
Publ. Mat. 67 (2023), 891–912
DOI: 10.5565/PUBLMAT6722315

HOMOGENEOUS CR SUBMANIFOLDS

OF COMPLEX HYPERBOLIC SPACES
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1. Introduction

In the setting of complex analysis, a submanifold of a Kähler mani-
fold is said to be CR if the maximal holomorphic subspaces of all tangent
spaces define a smooth distribution. Bejancu ([2]) introduced a stronger
notion of a CR submanifold of a Kähler manifold by requiring the com-
plementary distribution to the maximal complex distribution in the tan-
gent bundle to be totally real; thus, complex and totally real submani-
folds are special examples of CR submanifolds. These two definitions of
a CR submanifold coincide under the assumption that the complemen-
tary distribution has real dimension 1. CR submanifolds satisfying this
condition are said to be of hypersurface type and they play an important
role in the context of complex analysis and boundary value problems.

In submanifold geometry, an interesting problem is to classify homo-
geneous CR submanifolds, according to Bejancu’s definition, in certain
important families of Kähler manifolds such as Hermitian symmetric
spaces or, more particularly, complex space forms, that is, complex Eu-
clidean spaces Cn, complex projective spaces CPn, and complex hyper-
bolic spaces CHn. The relevance of homogeneous CR submanifolds in
this setting stems from the fact that they include several examples of
interest in the context of symmetric spaces.
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Real hypersurfaces, that is, submanifolds of real codimension 1, con-
stitute an important subclass of CR submanifolds that has been thor-
oughly studied by many authors. Indeed, the classification of homo-
geneous real hypersurfaces in Cn follows from Segre’s classical work
on isoparametric hypersurfaces, whereas for CPn this is due to Tak-
agi [16]. The classification of homogeneous hypersurfaces in complex
hyperbolic spaces is more involved, although it has successfully been
solved by Berndt and Tamaru [5].

Another subclass of homogeneous CR submanifolds is that of homo-
geneous Kähler ones. The corresponding classifications in complex space
forms have been achieved by several authors. While in complex n-di-
mensional Euclidean and hyperbolic spaces the only examples are totally
geodesic Ck and CHk, with k < n, respectively, as proved by Di Scala,
Ishi, and Loi [7], the classification of compact homogeneous Kähler sub-
manifolds of CPn, obtained by Takeuchi [17], includes more examples.

Lagrangian submanifolds, that is, totally real submanifolds of maxi-
mal dimension, constitute another important class of CR submanifolds.
The classification of homogeneous Lagrangian submanifolds in complex
space forms is still an open problem. However, some partial results have
been achieved. For example, Bedulli and Gori ([1]) obtained the clas-
sification of homogeneous Lagrangian submanifolds in CPn induced by
the action of a simple compact subgroup of SU(n + 1), whereas little is
known in the non-simple case. Under additional assumptions, such as
the parallelity of the second fundamental form, some results have also
been derived; see [14] for a survey. However, the classification of homoge-
neous Lagrangian submanifolds in complex hyperbolic spaces CHn has
been shown to be a rather complicated problem, mainly due to the non-
compactness of its isometry group. Hashinaga and Kajigaya obtained
some partial results in [13]. In particular, they derived a classification
result of homogeneous Lagrangian submanifolds that arise as orbits of
a subgroup of the solvable part of the Iwasawa decomposition of the
isometry group of CHn.

Other interesting examples of homogeneous CR submanifolds in Her-
mitian symmetric spaces arise as principal orbits of polar and coisotropic
actions. An isometric action on a Riemannian manifold is said to be po-
lar if there is a submanifold that intersects all the orbits of the action
and every such intersection is orthogonal. An isometric action on a Her-
mitian manifold is called coisotropic if the normal spaces to its princi-
pal orbits are totally real. Thus, every principal orbit of a coisotropic
action is a CR submanifold. Polar actions on irreducible compact ho-
mogeneous Kähler manifolds are known to be coisotropic [15], so they
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produce examples of CR submanifolds. In non-compact Hermitian sym-
metric spaces, deciding whether polar actions are coisotropic is still an
open problem. However, this is known to be true in complex hyperbolic
spaces: it follows from a classification result in [8], which also yields sev-
eral uncountable families of CR submanifolds. Specifically, any orbit of
minimum orbit type of any polar action on CHn is induced by a sub-
group of the solvable part of the Iwasawa decomposition of the isometry
group of CHn. In some cases, such orbits are CR, including the focal
sets of homogeneous (or even isoparametric) hypersurfaces with at most
three principal curvatures in CHn [4], [9].

The main purpose of this article is to present the classification of
homogeneous CR submanifolds in complex hyperbolic spaces that arise
as orbits of a subgroup of the solvable part of the Iwasawa decomposition
of the isometry group of the ambient space. We briefly explain here the
notation that is used in the main theorems of this paper.

Up to finite quotient, the connected component of the identity of
the isometry group of CHn is the simple Lie group G = SU(1, n). Let
KAN be its Iwasawa decomposition. Here K ∼= U(n) is the isotropy
subgroup of G at some point o ∈ CHn. The solvable Lie group AN
acts simply transitively on CHn. Let a⊕ n be the Lie algebra of AN . It
is known that a is one-dimensional, whereas n is nilpotent and can be
decomposed further as n = gα ⊕ g2α, where g2α is the one-dimensional
center of n. Moreover, gα is isomorphic, as a vector space, to a complex
vector space Cn−1. In this paper, the symbol 	 denotes the orthogonal
complement. See Section 2 for more details and references.

Theorem A. An orbit of the action of a connected Lie subgroup of AN
is a CR submanifold of CHn if and only if it is congruent to the orbit H ·
g(o), where H is the connected Lie subgroup of AN with Lie algebra h
and g ∈ AN , for one of the following cases:

(i) h = r and g ∈ Exp((a⊕ n)	 r); in this case all the orbits of H are
totally real submanifolds that constitute a homogeneous subfoliation
of a horosphere foliation.

(ii) h = c ⊕ r ⊕ g2α and g ∈ Exp(a ⊕ (gα 	 (c ⊕ r))); in this case all
the orbits of H are CR submanifolds that are congruent to each
other, and constitute a homogeneous subfoliation of a horosphere
foliation.

(iii) h = a⊕ r and g ∈ Exp((gα	Cr)⊕ g2α); in this case the CR orbits
are totally real equidistant submanifolds to a totally geodesic RHk

in CHn, k ∈ {1, . . . , n}.
(iv) h = a⊕c⊕r⊕g2α and g ∈ Exp(Jr); in this case the CR orbits are the

leaves of a homogeneous polar foliation with exactly one minimal
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leaf (called a Berndt–Brück submanifold) on a totally geodesic CHk

in CHn, k ∈ {2, . . . , n}.
Here, r stands for a totally real subspace of gα, and c for a complex
subspace of gα.

The next main goal of this paper is to study the congruence classes of
these examples. In the following theorem ρ : R → (0,∞) is the analytic
function defined by ρ(t) = (et − 1)/t, t 6= 0, ρ(0) = 1.

Theorem B. Let H1 and H2 be two connected Lie subgroups of AN ,
and h1 and h2 their Lie algebras. Assume that H1 and H2 act on CHn

in such a way that H1 · g1(o) and H2 · g2(o) are CR submanifolds, with
g1, g2 ∈ AN , as given by Theorem A. Then, H1 · g1(o) and H2 · g2(o)
are congruent if and only if h1 and h2 correspond to the same type in
Theorem A, and according to the type:

(i) gi = Exp(biB + JTi + Wi + yiZ), with bi, yi ∈ R, Wi ∈ gα 	 Cr,
Ti ∈ r, i ∈ {1, 2}, and ρ(b2/2)‖T1‖ = ρ(b1/2)‖T2‖.

(ii) In this case all the orbits are congruent.
(iii) gi = Exp(Wi + yiZ), with yi ∈ R, Wi ∈ gα 	 Cr, i ∈ {1, 2}, and

‖W1‖ = ‖W2‖, |y1| = |y2|.
(iv) gi = Exp(JTi), with Ti ∈ r, i ∈ {1, 2}, and ‖T1‖ = ‖T2‖.

As a consequence we have

Corollary C. The moduli space of congruence classes of (non-trivial
and proper) homogeneous CR submanifolds of CHn induced by the action
of subgroups of AN is given by the disjoint union

(In−1 × [0,∞)) t I0,n−1 t ([0,∞) t (In−1 × [0,∞)2))

t (In−1 t (I1,n−1 × [0,∞))),

where Ik = {1, . . . , k} and Ik,l = {(i, j) ∈ Z2 : k ≤ i ≤ j ≤ l}.

(In the definition of Ik,l we consider that i = dimR r and j = dimC(gα	
c).)

This article is organized as follows. In Section 2, we introduce the
notation and known results that we will use throughout this paper. Sec-
tion 3 is devoted to classifying homogeneous CR submanifolds in CHn

which arise as orbits of a connected subgroup of the solvable part of the
Iwasawa decomposition of the isometry group of CHn. This problem is
tackled in two steps. First we determine the subgroups that produce at
least a CR orbit (Proposition 3.1). Then, we prove Theorem A, where
we present the classification result. Finally, in Section 4, we study the
congruence classes of the examples, and prove Theorem B.
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2. Preliminaries

In this section we introduce some known results and notation that we
use in this paper.

2.1. CR submanifolds. Consider a complex Euclidean space V with
complex structure J and inner product 〈·, ·〉. A subspace W ⊂V is said
to be complex if it is invariant by the complex structure, that is, if
JW ⊂ W . The subspace W is said to be totally real if JW is perpen-
dicular to W . In the setting of Hermitian manifolds, one can generalize
these concepts by introducing the notions of complex and totally real
submanifolds. Let M̄ be a Hermitian manifold with complex structure J .
A submanifold M ⊂ M̄ is said to be complex (totally real) if at each
point p ∈ M the tangent space TpM is a complex (totally real) vector
subspace of TpM̄ . The subspace J(TpM)∩TpM is the maximal complex
subspace of TpM .

The notion of a CR submanifold of a Hermitian manifold includes
both complex and totally real submanifolds as particular examples. A
submanifold M ⊂ M̄ is said to be a CR (Cauchy–Riemann or complex-
real) submanifold if there exists a pair of orthogonal complementary
distributions of the tangent bundle TM = C ⊕ R, where C is complex
and R is totally real. In other words, M is a CR submanifold of M̄ if the
maximal complex subspaces of the tangent spaces to M have constant
dimension along M and their orthogonal complements in each tangent
space are totally real subspaces. We refer to [2] and [11] for more infor-
mation on CR submanifolds of Hermitian manifolds.

2.2. The complex hyperbolic space. In what follows, we denote
by CHn the complex hyperbolic space of constant holomorphic sectional
curvature −1. The complex hyperbolic space is known to be a symmetric
space of non-compact type and rank 1. As a symmetric space, it can be
identified with the quotient space G/K, where G = SU(1, n) is, up to a
finite quotient, the connected component of the identity element of the
isometry group of CHn, and K = Go = S(U(1)U(n)) is the stabilizer of
an element o ∈ CHn. Let g and k denote the Lie algebras of G and K,
respectively, and consider the Cartan decomposition g = k ⊕ p with re-
spect to o, where p denotes the orthogonal complement to k with respect
to the Killing form B of g. Denote by θ the associated Cartan involu-
tion, which satisfies θ|k = Idk and θ|p = − Idp. Denote by ad and Ad the
adjoint maps of g and G, respectively. One can define a positive definite
inner product Bθ on g by Bθ(X,Y ) := −B(θX, Y ). This inner prod-
uct satisfies Bθ(ad(X)Y,Z) = −Bθ(Y, ad(θX)Z), for all X,Y, Z ∈ g.
Moreover, we can identify p ∼= ToCHn.
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We select a maximal abelian subspace a ⊂ p. Then a is one-dimen-
sional since CHn is a rank 1 symmetric space, and a determines a ge-
odesic through o. For each covector λ ∈ a∗, we define the vector sub-
space gλ = {X ∈ g : ad(H)X = λ(H)X, for each H ∈ a}. If gλ 6= 0,
then gλ is said to be a restricted root space, and each λ 6= 0 such that
gλ 6= 0 is called a restricted root. Notice that g0 is always a restricted
root space since a ⊂ g0. It is known that in the case of the complex
hyperbolic space the set of restricted roots consists of exactly four ele-
ments, Σ = {±α,±2α}. Then, a determines a root space decomposition
g = g−2α⊕ g−α⊕ g0⊕ gα⊕ g2α, which is an orthogonal direct sum with
respect to Bθ. Moreover, [gλ, gµ] = gλ+µ and θgλ = g−λ for all λ, µ ∈ a∗.

Two unit speed complete geodesics γ1 and γ2 in CHn are said to be
asymptotic if d(γ1(t), γ2(t)) remains bounded for large t, where d denotes
the Riemannian distance function. This is an equivalence relation. The
ideal boundary of CHn, denoted by CHn(∞), is the quotient set by this
relation. The union CHn = CHn ∪ CHn(∞), when endowed with the
cone topology, becomes homeomorphic to the closed unit ball of Rn.

Now we choose a positivity criterion on Σ such that Σ+ = {α, 2α} is
the set of positive roots. Equivalently, the geodesic determined by a has
two limit points in the ideal boundary CHn(∞) of CHn; choosing a pos-
itivity criterion in Σ is the same as choosing one of these two limit points
at infinity. We denote by x ∈ CHn(∞) the point at infinity determined
by this choice of positivity. We define n = gα⊕g2α, which turns out to be
a two-step nilpotent Lie algebra. The Iwasawa decomposition theorem
states that g = k⊕a⊕n is a direct sum of vector spaces, and that there ex-
ists an analytic diffeomorphism K×A×N → G, (k, a, n) 7→ kan, where
A and N denote the connected Lie subgroups of G with Lie algebras a
and n, respectively. We have g0 = k0⊕ a, where k0 = g0 ∩ k ' u(n− 1) is
the normalizer of a in k. Both gα and g2α are normalized by k0. In fact,
the corresponding connected Lie subgroup K0 acts trivially on a and g2α,
and transitively on the unit sphere of gα. It is known that a⊕n is a solv-
able Lie algebra, and that its associated connected Lie subgroup AN
acts simply transitively on CHn. One can endow AN , and so a ⊕ n,
with a left-invariant metric 〈·, ·〉 and a complex structure J that make
CHn and AN isomorphic as Kähler manifolds. Moreover, up to scaling
of Bθ, we have 〈X,Y 〉 = Bθ(Xa, Ya)+ 1

2Bθ(Xn, Yn), for any X,Y ∈ a⊕n,
where the subscripts mean the a and n components, respectively. The
complex structure J on a⊕ n satisfies that gα is a J-invariant subspace,
and Ja = g2α. The orbits of the action of N on CHn are horospheres



Homogeneous CR Submanifolds of Complex Hyperbolic Spaces 897

centered at the point of infinity x chosen above. In fact, the group K0AN
is a parabolic subgroup determined by x, that is, K0AN is the stabilizer
in SU(1, n) of the point at infinity x ∈ CHn(∞).

Let B ∈ a be a unit vector and define Z = JB ∈ g2α. In particular,
〈B,B〉 = Bθ(B,B) = 1 and 2〈Z,Z〉 = Bθ(Z,Z) = 2. Moreover, if
U, V ∈ gα, the Lie bracket of a⊕ n is given by the following relations:

(1) [B,Z] = Z, [B,U ] =
1

2
U, [U, V ] = 〈JU, V 〉Z, [U,Z] = 0.

Using these formulas we get

Lemma 2.1. Let a, b, x, y ∈ R and X,Y ∈ gα, and define g = Exp(bB+
X + yZ). Then,

Ad(g)(aB + Y + xZ) = aB + eb/2Y − a

2
ρ

(
b

2

)
X

+

(
xeb − ayρ(b) + eb/2ρ

(
b

2

)
〈JX, Y 〉

)
Z,

where ρ : R→ (0,∞) is the analytic function given by ρ(t) = (et − 1)/t,
t 6= 0, ρ(0) = 1.

Proof: Using the bracket relations (1) it is easy to prove by induction
that

ad(bB +X + yZ)(aB + Y + xZ) =
b

2
Y − a

2
X+(bx− ay + 〈JX, Y 〉)Z,

adk(bB +X + yZ)(aB + Y + xZ)

= bk−1
(
b

2k
Y − a

2k
X +

(
bx− ay + 2

(
1− 1

2k

)
〈JX, Y 〉

)
Z

)
,

for any k ≥ 2. Now, recalling that

Ad(Exp(X))Y = ead(X)Y =

∞∑
k=0

1

k!
adk(X)Y,

for any X,Y ∈ g, the result follows after grouping terms and doing some
calculations.
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Finally, we recall the expression for the Levi–Civita connection ∇̄ of
the complex hyperbolic space (see, for example, [4] or [6]):

∇̄aB+U+xZ(bB + V + yZ) =

(
1

2
〈U, V 〉+ xy

)
B

− 1

2
(bU + yJU + xJV )

+

(
1

2
〈JU, V 〉 − bx

)
Z.

(2)

3. Proof of Theorem A

The aim of this section is to find all homogeneous CR submani-
folds in complex hyperbolic spaces CHn that arise as orbits of con-
nected subgroups of the solvable part of the Iwasawa decomposition
of G = SU(1, n). Hence, we will determine the connected subgroups H
of AN that act on CHn producing a CR orbit.

Let H be a connected Lie subgroup of AN , one of whose orbits is CR.
Since AN acts transitively on CHn, we may assume that the orbit that
is CR is precisely the one through the point o ∈ CHn that determines
the compact subgroup K of G. Moreover, since the isometries of AN are
holomorphic, a homogeneous submanifold of CHn is CR if and only if
its tangent space is a CR subspace of the tangent space of CHn at some
point. Therefore, it follows that the problem of classifying homogeneous
CR submanifolds in the complex hyperbolic space given by the action of
a connected Lie subgroup of AN reduces to finding all the Lie subalge-
bras h of a ⊕ n that can be decomposed into an orthogonal direct sum
of a totally real and a complex subspace.

Proposition 3.1. Let H be a connected Lie subgroup of AN acting
on CHn in such a way that the orbit H ·o through o is a CR submanifold.
Then, its Lie algebra h is conjugate to b⊕ c⊕ r⊕ z, where b is a subspace
of a, c is a complex subspace of gα, r is a totally real subspace of gα, and
z is a subspace of g2α containing [c, c].

Proof: We consider the orthogonal projection π : g→ a⊕ g2α. We have
two possibilities:

Case (a): π|h is not surjective. In this case π(h) 6= a ⊕ g2α. Hence,
there exists a subspace w ⊂ gα, a, x ∈ R, and X ∈ gα 	 w such that
h = R(aB+X+xZ)⊕w. Here and henceforth 	 denotes the orthogonal
complement.
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Let U, V ∈ w. Since h is a Lie subalgebra, 〈JU, V 〉Z = [U, V ] ∈ h∩g2α.
Thus aB +X = 0 or 〈JU, V 〉 = 0.

First assume that aB + X = 0, that is, a = 0 and X = 0. Then,
h = w ⊕ z, where z = g2α if x 6= 0, or z = 0 if x = 0. We define the
maximal complex subspace c = w∩Jw of w in gα ∼= Cn−1, and r = w	c.
Since Jg2α = a, it turns out that h∩Jh = c is also the maximal complex
subspace of h. Since h is CR by assumption, h	 c is totally real, which
implies that r is totally real. If x = 0, that is, if h = w = c⊕ r, we must
have c = 0, as otherwise g2α = [c, c] ⊂ h. Thus, h = r is a totally real
subspace of gα, and we take b = 0, z = 0. If x 6= 0, then h = c⊕ r⊕ g2α,
with c complex in gα, r totally real in gα, and b = 0 in the notation of
Proposition 3.1.

Therefore, we may assume aB + X 6= 0. This implies 〈JU, V 〉 = 0
for all U, V ∈ w. Hence, w is totally real as a subspace of gα ∼= Cn−1.
Moreover, for each U ∈ w ⊂ h we have

a

2
U + 〈JX,U〉Z = [aB +X + xZ,U ] ∈ h,

which implies 〈JX,U〉Z ∈ h ∩ g2α = 0. Hence, X ∈ gα 	Cw, or equiva-
lently, RX ⊕w ⊂ gα is totally real.

If a 6= 0, we define g = Exp
(
2
aX + x

aZ
)
. Using Lemma 2.1 we get

Ad(g)(aB +X + xZ) = aB, and Ad(g)(U) = U for each U ∈ w. Then,
Ad(g)h = a⊕w, where w is totally real. Thus, b = a, c = 0, r = w, and
z = 0 in the notation of Proposition 3.1.

Finally, assume a = 0. Then, X 6= 0. In this case we define g =
x
‖X‖2 JX. Using Lemma 2.1 we get Ad(g)(X+xZ) = X, and Ad(g)(U) =

U for each U ∈ w, that is, Ad(g)h = RX ⊕ w. Thus, we take b = 0,
c = 0, z = 0, and r = RX ⊕w is a totally real subspace of gα.

Case (b): π|h is surjective, that is, π(h) = a ⊕ g2α. Then, there exist a
subspace w ⊂ gα and X,Y ∈ gα 	 w such that h = R(B + X) ⊕ w ⊕
R(Y + Z).

For any U ∈ w ⊂ h we have 1
2U + 〈JX,U〉Z = [B +X,U ] ∈ h. Thus,

〈JX,U〉Z ∈ h ∩ g2α. Hence Y = 0 or 〈JX,U〉 = 0 for each U ∈ w.
Assume Y = 0, that is, h = R(B +X)⊕w⊕ g2α. First we show that

w is a CR subspace of gα. Let c = w ∩ Jw be the maximal complex
subspace of w. Since B +X,Z ∈ h	 c and 〈J(B +X), Z〉 6= 0, h	 c is
not totally real. Then there exists ξ′ ∈ (h ∩ Jh) 	 c, ξ′ 6= 0. Let us put
ξ′ = a(B +X) +W ′ + xZ, for some W ′ ∈ w, and where a and x cannot
vanish simultaneously. By assumption, −x(B+X)+xX+aJX+JW ′+
aZ = −xB+aJX+JW ′+aZ = Jξ′ ∈ h, and then xX+aJX+JW ′ ∈ w.
Thus we can take ξ = (aξ′ − xJξ′)/(a2 + x2) ∈ (h ∩ Jh)	 c, which is of
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the form ξ = B+X+W , with W ∈ w. Hence, Jξ = JX+JW +Z ∈ h,
where JX+JW ∈ w. Then η = JX+JW − (‖X‖2 +‖W‖2)Z ∈ h	Cξ.
Let us decompose η = ηc + ηr, where ηc ∈ h ∩ Jh and ηr ∈ h	 (h ∩ Jh).
Since h is CR, then Jη = Jηc + Jηr with Jηc ∈ h and Jηr ∈ (a⊕ n)	 h.
But

Jη = −X −W + (‖X‖2 + ‖W‖2)B

=

(
‖W‖2

1 + ‖X‖2
(B +X)−W

)
+

1 + ‖X‖2 + ‖W‖2

1 + ‖X‖2
(‖X‖2B −X),

where the first addend belongs to h and the second one is orthogonal

to h. We deduce in particular that Jηc = ‖W‖2
1+‖X‖2 (B+X)−W , and thus

− ‖W‖2
1+‖X‖2 (Z + JX) + JW = ηc ∈ h. Since Z, JX + JW ∈ h, we get

JX, JW ∈ h. In particular, JX ∈ w. Then

h = C(B +X)⊕ R(‖X‖2Z − JX)⊕ (w	 RJX)

is a C-orthogonal direct sum, from which we deduce that w is a CR sub-
space of gα. Now let g = Exp(2X). Then, Lemma 2.1 yields Ad(g)(B +
X) = B, Ad(g)(U) = U+2〈JX,U〉Z for each U ∈ w, and Ad(g)(Z) = Z.
This implies Ad(g)h = a⊕w⊕ g2α. Since w is a CR subspace of gα, we
have the orthogonal decomposition Ad(g)h = a ⊕ c ⊕ r ⊕ g2α, with c
complex and r totally real in gα.

Hence, we assume from now on that Y 6= 0. Recall that this implies
〈JX,U〉 = 0 for each U ∈ w, that is, X ∈ g	Cw. Similarly, for each U ∈
w, the fact that h is a Lie subalgebra yields 〈JU, Y 〉Z = [U, Y + Z] ∈
h∩g2α = 0, which implies Y ∈ gα	Cw. Moreover, for each U, V ∈ w ⊂ h
we have 〈JU, V 〉Z = [U, V ] ∈ h ∩ g2α = 0. Thus, w is totally real. We
also have

1

2
Y + (1 + 〈JX, Y 〉)Z = [B +X,Y + Z] ∈ h.

Since Y 6= 0, we get 1 + 〈JX, Y 〉 = 1/2, that is, 〈JX, Y 〉 = −1/2.
By assumption, h is a CR subspace of a⊕n ∼= Cn. Since h = span{B+

X,Y +Z}⊕w is a C-orthogonal direct sum, it follows that R(B+X)⊕
R(Y + Z) is either complex or totally real. Observe that

0 = 〈J(B +X), Y + Z〉 = 〈Z + JX, Y + Z〉 = 1 + 〈JX, Y 〉

implies 〈JX, Y 〉 = −1, which contradicts 〈JX, Y 〉 = −1/2. Conse-
quently, R(B+X)⊕R(Y +Z) is a complex subspace. Since J(B+X) =
Z + JX, then Y = JX. Hence, −1/2 = 〈JX, Y 〉 = ‖X‖2, which gives a
contradiction. Thus, this case is not possible.
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Now that we know the subgroups H of AN that have a CR orbit
through o ∈ CHn, we must study which orbits of the H-action are
CR submanifolds. Since AN acts transitively on the complex hyperbolic
space, it will be enough to determine the elements g ∈ AN such that
the orbit H · g(o) is a CR submanifold. The next result reduces the set
of elements of AN to investigate.

Lemma 3.2. Let h = b ⊕ c ⊕ r ⊕ z, with b a subspace of a, c complex
in gα, r totally real in gα, and z a subspace of g2α such that [c, c] ⊂ z. Let
H be the connected Lie subgroup of AN whose Lie algebra is h. Then,
each orbit of H can be written as H · Exp(X)(o) with X ∈ (a⊕ n)	 h.

Proof: The Lie algebra h can be identified with the tangent space to
the orbit H · o at o, and then, the corresponding normal space can be
identified with the orthogonal complement of h in a⊕n, νo(H ·o) = (a⊕
n)	h = (a	b)⊕c′⊕Jr⊕(g2α	z), where c′ = gα	(c⊕r⊕Jr) is a complex
subspace of gα. We denote Σ = Exp((a	b)⊕c′⊕Jr⊕(g2α	z))(o), which
is a submanifold of AN since Exp: a⊕n→ AN is a diffeomorphism (but
not a subgroup in general). We show that Σ intersects every orbit of the
H-action. In fact, it is enough to show that the smooth map ϕ : H×Σ→
AN , (h, p) 7→ hp, is surjective.

Let g ∈ AN . Since Exp: a ⊕ n → AN is a diffeomorphism, there
exist c, z ∈ R, and W ∈ gα such that g = Exp(cB + W + zZ). Since
gα = c⊕ c′ ⊕ r⊕ Jr, we write W = U + V + S + JT , with U ∈ c, V ∈ c′,
and S, T ∈ r, accordingly.

If b = 0, we set a = 0, b = c, and if b = a, we set a = c, b = 0. If
z = 0, we set

x = 0, y = e−aρ(b)−1

(
ρ(c)z − 1

2
ρ

(
c

2

)2

〈S, T 〉

)
;

otherwise, if z = g2α, we set

x = ρ(a)−1

(
ρ(c)z − 1

2
ρ

(
c

2

)2

〈S, T 〉

)
, y = 0.

Taking this into account, we define

X = aB + ρ

(
c

2

)
ρ

(
a

2

)−1
(U + S) + xZ ∈ h,

Y = bB + e−a/2ρ

(
c

2

)
ρ

(
b

2

)−1
(V + JT ) + yZ ∈ (a⊕ n)	 h.
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Using [6, Subsections 4.1.3 and 4.1.4] yields

Exp(X) · Exp(Y ) =

(
a,Expn

(
ρ

(
c

2

)
(U + S) + ρ(a)xZ

))

·
(
b,Expn

(
e−a/2ρ

(
c

2

)
(V + JT ) + ρ(b)yZ

))

=

(
a+ b,Expn

(
ρ

(
c

2

)
(U + S + V + JT )

+

(
ρ(a)x+ eaρ(b)y +

1

2
ρ

(
c

2

)2

〈J(U + S), V + JT 〉)Z
)))

=

(
c,Expn

(
ρ

(
c

2

)
(U + S + V + JT ) + ρ(c)z

))
= Exp(cB + U + V + S + JT + zZ) = g,

which shows that ϕ is onto, as we wanted to prove.

We can now prove the first main theorem of this paper.

Proof of Theorem A: SinceH ·g(o) is homogeneous andH ⊂ AN acts by
holomorphic isometries, the orbit H ·g(o) is a CR submanifold of CHn if
and only if the tangent space Tg(o)(H·g(o)) is a CR subspace of Tg(o)CHn.

Since H · g(o) = g(g−1Hg · o), the tangent space to the orbit H · g(o)
at g(o) can be written in terms of the Lie algebra h as Tg(o)(H · g(o)) =

g∗Ad(g−1)h. Since g is a holomorphic isometry, it is enough to study
the elements g ∈ AN such that Ad(g)h is a CR subspace of a ⊕ n.
By Lemma 3.2 we only have to consider elements of the form g ∈
Exp((a⊕ n)	 h).

By Proposition 3.1, the Lie subalgebras h we have to work with are:

h ∈ {r, c⊕ r⊕ g2α, a⊕ r, a⊕ c⊕ r⊕ g2α},
where r is a totally real subspace of gα, and c is a complex one.

(i) h = r, with r a totally real subspace of gα. For g = Exp(bB + JT +
W + yZ) ∈ AN with b, y ∈ R and T ∈ r, W ∈ gα 	 Cr, and any S ∈ r,
Lemma 2.1 yields Ad(g)(S) = eb/2S−eb/2ρ(b/2)〈T, S〉Z. Hence, we have

(3) Ad(g)h = (r	 RT )⊕ R
(
T − ρ

(
b

2

)
‖T‖2Z

)
.

Since r is totally real and Jg2α = a, this readily implies that Ad(g)h is
totally real. Therefore all the orbits of H are totally real, and since h ⊂ n,
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each H-orbit is contained in one of the leaves of the horosphere foliation
induced by the Lie group N , from which (i) of Theorem A follows.

(ii) h = c⊕ r⊕g2α, where c is complex and r is totally real in gα. Taking
g = Exp(bB+X+yZ) with b, y ∈ R and X ∈ gα	 (c⊕ r), and U ∈ c⊕ r,
we get

Ad(g)(U + xZ) = eb/2U +

(
xeb + eb/2ρ

(
b

2

)
〈JX,U〉

)
Z.

Note that Z ∈ Ad(g)(h) (just set U = 0, x = e−b). Hence, it follows
that c ⊕ r ⊂ Ad(g)h, and for dimension reasons, Ad(g)h = h. Thus, all
the orbits of H are CR submanifolds that are congruent to each other,
and since h ⊂ n, H-orbits are contained in the leaves of the horosphere
foliation induced by N . This corresponds to (ii) of Theorem A.

(iii) h = a⊕ r, with r a totally real subspace of gα. We have (a⊕n)	h =
Jr⊕ (gα 	Cr)⊕ g2α. Consider g = Exp(2JT + 2W + yZ), where T ∈ r,
W ∈ gα 	 Cr, and y ∈ R. For any a ∈ R and S ∈ r, Lemma 2.1 yields

Ad(g)(aB + S) = aB + S − a(JT +W )− (ay + 2〈T, S〉)Z.
Then

(4) Ad(g)h = R(B − JT −W − yZ)⊕ R(T − 2‖T‖2Z)⊕ (r	 RT ).

If T = 0, we get Ad(g)h = R(B −W − yZ) ⊕ r, which is totally real
since W ∈ gα 	 Cr; in particular, Ad(g)h is CR in a⊕ n.

Assume T 6= 0. Then, R(T − 2‖T‖2Z)⊕ (r	RT ) is totally real, and
B− JT −W − yZ is complex orthogonal to r	RT . On the other hand,

〈J(B − JT −W − yZ), T − 2‖T‖2Z〉 = −‖T‖2 6= 0,

which implies that Ad(g)h is not totally real. Moreover, J(B − JT −
W − yZ) = yB + T − JW + Z cannot be proportional to T − 2‖T‖2Z.
Hence, Ad(g)h does not contain a non-trivial complex vector subspace.
Therefore, if T 6= 0, Ad(g)h is not a CR subspace of a⊕ n. We conclude
that Ad(g)h is CR if and only if g ∈ Exp((gα 	 Cr) ⊕ g2α), and in this
case Ad(g)h is actually totally real. Note also that H · o is a totally
geodesic RHk, with k = dim r + 1, and hence the other H-orbits are
equidistant to it. This proves item (iii) of Theorem A.

(iv) h = a⊕ c⊕ r⊕ g2α, where c is complex and r is totally real in gα. In
view of Lemma 3.2 we consider (a⊕n)	h = c′⊕Jr, where c′ = gα	(c⊕Cr)
is a complex subspace of gα. Let g = Exp(2JT + 2W ), with T ∈ r and
W ∈ c′. Let a, x ∈ R, S ∈ r, and U ∈ c. Using Lemma 2.1 we get

Ad(g)(aB +U + S + xZ) = aB +U + S − a(JT +W ) + (x− 2〈S, T 〉)Z.
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In particular, Z = Ad(g)(Z) ∈ Ad(g)h, and thus

(5) Ad(g)h = R(B − JT −W )⊕ c⊕ r⊕ g2α.

If W = 0, the maximal complex distribution of Ad(g)h is

m = Ad(g)h ∩ J(Ad(g)h) = R(B − JT )⊕ R(Z + T )⊕ c.

Then, its orthogonal complement

Ad(g)(h)	m = (r⊕ g2α)	 R(Z + T ) = (r	 RT )⊕ R(T − ‖T‖2Z)

is totally real. Hence Ad(g)h is a CR subspace.
Now assume W 6= 0. In this case, the maximal complex subspace

of Ad(g)h is m = Ad(g)h∩J(Ad(g)h) = c, and its orthogonal complement
in Ad(g)(h) is Ad(g)(h) 	 m = R(B − JT − W ) ⊕ r ⊕ g2α, which is
not a totally real subspace since 〈J(B − JT −W ), Z〉 = 1 6= 0. Then,
Ad(g)h is not a CR submanifold when W 6= 0. Altogether this proves
that Ad(g)h is a CR subspace of a⊕n precisely when g ∈ Exp(Jr). Note
that Exp(h ⊕ Jr) · o is a totally geodesic CHk, with k = dimC(h ⊕ Jr).
Then, it follows from [8, Theorem A and Corollary 6.2] that the H-orbits
that foliate this CHk constitute a homogeneous polar regular foliation
with exactly one minimal leaf. This minimal leaf is precisely H ·o, which
is called a Berndt–Brück submanifold W 2k−dim r with totally real normal
bundle in such CHk; see [3], [4]. This proves (iv).

4. Proof of Theorem B

This section is devoted to determining the congruence classes of the
homogeneous CR submanifolds obtained in Theorem A. First we study
each case separately.

(i) Let h = r be a totally real subspace of gα.
First of all, recall that two totally real subspaces of gα are congruent

by an element of K0
∼= S(U(1)U(n)) if and only if both have the same

dimension. Hence, we can fix r in the rest of the proof.
Let T ∈ r, W ∈ gα	Cr, and b, y ∈ R. It readily follows from (3) that

(6) Ad(Exp(bB + JT +W + yZ))h = Ad

(
Exp

(
ρ

(
b

2

)
JT

))
h.

Hence, H · Exp(bB + JT + W + yZ)(o) and H · Exp(ρ(b/2)JT )(o) are
congruent. Thus, in order to settle the congruence problem for case (i)
we just have to consider elements g ∈ Exp(Jr).
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Lemma 4.1. The squared norm of the mean curvature vector H of the
orbit H · Exp(JT )(o), T ∈ r, is given by

‖H‖2 =
4‖T‖2 + (r + (r + 1)‖T‖2)2

4(1 + ‖T‖2)2
,

where r = dim r = dim h.

Proof: Let g = Exp(JT ). Since H · g(o) is congruent to g−1Hg · o, we
calculate the mean curvature of the latter. It suffices to do so at o by
homogeneity. It follows from (3) that the normal space of g−1Hg ·o at o,
which can be identified with the orthogonal complement of Ad(g−1)h =
Ad(Exp(−JT ))h in a⊕ n, is

(7) νo(g
−1Hg · o) = a⊕ Jr⊕ (gα 	 Cr)⊕ R(−T + Z).

Let S ∈ r 	 RT with ‖S‖ = 1, and X = T+‖T‖2Z
‖T‖
√

1+‖T‖2
if T 6= 0.

Using the formula for the Levi–Civita connection of left-invariant vector
fields (2), it follows that

(8) ∇̄SS =
1

2
B, ∇̄XX =

1 + 2‖T‖2

2(1 + ‖T‖2)
B − 1

1 + ‖T‖2
JT.

Recall that, given an orthonormal basis {Ei} of To(g
−1Hg · o), the

mean curvature can be computed asH =
∑
i II (Ei, Ei), where II denotes

the second fundamental form. In this case, using (8) and projecting onto
the normal space according to (7), the mean curvature of g−1Hg · o is
given by

H =

(
r − 1

2
+

1 + 2‖T‖2

2(1 + ‖T‖2)

)
B − 1

1 + ‖T‖2
JT.

The result follows after calculating the squared norm of this vector.

In order to complete the proof in this case, let g1 = Exp(JT1), g2 =
Exp(JT2) with T1, T2 ∈ r. We investigate whether the orbits H · g1(o)
and H · g2(o) are congruent.

First assume ‖T1‖ = ‖T2‖. Since the connected component of the iden-
tity of the normalizer of r in K0, which is given by N0

K0
(r) ∼= SO(dim r)×

U(n−1−dim r), acts transitively on the spheres of r centered at the ori-
gin, there exists an element k ∈ N0

K0
(r) satisfying Ad(k)(T1) = T2. Since

k ∈ N0
K0

(r) and K0
∼= U(n − 1), then k ∈ NK0

(gα 	 Cr). Considering
these facts, it follows that

Ad(k) Ad(g−11 )h = Ad(k)((r	 RT1)⊕ R(T1 + ‖T1‖2Z))

= (r	 RT2)	 R(T2 + ‖T2‖2Z) = Ad(g−12 )h.
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Since k fixes o ∈ CHn and normalizes a⊕n, it follows that k(g−11 Hg1·o) =
g−12 Hg2 · o. This shows that H · g1(o) is congruent to H · g2(o).

Conversely, in view of Lemma 4.1 it is enough to show that h : [0,∞)→
[0,∞), given by t 7→ 4t+(r+(r+1)t)2

4(1+t)2 , is injective. This follows simply from

h′(t) = 2+r+(r−1)t
2(1+t)3 > 0, which implies that h is strictly increasing.

Therefore, if ‖T1‖ 6= ‖T2‖, H · g1(o) and H · g2(o) are not congruent.
All in all, and taking (6) into account, this means that the orbit H ·

Exp(b1B + JT1 + W1 + y1Z)(o) is congruent to H · Exp(b2B + JT2 +
W2 + y2Z)(o), with bi, yi ∈ R, Ti ∈ r, Wi ∈ gα 	 Cr, i ∈ {1, 2}, if and
only if ρ(b2/2)‖T1‖ = ρ(b1/2)‖T2‖. This concludes the proof of case (i)
of Theorem B.

(ii) Let h = c⊕ r⊕ g2α, with c complex and r totally real in gα.
It follows from Theorem A(ii) that all the orbits of H are congruent

to each other. Now let H1 and H2 be connected Lie subgroups of G with
Lie algebras hi = ci ⊕ ri ⊕ g2α, where ci is complex and ri is totally real
in gα, i ∈ {1, 2}. Then, since isometries of SU(1, n) are holomorphic, it
follows that h1 and h2 are conjugate if and only if dim c1 = dim c2 and
dim r1 = dim r2. Hence, the orbits of H1 and H2 are congruent if and
only if dim c1 = dim c2 and dim r1 = dim r2.

Lemma 4.2. The squared norm of the mean curvature of any orbit of H
is

‖H‖2 =
(2 + dim(c⊕ r))2

4
.

Proof: From [8, Corollary 6.2], we have 2H = (2+dim(c⊕ r))B, and the
result follows taking the squared norm.

(iii) Let h = a⊕ r, where r is a totally real subspace of gα.
Since two totally real subspaces of gα are conjugate if and only if they

have the same dimension, we can fix r from now on. From Theorem A
we just have to consider orbits of the form H · g(o), with g ∈ Exp((gα 	
Cr)⊕ g2α). We define r = dim r.

Lemma 4.3. The squared norms of the mean curvature vector and of
the second fundamental form of H · Exp(2W + yZ)(o), W ∈ gα 	 Cr,
y ∈ R, are given by

‖H‖2=(1+r)2‖W‖4+(2+r)2y2(1+y2)+‖W‖2(1+8y2+r2(1+2y2)+2r(1+3y2))

4(1+y2+‖W‖2)2 ,

‖II ‖2=(1 + r)‖W‖4 + (4 + 3r)y2(1 + y2) + ‖W‖2(1 + r + 4y2(2 + r))

4(1 + y2 + ‖W‖2)2 .
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Proof: Let g = Exp(2W + yZ). Recall from (4) (with T = 0) that
Tg(o)(H · g(o)) is identified with Ad(g−1)h = Ad(Exp(−2W − yZ))h =
R(B +W + yZ)⊕ r. We define

X =
B +W + yZ√
1 + y2 + ‖W‖2

,

ξ1 =
−yB + Z√

1 + y2
,

ξ2 =
‖W‖2B − (1 + y2)W + y‖W‖2Z
‖W‖

√
(1 + y2)(1 + y2 + ‖W‖2)

.

Then, X, ξ1, and ξ2 (if W 6= 0) are mutually orthogonal unit vectors
of a ⊕ n. Furthermore, we have Ad(g−1)h = RX ⊕ r, and the normal
space of H · g(o) can be identified with the direct sum νg(o)(H · g(o)) =
Rξ1 ⊕ Rξ2 ⊕ Jr⊕ (gα 	 (Cr⊕ RW )).

Let S, T ∈ r. Using the formula for the Levi–Civita connection (2) for
left-invariant vector fields of AN , and taking the orthogonal projection
onto νg(o)(H · g(o)), we get

II (X,X) = (∇̄XX)⊥

=
1

1 + y2 + ‖W‖2

((
y2 +

1

2
‖W‖2

)
B − 1

2
W − yZ − yJW

)
,

II (X,S) = (∇̄SX)⊥ = − y

2
√

1 + y2 + ‖W‖2
JS,

II (S, T ) =
〈S, T 〉

2
(〈B, ξ1〉ξ1 + 〈B, ξ2〉ξ2)

=
〈S, T 〉

2(1 + y2 + ‖W‖2)
((y2 + ‖W‖2)B −W − yZ).

The squared norms of the mean curvature and of the second funda-
mental form are calculated as ‖H‖2 =

∑
i,j〈II (Ei, Ei), II (Ej , Ej)〉 and

‖II ‖2 =
∑
i,j‖II (Ei, Ej)‖2 with respect to an orthonormal basis {Ei} of

the tangent space. The result follows after substitution and some calcu-
lations.
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Corollary 4.4. We have

‖H‖2 − ‖II ‖2 =
r(1 + r)(y2 + ‖W‖2)

4(1 + y2 + ‖W‖2)
,

(r + 1)‖II ‖2 − ‖H‖2 =
ry2((3 + 2r)(1 + y2) + 2(3 + r)‖W‖2)

4(1 + y2 + ‖W‖2)2
.

Let g1 = Exp(2W1 + y1Z), g2 = Exp(2W2 + y2Z), with Wi ∈ gα	Cr
and yi ∈ R, i ∈ {1, 2}. We show that, if H ·g1(o) is congruent to H ·g2(o),
then ‖W1‖ = ‖W2‖ and |y1| = |y2|.

In fact, if r ≥ 1, taking into account Corollary 4.4, the previous claim
follows from

Lemma 4.5. The function F : [0,+∞)× [0,+∞)→ [0,+∞)× [0,+∞)
defined by

F (z, w) =

(
z + w

1 + z + w
,
z(a(1 + z) + (a+ 3)w)

(1 + z + w)2

)
,

where a ≥ 5, is injective.

Proof: Let (c1, c2) ∈ [0,+∞) × [0,+∞). We have to check whether
F−1(c1, c2) has at most one element. In fact, there are two solutions
to the equation F (z, w) = (c1, c2), namely:

(z, w)=

(
a+ 3c1±

√
(a+ 3c1)2 − 12c2

6(1− c1)
,

3c1 − a∓
√

(a+ 3c1)2 − 12c2
6(1− c1)

)
.

Observe that we need 0 ≤ c1 < 1 for the first component to be non-
negative, whereas (a+ 3c1)2 − 12c2 ≥ 0 so that there are real solutions.
Since 3c1−a ≤ −2 < 0, the first possibility would give a negative solution
for w, which is not allowed. Then F−1(c1, c2) has at most one element,
and F is injective.

Now we assume r = 0, that is, h = a. Thus, we have to study the con-
gruence classes of orbits of the one-dimensional Lie group A appearing
in the Iwasawa decomposition of SU(1, n).

Recall that A · o is a geodesic. Let γ : R → CHn be a unit speed
parametrization of A · o, and assume limt→∞ γ(t) = x, the point at in-
finity determined by a and the fact that α is a positive root. If A · g(o),
g ∈ Exp(gα⊕ g2α), is another orbit of A, then it can be parametrized as
β(t) = expγ(t)(rξγ(t)), where r > 0 is a constant (the distance to A · o),
and ξ is an equivariant normal vector field along A · o. Now we apply
the law of cosines [12, Corollary 1.4.4(3)] to the points o, γ(t), and β(t).
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Observe that limt→∞ d(o, γ(t)) = ∞, but d(γ(t), β(t)) is bounded be-
cause A · o and A · g(o) are equidistant. Hence, the angle ^o(γ(t), β(t))
subtended from o between γ(t) and β(t) approaches 0 as t → ∞. Ac-
cording to the definition of the cone topology of CHn ∪ CHn(∞) (see
for example [12, Proposition 1.7.6]), we conclude that limt→∞ β(t) =
limt→∞ γ(t) = x. An analogous argument shows that limt→−∞ β(t) =
limt→−∞ γ(t) = −x, the other point at infinity of the geodesic A · o.

Let gi = Exp(2Wi + yiZ) ∈ Exp(gα ⊕ g2α), with Wi ∈ gα, yi ∈ R,
i ∈ {1, 2}. According to (4) (with T = 0, r = 0), we have Ad(g−1i )h =
R(B +Wi + yiZ), i ∈ {1, 2}. Assume that there exists an isometry φ of
the full isometry group of CHn that maps A · g1(o) to A · g2(o). Then,
φ maps the limit points of one orbit to the limit points of the other. Since
these are x and −x by the discussion above, we conclude that φ leaves
{x,−x} ⊂ CHn(∞) invariant. In particular, the only geodesic of CHn

that has {x,−x} as its limit set is A · o. Thus, φ maps A · o to itself.
Hereafter c denotes complex conjugation of projective coordinates

of CHn as a quotient of the pseudo-Hermitian flat space C1,n \ {0}.
Then, c is an isometry of CHn that is anti-holomorphic, but fixes o.
Considering the matrix expressions for a, gα, and g2α [10, Section 3.1],
it follows that Ad(c)(B) = B, Ad(c)gα = gα, and Ad(c)(Z) = −Z. In
particular, c fixes x.

There is an element a ∈ A such that φa(o) = o. Hence, k = φa maps
A·o to itself and A·g1(o) to A·g2(o), and fixes o. Define h = σk, where σ
is the identity transformation if k(x) = x, or the geodesic symmetry at o

if k(x) = −x. Then h(x) = x, which implies that h ∈ K̃0 = K0 t cK0.
Since σ normalizes A, we have h(A·g1(o)) = σk(A·g1(o)) = σ(A·g2(o)) =
A · σ(g2(o)). It is not difficult to check that there exists a unique g ∈ N
such that g(o) ∈ A · σ(g2(o)), and if g = Exp(2W + yZ), W ∈ gα,

y ∈ R, then ‖W‖ = ‖W2‖ and |y| = |y2|. As K̃0 normalizes AN , we

have h∗|ToCHn ≡ Ad(h)|a⊕n. Since h(A · g1(o)) = A · g(o), and K̃0 acts
trivially on a and leaves gα and g2α invariant, we have

R(B+W+yZ) = Ad(g−1)(a) = Ad(h) Ad(g−11 )(a)

= Ad(h)(R(B +W1 + y1Z)) = R(B + Ad(h)W1 ± y1Z).

As K̃0 acts transitively on the spheres of gα, we get ‖W1‖ = ‖W‖ =
‖W2‖ and |y1| = |y| = |y2|. This concludes the argument for r = 0.

Now we show the converse. The connected component of the identity
of the normalizer of r in K0, which is given by N0

K0
(r) ∼= SO(dim r) ×

U(n− 1− dim r), acts transitively on the spheres of gα 	Cr centered at
the origin. Thus, if ‖W1‖ = ‖W2‖ and y1 = y2, the orbits H · g1(o) and
H · g2(o) are congruent.
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Finally we show that the congruence class does not depend on the
sign of y. We use the complex conjugation c considered above. We can
find an element of K0 that maps the totally real subspace r to a subspace
of gα whose elements are real vectors; then we can assume Ad(c)|r = Idr.
Thus, supposing without loss of generality that W ∈ gα 	Cr is real, we
have Ad(c)(B +W + yZ) = B +W − yZ and Ad(c)r = r, as we wanted
to show.

(iv) Let h = a⊕ c⊕ r⊕ g2α, with c complex and r totally real in gα.
If H1 and H2 are connected Lie subgroups of G whose Lie algebras

are hi = a⊕ ci⊕ ri⊕ g2α, where ci is complex and ri is totally real in gα,
i ∈ {1, 2}, then h1 and h2 are conjugate if and only if dim c1 = dim c2 and
dim r1 = dim r2, because isometries of SU(1, n) are holomorphic. Thus,
from now on we fix c and r.

Recall from Theorem A that the CR H-orbits are obtained as H ·g(o),
with g ∈ Exp(Jr).

Lemma 4.6. The squared norm of the mean curvature vector of the
orbit H · Exp(JT )(o), T ∈ r, is given by

‖H‖2 =
‖T‖2(3 + dim(c⊕ r))2

4(4 + ‖T‖2)
.

Proof: By virtue of (5) with W = 0 and [8, Lemma 6.1], the mean cur-
vature of H ·g(o) readsH = (3+dim(c⊕r))(‖T‖2B−2JT )/(2(4+‖T‖2)).
The formula in the statement follows after calculating the squared norm
of this vector.

Let T1, T2 ∈ r, and define g1 = Exp(JT1), g2 = Exp(JT2). We deter-
mine when the orbits H · g1(o) and H · g2(o) are congruent.

If ‖T1‖ = ‖T2‖, then we show thatH ·g1(o) andH ·g2(o) are congruent.
Recall from (5) (with W = 0) that Ad(g−1i )h = R(2B+JTi)⊕c⊕r⊕g2α.
The normalizer of r on K0, N0

K0
(r) ∼= SO(dim r) × U(n − 1 − dim r),

acts transitively on the spheres of r, and thus there exists k ∈ N0
K0

(r)

such that Ad(k)JT1 = JT2 and Ad(k)c = c. Then, Ad(k) Ad(g−11 )h =
Ad(g−12 )h, and the orbits H · g1(o) and H · g2(o) are congruent.

Conversely, the function h : [0,∞) → [0,∞), t 7→ at/(4 + t), a > 0,
satisfies h′(t) = 4a/(4 + t)2 > 0. Hence, h is injective, and Lemma 4.6
implies that the orbits H · g1(o) and H · g2(o) are congruent if and only
if ‖T1‖ = ‖T2‖.

Non-congruence of the different types. Finally we study the con-
gruence among the four different types of orbits listed in Theorem A. In
order to do so, first we note that orbits of type (i) and type (ii) are con-
tained in horospheres, while none of the orbits of type (iii) or type (iv)
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satisfy this property. Considering this fact, it follows that none of the
orbits of type (i) or (ii) is congruent to any orbit of type (iii) or (iv).

On the other hand, every type (iii) orbit is a totally real submanifold,
while any orbit of type (iv) has a non-trivial holomorphic part. Thus,
none of the orbits of type (iii) is congruent to any type (iv) orbit.

It only remains to analyze the congruence between orbits of types (i)
and (ii). Let us denote by Hi the connected Lie subgroup of G with Lie
algebra hi, i ∈ {1, 2}, with h1 = (r1	RT )⊕R(T −‖T‖2Z), T ∈ r1, and
h2 = c2 ⊕ r2 ⊕ g2α. As usual, ri denotes a totally real subspace of gα for
each i ∈ {1, 2}, and c2 ⊂ gα denotes a complex one.

Suppose that an H1-orbit is congruent to an H2-orbit. Since h1 is
totally real, we must have c2 = 0. In this case we also have r = dim r1 =
dim r2+1 ≥ 1. Moreover, we must have ‖H1‖2 = ‖H2‖2, which according
to Lemmas 4.1 and 4.2 implies

(1 + r)2

4
=

4‖T‖2 + (r + (r + 1)‖T‖2)2

4(1 + ‖T‖2)2
,

or equivalently, 3 + 2(r − 1)(1 + ‖T‖2) = 0. Since this never happens,
none of the orbits of H1 is congruent to any orbit of H2.
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