
suffices to establish the following lemma.

Lemma 6.4. Let u(a,b,c; z) be the inverse series of s(a,b,c;w). Then
r(15h1(2)) = u(a, b, ¢; ha(2))

fora = %(l—a—ﬂ—’y), b= %(l—a—i-ﬂ—”y), c=1-—q, and any z € C
in the convergence domain.

To continue the calculation of k, we may use either the condi-
tion t(C') = 1 or t(B) = co. In the first case, we obtain

1=1#(C) = r(k; h(C)) = r(1;k ha(C)),

and
I'2—-c)T'(c—a)l(c—b)
L)1 —a)(1-0b) °

k hi(C) = s(a,b,c;1) =

We can conclude that
_C—AT(2-¢)(c—a)l(c—b)

b= C—A T(r'(1—a)l(1-10)

In the second case, we obtain

FO)T(c—a)l(2—c)
Fr(b—c+ 1)1 —a)

k = exp (mi(1 — ¢))

Both values of k are equal and we take k4 = k.
At this point, it would be natural to consider the adapted local pa-

rameter
z— A\
= 1|k —
qa(2) (A A)

z —
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as an uniformizing variable in the neighbourhood of the point A. By
doing this, we would obtain a series development

t(Z) = Z bnqn, by = Gne, by =1.
n=1

In order to get series with integral coefficients, the parameters g4 will
be modified in Section 7.

When ¢(A) = 1, we obtain Table 11 by proceeding along the same
lines. O

7. Expansions at the elliptic points

Each of the uniformizing functions considered in the preceding sec-
tions will be developed at the neighbourhood of each of the elliptic ver-
tices of the defining triangle.

Case t(v) = 0. We begin by studying those functions ¢ which take
the value zero at some elliptic point v. Let ¢(z) be the local parameter
adapted to a function ¢ chosen in accordance with Table 10. First we
consider developments of the shape

_ - / q(z)”l / |
t(z) = ; b, (en)l” by = el
Next we renormalize the function q. We replace ¢ by v~ !¢, where the
values of v are listed in Table 10. Thus,

t(z) = Z b (in))' , b =ve!
n=1

Finally we define the factor ng = ve! and normalize the generating func-
tion ¢ by j(v, qu; 2) :=ng "t(z) so that

. = q(2)" 1 z—v\%
](Uqu;z) = ch e(n))' , =1, QU(Z) = (kv _> ,
n=1 '

( Z2—T

where the values of e,, k, are listed in Table 10.

We note that each generating function j(v,q,;z) is a representative
of the homothety class of the corresponding function ¢ in Table 8. These
representatives depend on the point v. The relations between them will
be compiled in Table 16.
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Coefficients ¢, (1 < n < 10) of j1(va, gu,; 2):
1=1
—345=—-3.5.23
240003 = 3* - 2963
—286541145 = —3* . 5. 11 - 64319
531355048470 = 2 - 3° - 5 - 218664629
—1431567508360320 = —27 - 3% . 5. 17 - 20054549
5337775894717036800 = 2% - 3% . 57 . 10733 - 11843749
—26546056702161728244480 = —2° - 3° . 5. 11 - 23 - 4164647368009
171034212264597883762560000 = 2'° - 3% . 5% . 71 . 787 - 999936383
—1394346733163593859989651968000 = —2'2 . 313 . 5% . 23 . 29 . 2560935717202529

[ )
Coefficients ¢, (1 <n < 10) of j; (vs, qus; 2):
1=1
—92=-27.23

12454 = 2 - 13 - 479
—2230368 = —2° - 3. 73319
512222616 = 2% . 3° . 263489
—144878909472 = —2° . 3% . 11 - 1693777
49442305079664 = 2* - 3% . 7. 605554393
—19925125158693888 = —2'° . 3% . 7. 29 . 41 . 349 - 1021
9349543945456131456 = 27 - 3° . 13 - 285460362413

—5039552099183446743552 = —2° - 31 . 19 . 174329 - 16775093

[ ]
Coefficients ¢, (1 <n < 10) of jy (13, Guys; 2):
1=1
—44 = —2%.11

3070 = 2-5- 307
—298592 = —2° .7.31-43
38370520 = 2° . 5 - 959263
—6253696160 = —2° - 517 - 509 - 4517
1253004761008 = 2% . 7112 . 13 - 7112233
—301902712294400 = —2'° . 5% . 7. 1684724957
85866490414622080 = 27 - 5 - 23 - 5833321359689
—28407641837085831680 = —2° - 5 - 1709 - 8681 - 747968657

71
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Coefficients ¢, (1 <n < 10) of j3 (vi4, Gu,; 2):
1=1
—52=-27.13
4480 =27 5.7
—554304 = —2° . 3. 2887
92257920 = 27 - 3% . 5.19 . 281
—19756154880 = —2¢.3%.5.7.11.29
5262440804352 = 2'? . 3* . 15861427
—1700564767948800 = —2'* . 3% . 52 . 13 . 307 - 1427
653791044336353280 = 2°* . 37 . 5. 7. 17 . 29947
—294289935697699799040 = —2'7 . 3% . 5 . 68442433349

[ ]
Coefficients ¢,, (1 < n < 10) of j; (vis, Gu,s; 2):
1=1
—12=-2%.3
246 =2-3-41

—7392 =-2°.3.7.11

302616 = 2° . 3*

- 467
—16090272 = —2° . 3% . 11 - 1693
1072529136 = 2* - 3% . 7. 1064017
—87266737152 = —2'0-3% . 7. 211 - 2137
8490208669056 = 27 - 3* . 818885867
—971360853484032 = —2° - 3% . 11 - 19 - 1667 - 22409
[ )
Coefficients ¢, (1 < n < 10) of j5(va, qu,; 2):
1=1
—105=-3-5-7
28323 = 3% . 1049
—14750505 = —3* . 5.7-11% . 43
13052864070 = 2 - 3° - 5. 37 - 145177
—17861621435280 = —2* . 37 . 5.7.17 - 857897
35571783638602800 = 2* - 3% . 52 . 13554253787

4.3%.5.7.11%.23.29 - 110522177

—98319566382392844720 = —2
364025405491786199160000 = 2° - 3'% . 5% . 17124450573619

—1753919978389416255755232000 = —2° - 3'% . 5% . 7. 29 . 64403 - 2629549493
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Coefficients ¢, (1 < n < 10) of j3(v7, qu,; 2):

1=1
—784 =2% . 72
2825856 = 27 - 32 . 11 - 223

—28700872704 = —2'2 . 3% . 72 . 15889
651710959681536 = 21° . 3% . 19 . 129223093
—28556273929878503424 = —219 . 3% .72 .11 .23 .31 . 239 . 7321
2181991075583891305660416 = 222 . 3% . 7. 11327263088227
—270314448732146703022575058944 = —228 . 38 . 72 . 31 . 1523 - 5701 - 11637257
51329153621694918919095879777386496 = 2°1 - 3% . 72 . 11 . 107 - 63167204434636859

—14296000120741755953807912122540584075264 = —23°.38.73.19.691-14082147496175175569

[ ]
Coefficients ¢, (1 <n < 10) of j5(vs, qus; 2):

1

—323136

1410262327296

—34918988209644109824

3242281034771640857552486400

—877324988620966967564959490664038400
583031316965603438635777079092617106843238400
—841582879789434799209625233923393312814175262185881600
2404459716373062611539035974816629561651569452652135123517440000
—12641446844032229637922550911375248097157650956634009183808830109122560000

and their factorizations:

1
—26.3%.11.17

213.3%.17.29.479

—218.38.11.23.29.31-3881

223.312.52.17.29 . 59009070139

—231.315.52.11.17-53- 279137 - 411658343

237 .317 .52 .41 . 61 - 257 - 84523 - 24185718087541

—2%2.320 .52 .11 .17.23.29 .47 - 211 - 134857 - 33656888643251

247 .324 .54 .17.29 .31 - 53 - 2221 - 53800280175019724241421507
—2%3.32%6 .54 .11 .29 .59 - 5297 - 142061 - 62377338077857838099246320871
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Case t(v) = 1. Next we study those uniformizing functions ¢ which
take the value 1 at some elliptic point. Let ¢(z) be the local parameter
adapted to a function ¢t chosen in accordance with Table 11. First we
consider developments of the shape

t(z) = Z b, Céii);, by =e!

n=0

Next we renormalize the function gq. We replace ¢ by v~ !¢, where the
values of v are listed in Table 11. Thus,

t(Z) = Zobx Céii);v /1I = ve!

Finally we define the factor ny = ve! and normalize the generating func-
tion ¢ by 5(v, qu; 2) :=n; "t(z) so that

; — qv(2)" 1 z—v\
3, qv32) = ZC" (e(n;' ;o oa=1, q(z)=— (k ) )
n=0 ’

where the values of e,, k, are listed in Table 11.
Coefficients ¢, (0 < n < 10) of j1(vs, gus; 2):

1/36 =272%.372
1=1
92 =2%.23
12454 = 2 - 13 - 479
2230368 = 2° - 3.7 - 3319
512222616 = 2° - 3° . 263489
144878909472 = 2° - 3% . 11 - 1693777
49442305079664 = 2* - 3% . 7. 605554393
19925125158693888 = 20 . 3% . 7.29 . 41 - 349 - 1021
9349543945456131456 = 27 - 3° - 13 - 285460362413
5039552099183446743552 = 2° - 31 . 19 . 174329 - 16775093
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Coefficients ¢, (0 < n < 10) of ja(vr, qu,; 2):

1/4 =272
1=1
12=2%.3
246 =2-3-41

7392 =2°.3.7-11
302616 = 2° - 3* . 467
16090272 = 2° - 3% . 11 - 1693

4. 3%.7.1064017

1072529136 = 2
87266737152 = 2% . 3% . 7. 211 . 2137
8490208669056 = 27 - 3% . 818885867

971360853484032 = 2° - 3° . 11 - 19 - 1667 - 22409

Coefficients ¢, (0 < n < 10) of j3(vs, qug; 2):

1/12=272.371

1=1
120=2%.3.5
41472 = 2° . 3*

29652480 = 2° - 3*.5.11-13

37408158720 = 2% . 3° . 5. 107 - 281
75362891857920 = 2'7 . 3% . 5. 17 - 1031

8.5%.1399 - 1879

226060382778163200 = 2*° - 3
959160755899827486720 = 22* - 3% . 5.11- 13 - 23 - 1412981
5535414863241908060160000 = 222 . 31 . 5% . 373 . 1183597

42120765101624397070860288000 = 22° - 313 . 5% . 29 . 217201108541
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Coefficients ¢, (0 < n < 10) of j; (v4, qu,; 2):

1/48 =27%.371
1=1
345 =3.5.23

240003 = 3* - 2963
286541145 = 3% . 5. 11 - 64319
531355048470 = 2 - 3° - 5 - 218664629
1431567508360320 = 27 - 3% - 5 - 17 - 20054549

8.3%.5%.10733 - 11843749

5337775894717036800 = 2
26546056702161728244480 = 2% - 3% . 5. 11 - 23 - 4164647368009
171034212264597883762560000 = 2'° - 3'* . 5% . 71 . 787 - 999936383

1394346733163593859989651968000 = 22 . 3% . 53 . 23 . 29 . 2560935717202529

Coefficients ¢, (0 <n < 10) of j (v7, qu.; 2):

1/24 =273 .371
1=1
616 = 2% . 711
1340856 = 22 - 3% . 11 - 1693
7272228096 = 28 . 3% . 7. 211 . 2137

80946737790336 = 27 - 31 . 11 . 19 - 1667 - 22409
1634351239998360576 = 210 . 3% . 7. 11 .23 . 11126071849
54908784316988465826816 = 210 . 3% . 7. 15493 - 75359545969
2879816406198713098957357056 = 2 7112 . 31 503 - 653 - 388292111

224454096766537769412039538999296 = 21° . 38 . 72 . 11 . 1936951733269857745393

24997921310271526493389315165577281536 = 2'8.38.7.19.149.433.58031-29188251300945769



UNIFORMIZATION OF TRIANGLE MODULAR CURVES

Coefficients ¢,, (0 <n < 10) of ji (vs, qus; 2):

1/720

1

247104

628024098816

7993006299165229056

351006375846869975590502400
42289377174585337023336621382041600
11956815399149820807747249836639935424102400
7081710149231714865268625083904264567893489247846400

8058592591888270316031487188109261748335371374966750576640000

16459643058612918608905164411383637831078531724403136920441365463040000

and their factorizations:

9—4.3-2 . 5-1

1

26.3%.11.13

214 .37 .17.1031

218 .38 .11.13. 231412981

222
232
238

242

246

312
316
317

320

.3%6 .

952

326

.52
.52.
.52.
.52.
5% .
.5%.

.29 .

41

11 -

11 -
17 -
11 -

217201108541
13- 17 - 774857 - 4857187

- 33589 - 1161781 - 8421106297

13-23 .47 -5171 - 23108776762609624673
53 - 10264159 - 7794685512945524063131
13 -29 - 59 - 365809361 - 1025890823597 - 25054514492881

77
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Coefficients ¢, (0 < n < 10) of 55 (v19, Quig; 2):

1/12=272.371
1=1
105=3-5-7
28323 = 3% . 1049
14750505 = 3* . 5. 7-11% . 43
13052864070 = 2 - 3° - 5 - 37 - 145177
17861621435280 = 2* . 37 . 5. 7. 17 - 857897
35571783638602800 = 2* - 3% . 52 . 13554253787
98319566382392844720 = 2% . 3% .5.7.11% .23 . 29 - 110522177
364025405491786199160000 = 2° - 3'2 . 5* . 17124450573619

8

1753919978389416255755232000 = 2° - 3'® . 5% . 7. 29 . 64403 - 2629549493

Coefficients ¢, (0 < n < 10) of 55 (v20, Gugg; 2):

1=1
784 = 2% . 72
2825856 = 27 - 32 . 11 - 223
28700872704 = 22 .32 .72 . 15889
651710959681536 = 2'° . 3% . 19 . 129223093
28556273929878503424 = 219 . 3% . 72 .11 .23.31. 239 - 7321
2181991075583891305660416 = 222 . 3% . 7. 11327263088227
270314448732146703022575058944 = 228 . 3% . 72 . 31 . 1523 . 5701 - 11637257
51329153621694918919095879777386496 = 231 . 3% . 72 . 11 . 107 - 63167204434636859
14296000120741755953807912122540584075264 = 2°° . 3% . 7% . 19 . 691 - 14082147496175175569
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Coefficients ¢, (0 < n < 10) of j5(ve1, ga1; 2):

1/720
1
323136
1410262327296
34918988209644109824
3242281034771640857552486400
877324988620966967564959490664038400
583031316965603438635777079092617106843238400
841582879789434799209625233923393312814175262185881600
2404459716373062611539035974816629561651569452652135123517440000
12641446844032229637922550911375248097157650956634009183808830109122560000
and their factorizations:
27%.372.571
1
26.3%.11.17
213.3%.17.29.479
218 .3%.11.23.29.31-3881
223 .312.52.17. 29 . 59009070139
231315 .52 .11.17- 53 - 279137 - 411658343
237317 .52 .41 . 61 - 257 - 84523 - 24185718087541
242.320 .52 .11 .17.23-29-47 - 211 - 134857 - 33656888643251
247 . 324 . 5% . 17.29 .31 - 53 - 2221 - 53800280175019724241421507
253.326.5% . 11.29. 59 - 5297 - 142061 - 62377338077857838099246320871

8. Local charts at the cusps

The general form of a local parameter ¢(z) at a cusp v is

. f(az+Db a b
q(z) = exp (m (m>) , q(v) =0, € GL(2,C).
c d

But its invariance under the corresponding isotropy groups imposes sev-
eral constraints that we will discuss now. We shall denote by G a matrix
such that T, = (+G).
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r v r, hov (Z) log ¢ (Z)
Io(N) | un T 2z mi(k + 22)
Ty(N) |n T 2z mi(k + 22)
LH(N)* | vy T? z mwi(k + 2)
2
To(N) | wo U—nN N mi(k — %)
To(4) vip | =UT 1| — L ik — ———
2z — 1 2(=-3)
2
+ -1 | _ 1
Fo() g | VAT 22—1 (k Taf)
2
+ * -1 _ 1
1—‘0 (4) V17 W4T 9. —1 i (k Z?%)
2
+ * -2 | _ ; 1
1—‘0 (4) vog | TW4T 92,3 s ( Z?%)

TABLE 12. Local parameters at the cusps

Case 1. v = v; = ioo. Let us write G =T = [(1) T} Since ¢q(v1) = 0,

we have ¢ = 0, and we can take ¢(z) = exp (wi(az +b)). Moreover, the
equality

exp (mi(az + b)) = q(z) = q(T™ - z) = exp (7i(az + am + b))

tells us that exp (miam) = 1 and, therefore, am € 2Z. If a = 2n/m with
n € Z, n > 2, then q(z—i—m) = ¢(z) and [lml/n} would be in T,
n

But this is not possible, and we must have a = £2/m. Since we want
q(2) to be directly conformal, we take g(z) = exp (mi (22 + b)). We shall
rewrite this expression as g(z) = exp (mi(k + ho(z))), where ho(z) 1= 22
and k € C. As in the case of the elliptic points, it is worth noting that

an indeterminacy remains, namely, the constant k.
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Av+ B
Case 2. v € R. Let us write G = {gg] Since CZiD

Cv?+ (D — A)v— B = 0, and v equals the double root of the polynomial
Cz%>+ (D — A)z — B. Thus

= v, we have

Cz*+(D—A)z—B=C(z—v)?, B—vD=(Cv— Aw.

Since ¢(v) = 0, we have cv + d = 0, and we can take

=)

b b
0G-2)=q(z) & F—— — — €22

q(z) := exp <m' <a +

Now

. The invariance un-

The term in the right hand side equals b 1 ¢

2(A —oC
der G implies that b € %Z. As in Case 1, we deduce that
2(A —oC _
b= :I:w. We define ¢(z) := exp (m’ (a + 2é’?zfs))). In each

case, the sign will be chosen so that ¢(z) becomes a directly conformal
mapping. We shall rewrite the final expression as

q(2) = exp (mi(k + ho(2)))

where the functions hg are listed in Table 12. Here also an indeterminacy
remains, namely, the constant k.
Summarizing the results obtained we state the following definition.

Definition 8.1. A local parameter at a cusp v for the I',-action is any
function

q(z) = exp (mi(k + ho(2)))

defined in accordance with Table 12. The entries in the third column of
that table denote a matrix whose class generates the isotropy group I';, at
the point v located in the second column. Here, k € C is a constant. The
local parameter g(z) is said to be adapted to a function t = >°°° b, q"
when, moreover, by = 1 if m > 0 and b_; = 1 otherwise.

In order to obtain local parameters at the cusps adapted to our func-
tions, we review in Theorem 8.2 a result due to Carathéodory [6]. An
account of it can be found in [27].
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Theorem 8.2. Let A, B,C € H define a triangle [A, B, C] with internal
angles 0, E, E, where r,s € NU{oo}. Suppose that A = ioco, Re(B) =0,

r’ s
Re(C) = 1. Let u: H — P(C) be the meromorphic function that maps
the interior of the triangle biholomorphically on H and satisfies

u(A)=0, u(B)=1, u(C)=oc.

Then, in a neighbourhood of A, we have u(z) = >, anexp (rinz),
where

log(a1) = log(b) + log(d) — % bifcos (@) log (2 — 2cos (?))

n=1

d—1
1 2 2
-3 _1cos< Cgﬂ->log (2—2cos <%)>

Here

be reduced fractions.

Theorem 8.3. Let t be one of the triangle functions defined in Defini-
tion 4.2. Suppose that it is obtained from a hyperbolic triangle [A1,As,As]
of internal angles aqm, aom, agmw, with ap = 0, and that it takes the val-
ues

t(A1) =0, t(A2)=1, (A43)=o0;
respectively t(A1) = 1, t(A2) = oo, t(As) = 0; respectively t(A;) = oo,
t(A2) =0, t(As) = 1. Then the constant ks, defining a local parameter

adapted to t is listed in Table 13; respectively in Table 14; respectively in
Table 15.

Proof: In this proof we keep the notation given in Theorem 8.2.

Case t(A;) = 0. By formal integration of the differential equation in
Theorem 5.6, and taking into account that ¢(A;) = 0, it follows that
there exists a normalized power series and a constant k& € C, such that

t(z) =Y bug"(2), bi=1, q(2)=exp(mi(k+ ho(2))),
n=1
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for any z in a neighbourhood of A;. Here we take ho(z) in accordance
with Table 12. To calculate the value of k, we consider an homographic
transformation h mapping the triangle [A;, Az, As] to a triangle [A, B, C|
fulfilling the conditions in Theorem 8.2. An easy computation shows that
h(z) = 1+ ho(z). Since

HAL) = u(A) =0, t(A)=u(B)=1, t(A;)=u(C)= o0,

we shall have u(h(z)) = t(z), and the value of the constant k will be
obtained from the equality

u(h(2)) =) _ anexp (minh(z))=> _baq(2)", q(z)=exp (mi(k+ho(2))).
n=1

n=1

It turns out that k = (log(ay) + mi)/(wi). The corresponding values of k
are listed in Table 13.

Case t(A;) = 1. Now it follows that there exists a normalized power
series and a constant k € C, such that

t(z) =Y bg"(2), bi=1, q(2)=exp(mi(k+ ho(2))),
n=0

for any z in a neighbourhood of A;. To calculate the value of k, we
consider the homographic transformation hg(z), which maps the trian-
gle [A1, Ag, As] to a triangle [A, B, C] fulfilling the conditions in Theo-
rem 8.2. Since

(- Ym0 (1wt (12 o=

we shall have u(hg(z)) = (1 — 1/t)(2) and the value of the constant k
will be obtained from the equality

o ' B _l o %) o
S anexp rink(=) = (1-1) )= 2t

But ] = b1. It turns out that k& = log(ai)/(wi). The corresponding
values of k are listed in Table 14.
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Case t(A1) = oo. In this case, there exists a normalized power series
and a constant k € C, such that

) = 2+ S0 bad" () ale) = exp (rilk + hof:).
n=0

for any z in a neighbourhood of A;. To calculate the value of k, we
define the homographic transformations h(z) = 1 + ho(z) for t = t;
h(z)zho(z)fortth,2§N§4,andfort:t?\',, 1 <N < 4
h(z) = —% 4+ ho(z) for t = 3, 1 < N < 4. They map the respective
triangles [A1, Az, A3] to triangles [A, B, C] fulfilling the conditions in
Theorem 8.2. Now we use the functions 1/(1 —t), instead of t or 1 —1/¢
in the preceding cases, to obtain the values of k. They are listed in
Table 15.

t |v [A1, A2, A3] | 5,5 | vo | Tiky

ta | vo | [vo,vr,v1] | 3,2 ] 20 6log(2) + mi
ts | vo | [vo,vs,v1] | 2,2 (3% | 3log(3) + mi
ty | vo | [vo,v17,v1] %, % 24 | 41og(2) + mi
th | vir | [v17, va2,v1] %, % 24 | 41og(2) + mi

TABLE 13. Local constants at the cusps v such that
t(v) =0

t v [Al,AQ,Ag] %,2 Vy Wikv

ta | vir | [vir,01,00] | 3.5 | 2% | 4log(2)
tf [ v | [oir,vn,v15) | 3,2 26| 6log(2)
tZ V22 [’022, (%P ’017] %, % 24 4 10g(2)

TABLE 14. Local constants at the cusps v such that
tv) =1
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t v | [A, A2, A3] | %5 vt ik

t1 | v1 | [v1,v2,05] %, % 26.33 | 3log(12)

te | v1 | [vi,v0,v7] | 3.3 |26 6 log(2) + i

ts |v1 | [v1,v0,vs] 1.2 |3 3log(3) + mi

ta |v1| [vr,v0,017) | 3,3 | 2% 4log(2) + i

tf o1 | [v1,v3,04) | 5,3 [ 2533 | 3log(12) + i
t3 | v | [vr,v13,07] | 3,2 |28 8log(2) + i

t3 | v1 | [v1,v14,08] %, % 22.33 | 1og(108) + 7i
t5 | v | [v1,v15, 017 %, % 26 61log(2) + mi

t5 | v1 | [v1,v4,v10] %, % 24.32 | log(48v/3) + %
t5 | vr | [v1,v7,v9)] %, % 25 5log(2) + %Z

t5 | v1 | [v1,vs,v21] %, % 22.32 | log(12V/3) + %
ti | v | [v1,v17,v90) %, % 24 4log(2) + %Z
TABLE 15. Local constants at the cusps v such that
t(v) = o0

9. Expansions at the cusps

85

Each of the uniformizing functions considered in the preceding sec-
tions will be developed in the neighbourhood of each of the cusps of their
defining triangle.

Case t(v) = 0. We begin by studying those uniformizing functions ¢
which take the value 0 at some cusp. Let ¢ be the adapted local parame-
ter chosen in accordance with Table 13. First we consider developments

of the shape

t(Z) = anQ(Z)nv bl

1.
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Next we renormalize the function q. We replace ¢ by v~ !¢, where the
values of v are listed in Table 13. Thus,

t(z) = > baz)", b =v.
n=1

Finally we define the factor np = v and normalize the generating func-
tion ¢ by j(v, qu; 2) :=ng 't(z) so that

v

052 =S eaqu (), 1 =1, gu(2) = — exp (wilky + hou(2))
n=1

Coefficients ¢, (1 < n < 10) of j2(vo, qu,; 2):
1=1
—24=-2%.3
300 =2°.3.5°
—2624 = —2°% . 41
18126 = 2-3% .19 - 53
—105504 = —2° . 3.7-157
538296 = 2% . 3. 11 - 2039

—2471424 = —2° . 3. 1609
10400997 = 3 - 659 - 5261

—40674128 = —2* . 11 - 59 - 3917

[ ]
Coefficients ¢, (1 < n < 10) of j3(vo, Gu,; 2):
1=1
—12=-2%.3
90=2-3.5

—508 = —2% . 127
2391 = 3. 797
—9828 = —2%.3%.7.13
36428 = 27 . 7 1301
—124188 = —22 -3 .79 - 131
395199 = 3*.7.17-41

—1186344 = —2° - 3% . 16477
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Coefficients ¢, (1 < n < 10) of j4(vo, qu,; 2):

1=1
-8 =—2°

44 =2%.11
—192 =-2%.3
718 = 2 - 359

—2400 = —2° . 3. 5%
7352 = 2° . 919
—20992 = —2° . 41
56549 = 193 - 293
—145008 = —2* .37 .19 .53

Coefficients ¢, (1 <n < 10) of 55 (v17, qu,,; 2). These coefficients coincide
with those of js(vo, quy; 2), already computed.

Case t(v) = 1. Next we study those uniformizing functions ¢ which
take the value 1 at some cusp. Let ¢ be the adapted local parameter
chosen in accordance with Table 14. First we consider developments of
the shape

t(z) = Z bnq(z)", by =1.
n=0

Next we renormalize the function gq. We replace ¢ by v !¢, where the
values of v are listed in Table 14. Thus,

t(z) = Z bha(z)", by =w.
n=0

Finally we define n; = v and normalize the generating function ¢ by
§(v, qu; 2) := 1] 't(2) so that

v

. - n 1 )
J(v, qu; Z) = Z quv('z) , =1, qv('z) = o eXp (Wl(kv + hO,v(Z))) .
n=0
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Coefficients ¢, (0 < n < 10) of j4(vi7, Guyr; 2):

1/16 =27%
1=1
8 =23
44 =27 .11
192 =2°.3
718 = 2 359

2400 = 2° - 3. 52
7352 = 2% . 919

20992 = 2° . 41
56549 = 193 - 293

145008 = 2% .32 .19 .53
[ )
Coefficients ¢, (0 <n < 10) of j (v17, qu,,; 2):

1/64 =27°
1=1
24=2%.3

300 =27 .3.5°

2624 = 2° . 41
18126 = 2-3%-.19-53
105504 = 2° .3.7.-157
538296 = 2° . 3. 11 - 2039

2471424 = 2° - 3 - 1609
10400997 = 3 - 659 - 5261

40674128 = 2* . 11 - 59 - 3917

Coefficients ¢, (0 < n < 10) of j3(v22, Gu,,; 7). These coefficients coincide

with those of j4(v17, qu,,; 2), already computed.

Case t(v) = oo. Finally we study the uniformizing functions ¢ at the
cusp vg = 400, where all of them have a pole. Let ¢ be the adapted
local parameter chosen in accordance with Table 15. First we consider

developments of the shape

1 n
t(z) = e + nzzobnq(z) .
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Next we renormalize the function q. We replace ¢ by v~!q, where the
values of v~ ! are listed in Table 15. Thus,

t(z) = el + nz:%b;q(z)n.

Finally we define the factor n,, = v and normalize the generating func-
tion ¢ by j(v,q; z) := n}t(z) so that

jv,qu;2) = Lt + Z engw(2)", qu(z) = 1 exp (mi(ky + ho,v(2))) -
v (%) n—0 Vy

Coefficients ¢, (=1 <n < 10) of j1(v1, qu, ; 2):

1=1
744 = 2% .3 .31
196884 = 2% . 3% . 1823
21493760 = 2! - 5. 2099
864299970 = 2 - 3° . 5 - 355679
20245856256 = 2'* . 3% . 45767
333202640600 = 2° - 5% . 2143 . 777421
4252023300096 = 2" . 3%.11.13% . 383

3

44656994071935 = 3” - 5 -7 - 271 - 174376673

401490886656000 = 2'7 - 3. 5 . 199 - 41047
3176440229784420 = 2% - 37 . 5. 4723 - 15376021

22567393309593600 = 2'% . 3% . 52 . 132 . 5366467



90 P. BAYER, A. TRAVESA

Coefficients ¢, (—1 < n < 10) of ja(v1, Gu,; 2):

1=1
24=2%.3
276 = 27 . 3. 23
2048 = 2!
11202 =2 - 3 - 1867
49152 =2 .3
184024 = 23 - 23003
614400 = 2" . 3. 52
1881471 = 3 - 337 - 1861
5373952 = 2'7 . 41
14478180 = 2% - 3 - 5 - 241303
37122048 = 2% . 3% .19 . 53

Coefficients ¢, (—1 <n < 10) of js(v1, G, ; 2):

1=1
12=2%2.3
54 =2.3%
76 = 2% .19
—243 = —3°

—1188 = —22.3% .11
—1384 = —2% . 173
2916 = 22 . 3°
11934 =2-3% . 13- 17
11580 = 2% .3 .5-193
—21870 = —2-37 -5
—79704 = —2° . 3% . 41
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Coefficients ¢, (—1 < n < 10) of js(v1, Gu,; 2):

1=1
8 =123
20=2%.5
0=0
—62=—2-31
0=0
216 = 2% . 33
0=0
—641 = —641
0=0
1636 = 2% - 409
0=0
[ ]

Coefficients ¢, (=1 <n < 10) of jif (v1, qu,; 2):

1=1
984 =2%.3.41
196884 = 27 . 3% . 1823
—21493760 = —2' . 5. 2099
864299970 = 2 - 3° . 5 - 355679
—20245856256 = —2* . 3% . 45767
333202640600 = 2% . 5% . 2143 . 777421
—4252023300096 = —2'3 . 3% . 11.13% . 383
44656994071935 = 3% . 5 . 7. 271 - 174376673
—401490886656000 = —2'7 - 3. 5% . 199 - 41047
3176440229784420 = 2% . 37 . 5. 4723 - 15376021
—22567393309593600 = —2'2 . 3% . 57 . 132 . 5366467
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Coefficients ¢,, (=1 < n < 10) of j5 (v1, qu,; 2):

1=1
152 =2% .19
4372 = 2% . 1093
—96256 = —2'' . 47
1240002 = 2 - 3 - 22063
—10698752 = —2'* . 653
74428120 = 2% . 5. 13 - 41 - 3491
—431529984 = —2% . 33. 1951
2206741887 = 3" . 7. 1801 - 2161
—10117578752 = —2'7 . 77191
42616961892 = 22 - 3° . 59 . 743129
—166564106240 = —2'? . 5.7 . 1063 - 1093

Coefficients ¢, (=1 <n < 10) of ji (v1,qu,; 2):

1=1
66 =12-3-11
783 = 3% .29

—8672 = —2° . 271
65367 = 3° - 269
—371520 = —2% . 3% . 5. 43
1741655 = 5 - 163 - 2137
—7161696 = —2° - 35 . 307
26567946 = 2 - 3% . 53 - 9283
—90521472 = —27 . 3.19% . 653
288078201 = 37 - 157 - 839
—864924480 = —2° . 3% . 5. 7% . 227
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Coefficients ¢,, (=1 < n < 10) of j; (v1, qu,; 2):

1=1
40=2%5
276 = 2° .3 .23
—2048 = —2'*
11202 = 2 - 3 - 1867
—49152 = —2'* . 3
184024 = 2° - 23003
—614400 = —2'% . 3. 57
1881471 = 3 - 337 - 1861
—5373952 = —2'7 . 41
14478180 = 22 - 3 - 5 - 241303
—37122048 = —2'% .32 .19. 53

Coefficients ¢, (—1 < n < 10) of j}(v1, qu,; 2):

1=1
72 =2%.3?
1476 = 2 . 3% . 41

0=0
—203310 = —2-3*.5.251
0=0
9919800 = 2% - 3% . 5% . 11 - 167
0=0

—304954065 = —3° - 5 - 13 - 43 - 449
0=0

7035202836 = 22 - 3% . 268069
0=0
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Coefficients ¢, (—1 < n < 10) of j3(v1, qu,; 2):

1=1
16 = 2*
76 = 2% .19
0=0
—702=-2-3%.13
0=0
5224 = 2° . 653
0=0
—23425 = —5% . 937
0=0
98172 = 2% . 3% . 101
0=0
[ )
Coefficients ¢, (—1 < n < 10) of ji(v1, qu,; 2):
1=1
18 =2.3°
99 = 3% . 11
0=0
—1377 = —3* .17
0=0
19251 = 3% .23 .31
0=0
—206550 = —2 - 3% . 5% . 17
0=0
1817397 = 3% . 277
0=0
[ )

Coefficients ¢, (—1 < n < 10) of j; (v1, qu,; 2). These coefficients coincide
with those of js(v1, ¢y, ; 2), already computed.

Table 16 lists the local triangle functions together with their normaliz-
ing factors. We conclude by observing that our local function ji(v1, gy, )
recovers the classical elliptic function:

j1(ioo, exp (2miz); 2) = j(2),
and that n! = 1728.
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r t | nt | t(v) =00 || no t(v) =0 n tlv) =1
DPo(1) | ta || 1728 | ji(v1,qu,) || 48 | Ji(v2,qu,) || 36 | J1(vs,qu,)
Lo(2) | ta || 64 |j2(v1,qu,) || 64 | J2(vo,qu,) || 4 | Jo(v7,qu;)
Lo(3) | ts || 27 |ds(vi,quy) || 27 | Js(vo,qu) || 12 | Js(vs,qus)
Lo(4) | ta || 16 | ja(v1,qu,) || 16 | ja(vo,quy) || 16 | ja(vi7,qusr)
Dy | ¢ || 1728 |41 (v1,qu,) || 36 | 41 (vs,qus) || 48 | 41 (va, qus)
L5 (2) | to || 256 |53 (v1,qu,)|| 16 |Ja (v13,Guss) || 24 | G5 (v7,40;)
L3(3) [t || 108 |43 (vi,qu,) || 18 {5 (v1a, qus) || 720 | G5 (vs, qus)
g@) [t |l 64 |5 (viqu) || 4 (0] (015, quis) || 64 |5f (017, Gur)
o))" | 11 || 144 | 5{(v1,qu,) || 12 | T (vasqu,) || 12 | 51 (019, Guyo)
o2)" | t3 || 32 |F3(vi,quy) || 24 | J3(v7.qu,) || 24 | 55 (v20, Guso)
o(3)" | t5 || 36 |Ji(vi,qu) || 720 | j3(vs,qus) || 720 | j5(v21, Gusy)
o) | ti || 16 |Ji(vi,qu,) || 16 | ji(vi7, Guir) || 16 | G5 (22, Guss)

© 00 N O Ut s W N -

TABLE 16. Local triangle functions j(v, q,; 2) = n~1(2)

List of figures

Fundamental domain for I'g(1)
Fundamental domain for I'y(2)
Fundamental domain for I'y(3)
Fundamental domain for I'y(4)
Fundamental domain for I'y(2)
Fundamental domain for I'(3)
Fundamental domain for I'y(4)
Fundamental domain for I'g(2)

3)

Fundamental domain for I'g(3
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97
97
98
98
99
99
100
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10 Fundamental domain for I'g(4)
11 Fundamental domain for T'd (2)
12 Fundamental domain for T'd (3)
13 Fundamental domain for T'd (4)
14 Fundamental domain for T'd (1)*
15 Fundamental domain for T'd (2)*
(3)
(4)

*

16 Fundamental domain for FBL 3

*

17 Fundamental domain for FBL 4

U2

U1
b
a
U3
Vg
Vo

FIGURE 1. Fundamental domain for T'y(1)

Vo

FIGURE 2. Fundamental domain for I'y(2)

100
101
101
102
102
103
103
104
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V2

Vs ¢

Vg ¢

Vo

FIGURE 3. Fundamental domain for I'g(3)

Ve

V16 Yo

FIGURE 4. Fundamental domain for I'g(4)
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U1
b b
U3
V2 V4
Us a'la vr
Vo

FIGURE 5. Fundamental domain for T'y(2)

U1

U3
V2 V4

z a a
vﬁ/\\//_\ vs

FIGURE 6. Fundamental domain for T'y(3)
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U1
U3
V2 V4
ADh ADh
7 a
/ \
/ \
1 \
/, \|
V16 Vo U17

FIGURE 7. Fundamental domain for I'g(4)

U1
b b
a v7 a
Vo V18

FIGURE 8. Fundamental domain for I'y(2)
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U1
b b
a a
TN
Vo V18

FIGURE 9. Fundamental domain for I'g(3)

U1

Vo v17 U1

FIGURE 10. Fundamental domain for I'g(4)
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U1
b b
a a
/ V13
L J
Us v7
Vo

FIGURE 11. Fundamental domain for T'g (2)

U1
b b
¢ V6 "Ug
Vo

FIGURE 12. Fundamental domain for T (3)
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U1
b b
V15
a a
V16 Uo v17

FIGURE 13. Fundamental domain for T'g (4)

U1
b b
a a
V2 (% V19
U17

FIGURE 14. Fundamental domain for T'd (1)*
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U1
b
a a

> V20

v17

FIGURE 15. Fundamental domain for T'g (2)*

U1
b b
a a
‘/‘\/.\’
V6 U8 V21
v17

FIGURE 16. Fundamental domain for I'J (3)*
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U1
b b
/l\/ﬂ\
V16 v17 V22

FIGURE 17. Fundamental domain for T'g (4)*
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