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THE INTEGER CHEBYSHEV CONSTANT OF FAREY

INTERVALS

Julián Aguirre and Juan Carlos Peral

Abstract

We obtain new bounds for the integer Chebyshev constant of in-
tervals [p/q, r/s] where p, q, r and s are non-negative integers
such that q r−p s = 1. As a consequence of the methods used, we
improve the known lower bound for the trace of totally positive
algebraic integers.

1. Introduction

Let I ⊂ R be a closed interval. The classical Chebyshev problem asks
for the monic polynomial of degree N with real coefficients of minimal
uniform norm on I. When I = [−1, 1] the solution is given by the
Chebyshev polynomial of degree N

TN (x) = 21−N cos(N arccosx).

A linear change of variables gives the solution on an arbitrary interval.
The integer Chebyshev problem asks for the polynomial of degree N

with integer coefficients of minimal uniform norm on I. Given N ∈ N,
define

(1) tN (I) = min

{

sup
x∈I

|P (x)|1/∂P : P ∈ Z[x], ∂P ≤ N, P 6= 0

}

and

(2) tZ(I) = inf{tN (I) : N ∈ N},
where as usual ∂P denotes the degree of P . It is easy to see that in
fact tZ(I) = limN→∞ tN(I). The constant tZ(I) is known as the integer
Chebyshev constant or the integer transfinite radius of the interval I. If
|I| ≥ 4 (where |I| denotes the length of I), then tZ(I) = |I|/4. No exact
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value of tZ(I) is known for any interval of length less than 4, but upper
and lower bounds have been obtained among others by Aparicio [Ap1],
[Ap2], Amoroso [Am], Flammang [F1], Borwein and Erdélyi [BE],
Flammang, Rhin and Smyth [FRS] and Pritsker [P]. In this paper we
obtain bounds for the integer transfinite radius of intervals whose end-
points are consecutive numbers in a Farey sequence, that we call Farey
intervals. We improve the known upper bounds, and for a large class of
intervals, also the lower bounds.

Since tZ(I) ≤ tN (I) for all N , upper bounds can be obtained by com-
putation. To achieve this in a manner valid for any Farey interval I,
we use a fractional linear transformation to take I into [0,∞), and con-
vert the original problem in a semi-infinite optimization problem for an
appropriate auxiliary function. Such functions have been used for the
computation of different measures of totally positive algebraic integers,
like the Mahler measure [F2] and the trace [F1], [ABP], and the same
optimization methods can be applied.

There are more relationships between the integer Chebyshev problem
and the Schur-Siegel problem on the trace of totally positive algebraic
integers as explained in [ABP], [BE], [FRS]. In this last problem one
is lead to estimate the quantity

(3) K = sup
Q∈Z[x], Q6=0, t>0

{

inf
x>0

(

x − t

∂Q
log |Q(x)|

)}

.

The constant K appears in our estimates from below of tZ(I), and we
shall prove in Corollary 2 that

lim
m→∞

(

1

tZ([1, 1/m])
− m

)

= K.

This gives a partial answer to question number 5 in the open problems
section of [BE]. To give a complete solution, K must be computed
exactly. As for the integer Chebyshev problem, only bounds on K are
known. The best bounds are, as far as we know,

1.783622 < K < 1.898302.

The lower bound will be proved in Theorem 3, and is an improvement
over the one obtained in [ABP]. The upper bound is due to J. P. Serre
(see the note added in proof in [Sm]).

A polynomial P ∈Z[x] of degree N such that tN (I)=supx∈I |P (x)|1/∂P

is called a N -th Chebyshev polynomial on I. The structure of such poly-
nomials has been studied extensively by Aparicio [Ap2], Borwein and
Erdélyi [BE], Habsieger and Salvy [HS] and Pritsker [P]. Habsieger
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and Salvy determine all integer Chebyshev polynomials on [0, 1] up to
degree 75. All their irreducible factors except one have all their roots
in (0, 1), and after a change of variable have small trace. These poly-
nomials, together with others having all their roots in (0,∞) and small
trace are used in the computations to derive the upper bounds of the
Chebyshev constant of Farey intervals.

2. The integer Chebyshev problem for Farey intervals

We call Farey interval an interval [p/q, r/s] where p, q, r and s are
non-negative integers such that q r − p s = 1. This in particular implies
that p, q, r and s are pairwise coprime, unless p = 0, in which case
q = r = 1. Given coprime integers q and s such that 1 ≤ q ≤ s
(allowing for the case q = s = 1), there exist unique integers p and r
such that Iq,s = [p/q, r/s] is a Farey interval contained in [0, 1]. The
interval Jq,s = [(q − p)/q, (s− r)r/s], the symmetric of Iq,s with respect
to x = 1/2, is also a Farey interval, and the substitution x → 1 − x
shows that tZ(Iq,s) = tZ(Jq,s). All other Farey intervals with the same
denominators are the integer translates of Iq,s or of Jq,s, and all have
the same integer Chebyshev constant.

As a first step in studying tZ(Iq,s), we make a change of variable
which transforms the original problem into another one in (0,∞). The
fractional linear transformation

(4) φ(x) =
p x + r

q x + s

is a bijection between (0,∞) and (p/q, r/s). Associated to it is a map
Φ: Z[x] → Z[x] defined by

(ΦP )(x) = (q x + s)∂P P (φ(x)) ∀ P ∈ Z[x].

Then

sup
x∈Iq,s

|P (x)|1/∂P = sup
x>0

(q x + s)−1|(ΦP )(x)|1/∂P .

The image of (q x − p)k is the constant polynomial 1 for any positive
integer k, so that in general ∂(ΦP ) ≤ ∂P . But the fact that q r−p s = 1
implies that Φ is surjective. It follows that

tZ(Iq,s) = inf
Q∈Z[x], Q6=0 k≥0

{

sup
x>0

(q x + s)−1|Q(x)|1/(k+∂Q)

}

=
1

q
· inf

Q∈Z[x], Q6=0, 0<t<1

{

sup
x>0

(

x +
s

q

)−1

|Q(x)|t/∂Q

}

.
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We define the function ρ : [1,∞) → R by

ρ(σ) = sup
Q∈Z[x], Q6=0, 0<t<1

{

inf
x>0

(

log(x + σ) − t

∂Q
log |Q(x)|

)}

.

Then

tZ(Iq,s) =
1

q
e−ρ(s/q).

The function

log(x + σ) − t

∂Q
log |Q(x)|, x > 0,

is an instance of an auxiliary function. Changing log(x + σ) by log+ x
or x, the corresponding function can be used to provide estimates on the
Mahler measure and on the trace of totally positive algebraic integers
respectively.

It is convenient to define the function λ(σ) such that

ρ(σ) = log(σ + λ(σ)) and tZ(Iq,s) =
1

q λ(s/q) + s
.

We are ready now to state our first result, which relates the function λ
and the constant K.

Theorem 1.

(5) 1 ≤ λ(σ) ≤ K ∀ σ ≥ 1.

(6) lim
σ→∞

λ(σ) = K.

Proof: Let σ ≥ 1. From the easily verified inequality

log(x + σ) − 1

σ + 1
log x ≥ log(σ + 1) ∀ x > 0

it follows that

ρ(σ) ≥ log(σ + 1) and λ(σ) ≥ 1.

To get the upper bound in (5) we use the inequality

log(x + σ) ≤ log(σ + K) +
x −K
σ + K ∀ x > 0,

which holds because of the concavity of the logarithm. It follows that

ρ(σ) ≤ log(σ + K) and λ(σ) ≤ K.

We turn now to the proof of (6). Given ε > 0 there exist t ∈ (0, 1)
and a non constant Q ∈ Z[x] such that

x − t log |Q(x)| ≥ K − ε ∀ x > 0.
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Define

f(x, σ) = log(x + σ) − t

σ
log |Q(x)|.

There exists x0 > 2 ∂Q such that

xQ′(x)

Q(x)
≤ 2 ∂Q ∀ x ≥ x0.

Let σ0 = 2 ∂Q x0/(x0 − 2 ∂Q). Then

1

x + σ
− t

σ

Q′(x)

Q(x)
≥ 0 ∀ x ≥ x0, σ ≥ σ0.

This implies that f(x, σ) is increasing on [x0,∞) as a function of x for
each σ > σ0. It follows that

σ > σ0 =⇒ inf
x>0

f(x, σ) = inf
0<x≤x0

f(x, σ).

Moreover, from the inequality log(1 + x) ≥ x − x2/2, it follows that

f(x, σ) ≥ log σ +
1

s

(

x − t log |Q(x)|
)

− x2

2 σ2
∀ x, σ > 0.

If σ > σ0, then

ρ(σ) ≥ inf
0<x≤x0

f(x, σ) ≥ log σ +
K− ε

σ
− x2

0

2 σ2
.

Thus, for all σ > max
(

σ0, x
2
0/(2 ε)

)

we have

ρ(σ) ≥ log σ +
K− 2 ε

σ

and

λ(σ) ≥ σ
(

e
K−2ε

σ − 1
)

≥ K − 2 ε.

An immediate consequence is the following

Corollary 2.

(7)
1

K q + s
≤ tZ(Iq,s) ≤

1

q + s
.

(8) lim
s→∞

(

1

tZ(Iq,s)
− s

)

= qK.

Remark. Numerical evidence suggest that the function λ is increasing
and concave (see Figure 1).
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Remark. In [FRS] the authors define a function g(t), related to the
functions defined in this paper by the identity

g(t) =
t

t2 + λ(t2)
∀ t > 1.

It is clear from Theorem 1 and Corollary 2 that it is important to know
the value of K. The following theorem, announced in the introduction,
gives bounds on its value.

Theorem 3.

(9) 1.783622 < K < 1.898302.

Proof: As mentioned in the introduction, the upper bound is due to
J. P. Serre. The lower bound is proved checking the inequality

(10) x −
∑

i

ci log |Qi(x)| > 1.783622 ∀ x > 0,

where the values of i and ci are given in Table 1, and the corresponding
polynomials Qi in Table 2. To get inequality (10) we applied several
optimization techniques as explained in [ABP].

Table 1. Values of i and ci in (10)

i ci i ci

1 0.544760718417 17 0.013264681142

2 0.507054323911 20 0.004052954265

3 0.075640549036 22 0.002738162962

4 0.191387374021 26 0.001080633346

5 0.019056756653 31 0.005267836285

6 0.011380615544 32 0.000698262799

7 0.086001728874 33 0.001476081258

9 0.007972093676 34 0.001807257036

10 0.005954670447 35 0.002376358820

11 0.032795949532 36 0.003563976995

12 0.029898783554 37 0.003731485598

14 0.012200820630 38 0.003362999773

15 0.011116063090 41 0.002017653392

16 0.005459150854 42 0.001924042210

As a consequence of Theorem 3 we obtain the following result about
the Schur-Siegel trace problem.
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Theorem 4. Let α be a totally positive algebraic integer of degree d with
conjugates α1 < · · · < αd and such that Qi(α) 6= 0 for i = 2, 4, 7, 11, 12.
Then

(11) α1 + · · · + αd > 1.783622 d.

3. Counterexamples to invariance properties of tZ

It is well known that tZ is not invariant under translation, does not
scale linearly under dilations and has no additive properties. We use
Theorem 1 to give a family of counterexamples depending on an integer
parameter.

3.1. Translation invariance. Let n be a positive integer and consider
the intervals In,n+1 and I1,n(n+1). Both have the same length 1/(n(n+1)),
so that there exists r ∈ Q such that In,n+1 = r + I1,n(n+1). However
their integer transfinite radius is different:

tZ(In,n+1) =
1

λ(1 + 1/n)n + n + 1
∼ 1

(1 + λ(1))n
∼

√

|In,n+1|
1 + λ(1)

,

while

tZ(I1,n(n+1)) =
1

λ(n(n + 1)) + n(n + 1)
∼ 1

n2
∼ |I1,n(n+1)|.

More generally, given a positive integer N , consider all possible fac-
torings N = q s with 1 ≤ q ≤ s and (q, s) = 1. Then all the in-
tervals Iq,s have the same length 1/N but different integer transfinite
radius 1/(λ(s/q) q + s). We see that tZ(Iq,s) depends not only on the
size of the interval, but also on number theoretical properties of the
denominators q and s.

3.2. Dilations. Consider the intervals I1,m = [0, 1/m] and I1,nm =
[0, 1/(n m)] for integers m ≥ 1 and n ≥ 2. They satisfy n I1,nm = I1,m,
but

n tZ(I1,nm)−tZ(I1,m)=
n λ(m) − λ(n m)

(

λ(n m)+n m
)(

λ(m) + m
) >

n −K
(K+n m)(K + m)

.

3.3. Additivity. Given m ∈ N, consider the intervals I1,m = [1, 1/m],
I1,m+1 = [1, 1/(m + 1)] and Jm,m+1 = [1/(m + 1), 1/m]. Then I1,m =
I1,m+1 ∪ Jm,m+1, but

tZ(I1,m) < tZ(I1,m+1) + tZ(Jm,m+1).
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For m = 1, 2, 3 and 4 we see that this is true from the data in Table 4.
For m > 4, we have

(

tZ(I1,m+1) + tZ(Jm,m+1)
)

− tZ(I1,m)

=
1

(1 + λ(1 + 1/m))m + 1
− λ(m + 1) − λ(m) + 1

(λ(m) + m)(λ(m + 1) + m + 1)

>
1

(K + 1)m + 1
− K

(m + 1)(m + 2)
.

4. Upper bounds for tZ(Iq,s)

Upper bounds of tZ(Iq,s) follow from lower bounds of ρ(σ), or what is
the same, lower bounds of λ(σ). These are obtained by taking specific
values of t and Q in the definition of ρ(σ). Be begin with an estimate
valid for all σ ≥ 1.

Theorem 5.

(12) λ(σ) ≥ 1.4737− 0.7573

2.186 + σ
≥ 1.236 ∀ σ ≥ 1.

(13) tZ(Iq,s) ≤
1

q

(

1.4737− 0.7573

2.186 + s/q

)

+ s

.

Proof: Let

f(x, σ) = log(x + σ) − 0.709209

0.773023 + σ
log x − 0.897765

3.48883 + σ
log |x − 1|.

As a function of x, f has two critical points

ξ±(σ) =
0.111317 + 3.36047 σ + 1.30349 σ2 ± 0.994922

√
∆

(−0.167035 + σ)(2.82191 + σ)
,

where

∆ = (0.00659344 + σ)(0.65923 + σ)(1.05636 + σ)(2.72637 + σ).

Both are local minima, and it is an easy matter to verify with a Com-
puter Algebra System that 0 < ξ−(s) < 1 < ξ+(s) and f(ξ−(s), σ) <
f(ξ+(s), σ) for all σ > 1. Thus

inf
x>0

f(x, σ) = f(ξ−(s), σ) and ρ(σ) ≥ f(ξ−(s), σ).

As σ goes to infinity we have

f(ξ−(s), σ) = log σ +
1.47373

σ
+ O

(

1

σ2

)

,
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and from here it is again easy to verify that

λ(σ) > 1.4737− 0.7573

2.186 + σ
∀ σ ≥ 1.

Next, we bound from below λ(σ) for the 32 values of σ in the leftmost
column of Table 4, and derive upper bounds for the integer Chebyshev
constant of the corresponding intervals. The values σ = 5/4, 4/3, 3/2,
5/3, 2, 5/2, 3, 4, 5, 6, 12, 15 and 20 were considered in [F1], and σ = 200
in [BE]. In all cases, we improve the upper bounds given in those papers.

Following the proof of Theorem 1 we begin with large values of
sigma and the polynomials and coefficients, conveniently rescaled, used
in [ABP] to bound K from below, together with the two polynomials of
degree 10 and trace 18 which appear for the first time in [MSm]. As
σ decreases, some of these polynomials are not useful anymore, and new
ones have to be used.

In all, we use 45 polynomials given in Table 2. For each of the values
of σ, we select a subset of them, defined by a set of integers S(σ) ⊂
{1, 2, . . . , 45}. Then

(14) ρ(σ) ≥ sup







inf
x>0



log(x + σ) −
∑

j∈S(σ)

aj

∂Qj
log |Qj(x)|











,

where the sup is taken over all aj > 0, j ∈ S(σ), with
∑

j∈S(σ) aj ≤ 1.

The right hand side of (14) is a semi-infinite minimax problem that
can be solved by Reme’s algorithm and other optimization techniques
(see [ABP] for details). We should note that no calculations are carried

out to estimate λ(1), since λ(1) =
√

4 + λ(4) − 1.
The set of indexes S(σ) are given in Table 3. The bounds of λ(σ)

and the corresponding bounds for tZ(Iq,s) are given in Table 4. They
are represented graphically in Figure 1.

5. Lower bounds

Lower bounds of tZ(Iq,s) were obtained in [F1] by applying a lemma
of Chudnovsky to a sequence of polynomials which generalizes the se-
quence of Gorškov-Wirsing polynomials in [0, 1] to any Farey interval.
We have computed the lower bounds with this method for various values
of σ = s/q, and found that the lower bound given by Corollary 2 is bet-
ter for σ > 23. Any improvement in the upper bound of K will result
in better lower bounds of tZ(Iq,s). The lower bounds given in Table 4
coincide with those given in [F1] for the intervals corresponding to the
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values σ = 5/4, 4/3, 3/2, 5/3, 2, 5/2, 3, 5, 6, 12, 15 and 20; for σ = 1, 4,
they follow from the results in [P].

6. Other intervals

The methods developed in previous sections can be used to obtain
bounds of the integer Chebyshev constant for general intervals [a, b] ⊂
[0, 1]. There are only a finite number of Farey intervals containing [a, b],
since their length must be at least b − a. Let Iq,s be minimal among
them with respect to length, and let φ−1(a) = α, φ−1(b) = β, where φ is
the fractional linear transformation (4). Arguing as in Section 2 we get
tZ([a, b]) = e−µ/q, where

µ = sup
Q∈Z[x], Q6=0, 0<t<1

{

inf
β<x<α

(

log(x + σ) − t

∂Q
log |Q(x)|

)}

.

More precise estimates can be obtained for small intervals with a fixed
rational endpoint.

Theorem 6. Let 0 ≤ p/q < 1 be a rational point in lowest terms, and let
r/s > p/q be the adjacent fraction of p/q in the Farey sequence of greatest
denominator q. Given ε > 0 there exists δε > 0 such that if 0 < δ < δε,
then

(15)
δ q

1 + (K + 1 − b)δ q2
≤ tZ

([

p

q
,
p

q
+ δ

])

≤ δ q

1 + (K − b − ε)δ q2
,

where b is the fractional part of 1/(δ q2) − s/q.
If b = 0, the denominator of the fraction in the left hand side can be

replaced by 1 + K δ q2.

Proof: If δ ≤ 1/(s q), then there is a unique non-negative integer k such
that

r + (k + 1) p

s + (k + 1) q
<

p

q
+ δ ≤ r + k p

s + k q

and

Iq,s+(k+1)q (

[

p

q
,
p

q
+ δ

]

⊂ Iq,s+kq .

For this value of k we have

0 ≤ 1

δ q2
− s

q
− k < 1,

so that

b =
1

δ q2
− s

q
− k and s + k q =

1

δ q
− b q.
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To get the lower bound we observe that

tZ

([

p

q
,
p

q
+ δ

])

≥ 1

λ(k + 1 + s/q) q + s + (k + 1) q

≥ δ q

1 + (K + 1 − b)δ q2
.

We remark that this inequality is valid for all δ ∈ (0, 1/(q s)]. As for the
upper bound we have

tZ

([

p

q
,
p

q
+ δ

])

≤ 1

λ(k + s/q) q + s + k q
≤ δ q

1 + (λ(k + s/q) − b)δ q2
.

The proof is finished by observing that as δ goes to zero, k goes to infinity
and λ(k + s/q) converges to K.

If b = 0, then
[

p

q
,
p

q
+ δ

]

= Iq,s+kq

and

tZ

([

p

q
,
p

q
+ δ

])

=
1

λ(k + s/q) q + s + k q
≥ δ q

1 + K δ q2
.

Remark. The lower bound in Theorem 6 is an improvement over the
corresponding bound in [FRS]. This is not always the case for the
upper bound. However, the proof is much simpler.

7. Data

1.4

1.5

1.6

1.7

1.9

1.8

1 2 2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

Figure 1. Computed bounds of λ. Horizontal axes in
logarithmic scale
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Table 2. Polynomials Qi

i Qi

i Qi

1 x

2 1 − x

3 2 − x

4 1 − 3 x + x2

5 1 − 4 x + x2

6 2 − 4 x + x2

7 1 − 6 x + 5 x2 − x3

8 1 − 5 x + 6 x2 − x3

9 1 − 8 x + 6 x2 − x3

10 1 − 9 x + 6 x2 − x3

11 1 − 7 x + 13 x2 − 7 x3 + x4

12 1 − 8 x + 14 x2 − 7 x3 + x4

13 1 − 7 x + 14 x2 − 8 x3 + x4

14 1 − 11 x + 29 x2 − 26 x3 + 9 x4 − x5

15 1 − 12 x + 31 x2 − 27 x3 + 9 x4 − x5

16 1 − 13 x + 32 x2 − 27 x3 + 9 x4 − x5

17 1 − 15 x + 35 x2 − 28 x3 + 9 x4 − x5

18 1 − 12 x + 45 x2 − 67 x3 + 42 x4 − 11 x5 + x6

19 1 − 13 x + 47 x2 − 68 x3 + 42 x4 − 11 x5 + x6

20 1 − 14 x + 51 x2 − 72 x3 + 43 x4 − 11 x5 + x6

21 1 − 15 x + 59 x2 − 78 x3 + 44 x4 − 11 x5 + x6

22 1 − 18 x + 63 x2 − 79 x3 + 44 x4 − 11 x5 + x6

23 1 − 14 x + 66 x2 − 136 x3 + 131 x4 − 61 x5 + 13 x6 − x7

24 1 − 14 x + 67 x2 − 138 x3 + 132 x4 − 61 x5 + 13 x6 − x7

25 1 − 15 x + 71 x2 − 142 x3 + 133 x4 − 61 x5 + 13 x6 − x7

26 1 − 15 x + 71 x2 − 144 x3 + 136 x4 − 62 x5 + 13 x6 − x7

27 1 − 15 x + 72 x2 − 146 x3 + 137 x4 − 62 x5 + 13 x6 − x7

28 1 − 15 x + 73 x2 − 147 x3 + 137 x4 − 62 x5 + 13 x6 − x7

29 1 − 16 x + 75 x2 − 148 x3 + 137 x4 − 62 x5 + 13 x6 − x7

30 1 − 15 x + 75 x2 − 153 x3 + 142 x4 − 63 x5 + 13 x6 − x7

31 1 − 16 x + 78 x2 − 157 x3 + 143 x4 − 63 x5 + 13 x6 − x7

32 1 − 17 x + 81 x2 − 158 x3 + 143 x4 − 63 x5 + 13 x6 − x7

33 1 − 17 x + 82 x2 − 159 x3 + 143 x4 − 63 x5 + 13 x6 − x7

34 1 − 18 x + 89 x2 − 172 x3 + 150 x4 − 64 x5 + 13 x6 − x7
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Table 2. Polynomials Qi (continued)

35 1 − 15 x + 83 x2 − 220 x3 + 303 x4 − 220 x5+83 x6−15 x7+x8

36 1 − 24 x + 194 x2 − 743 x3 + 1526 x4 − 1798 x5 + 1265 x6

−537 x7 + 134 x8 − 18 x9 + x10

37 1 − 24 x + 200 x2 − 766 x3 + 1560 x4 − 1822 x5 + 1273 x6

−538 x7 + 134 x8 − 18 x9 + x10

38 1 − 24 x + 206 x2 − 813 x3 + 1662 x4 − 1920 x5 + 1320 x6

−549 x7 + 135 x8 − 18 x9 + x10

39 1 − 22 x + 192 x2 + 873 x3 − 2287 x4 + 3618 x5 − 3535 x6

+2150 x7 − 805 x8 + 178 x9 − 21 x10 + x11

40 1 − 25 x + 248 x2 − 1290 x3 + 3922 x4 + 7362 x5 + 8783 x6

−6752 x7 + 3352 x8 + 1060 x9 + 205 x10 − 22 x11 + x12

41 1 − 29 x + 314 x2 − 1676 x3 + 5007 x4 + 9012 x5 + 10213 x6

−7474 x7 + 3561 x8 + 1092 x9 + 207 x10 − 22 x11 + x12

42 1 − 33 x + 377 x2 − 2009 x3 + 5846 x4 + 10166 x5 + 11134 x6

−7908 x7 + 3679 x8 + 1109 x9 + 208 x10 − 22 x11 + x12

43 1 − 26 x + 279 x2 − 1625 x3 + 5702 x4 + 12694 x5 + 18464 x6

−17848 x7 + 11549 x8 + 4980 x9 + 1401 x10 − 245 x11+24 x12−x13

44 1 − 27 x + 308 x2 − 1965 x3 + 7812 x4 − 20404 x5 + 35986 x6

−43423 x7 + 35986 x8 − 20404 x9 + 7812 x10

−1965 x11 + 308 x12 − 27 x13 + x14

45 1 − 31 x + 413 x2 − 3141 x3 + 15261 x4 − 50187 x5 + 115410 x6

−189036 x7 + 222621 x8 − 189036 x9 + 115410 x10 − 50187 x11

+15261 x12 − 3141 x13 + 413 x14 − 31 x15 + x16

Table 3. Polynomials used to bound λ(σ) from above

σ J(σ)

5/4 1, 2, 4, 5, 7, 8, 11, 13, 12, 23, 24, 31, 35, 43, 44, 45

4/3 1, 2, 4, 5, 7, 8, 11, 12, 13, 19, 23, 24, 31, 35, 43, 45

3/2 1, 2, 4, 5, 7, 8, 11, 12, 13, 14, 18, 23, 24, 35, 43, 45

5/3 1, 2, 4, 5, 7, 8, 11, 12, 14, 23, 24, 31, 35, 43, 44, 45

2 1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 23, 25, 31, 35, 39, 43, 44, 45

5/2 1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 18, 19, 23, 25, 31, 35, 39, 43, 45
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Table 3. Polynomials used to bound λ(σ) from above (continued)

3 1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 18, 19, 23, 25, 29, 31, 35, 39

4 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19, 23, 24, 25, 28, 29,

31, 35, 39, 40, 43

5 1, 2, 3, 4, 5, 7, 11, 12, 14, 15, 16, 18, 19, 23, 25, 29, 31, 35, 39, 43

6 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19, 23, 25, 29, 31, 35, 39

7 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 19, 23, 25, 29, 31, 35

8 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 19, 23, 25, 29, 31, 35

9 1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 18, 19, 23, 25, 29, 31, 35,

10 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

11 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

12 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

13 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

14 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

15 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 23, 29, 31, 32, 35

16 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 29, 31, 32, 35, 38

20 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 29, 31, 32, 35, 38

32 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 20, 31, 32, 35

64 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 27, 31, 32, 37, 38

128 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 26, 31, 32, 35, 36,

37, 38

200 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 22, 31, 32, 33, 35,

36, 37, 38

256 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 22, 30, 31, 33, 35,

36, 37, 38

512 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 20, 31, 32, 33, 34, 36, 37,

38, 40, 41

1024 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 20, 22, 26, 31, 33, 34, 35,

36, 37, 38, 41, 42

2048 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 20, 22, 26, 31, 33, 34, 35,

36, 37, 38, 41, 42

4096 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 20, 22, 26, 31, 33, 34, 35,

36, 37, 38, 41, 42

8192 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 20, 22, 26, 31, 33, 34, 35,

36, 37, 38, 41, 42
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Table 4. Bounds of λ and tZ

λ(σ) tZ(Iq,s)

σ Lower Upper Iq,s Lower Upper

1 1.36377513 1.37361000 [ 0, 1 ] 0.42130000 0.42305209

5/4 1.40149743 1.41966904 [ 3/4, 4/5 ] 0.09364456 0.09428635

4/3 1.41298098 1.43230671 [ 2/3, 3/4 ] 0.12052665 0.12137480

3/2 1.43351581 1.45559058 [ 1/2, 2/3 ] 0.16917092 0.17044394

5/3 1.44993773 1.47660201 [ 1/3, 2/5 ] 0.10604672 0.10695401

2 1.48172294 1.51318217 [ 0, 1/2 ] 0.28464223 0.28721413

5/2 1.51761967 1.55791221 [ 1/2, 3/5 ] 0.12321607 0.12445180

3 1.54441251 1.59402618 [ 0, 1/3 ] 0.21767399 0.22005045

4 1.58743287 1.63380000 [ 0, 1/4 ] 0.17750000 0.17897307

5 1.61389711 1.69027490 [ 0, 1/5 ] 0.14947069 0.15119679

6 1.63564969 1.72199582 [ 0, 1/6 ] 0.12950020 0.13096463

7 1.65226671 1.74744898 [ 0, 1/7 ] 0.11431904 0.11557665

8 1.66493944 1.76839689 [ 0, 1/8 ] 0.10237094 0.10346677

9 1.67459781 1.78598039 [ 0, 1/9 ] 0.09271294 0.09368035

10 1.68400639 1.80097560 [ 0, 1/10 ] 0.08473875 0.08558709

11 1.69156814 1.81393148 [ 0, 1/11 ] 0.07804006 0.07879247

12 1.69789528 1.82524867 [ 0, 1/12 ] 0.07233143 0.07300392

13 1.70348697 1.83522722 [ 0, 1/13 ] 0.06740712 0.06801108

14 1.70832113 1.84409676 [ 0, 1/14 ] 0.06311498 0.06366053

15 1.71251696 1.85203632 [ 0, 1/15 ] 0.05934001 0.05983540

16 1.71644481 1.85918775 [ 0, 1/16 ] 0.05599358 0.05644474

20 1.72782259 1.88189943 [ 0, 1/20 ] 0.04569987 0.04602394

32 1.74589502 1.89830210 [ 0, 1/32 ] 0.02950000 0.02963324

64 1.76283741 " [ 0, 1/64 ] 0.01517489 0.01520616

128 1.77306654 " [ 0, 1/128 ] 0.00769833 0.00770558

200 1.77600839 " [ 0, 1/200 ] 0.00495310 0.00495599

256 1.77783421 " [ 0, 1/256 ] 0.00387749 0.00387931

512 1.78024589 " [ 0, 1/512 ] 0.00194591 0.00194636

1024 1.78217140 " [ 0, 1/1024 ] 0.00097475 0.00097487

2048 1.78296173 " [ 0, 1/2048 ] 0.00048783 0.00048786

4096 1.78316338 " [ 0, 1/4096 ] 0.00024402 0.00024404

8192 1.78330416 " [ 0, 1/8192 ] 0.00012198 0.00012204
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